facebook

Functional Programming at
Facebook

Chris Piro, Eugene Letuchy

Commercial Users of Functional Programming (CUFP)
Edinburgh, Scotland

4 September 2009

Agenda

1 Facebook and Chat
) Chatarchitecture
3 Erlangstrengths

4L Setbacks

5 What has worked

Facebook

The Facebook Environment

The Facebook Environment

- The web site

More than 250 million active users
More than 3.5 billion minutes are spent on Facebook each day

The Facebook Environment

- The web site

More than 250 million active users
More than 3.5 billion minutes are spent on Facebook each day

- The engineering team
Fast iteration: code gets out to production within a week
Polyglot programming: interoperability with Thrift
Practical: high-leverage tools win

Using FP at Facebook

Using FP at Facebook

- Erlang

Chat backend (channel servers)
Chat Jabber interface (ejabberd)

AIM presence: a JSONP validator

Using FP at Facebook

- Erlang

Chat backend (channel servers)
Chat Jabber interface (ejabberd)
AIM presence: a JSONP validator

- Haskell
lex-pass: PHP parse transforms

Lambdabot
textbook: command line Facebook API client

Thrift binding

Thrift

Thrift

An efficient, cross-language serialization and RPC framework

Thrift

An efficient, cross-language serialization and RPC framework

Write interoperable servers and clients

Thrift

An efficient, cross-language serialization and RPC framework

Write interoperable servers and clients
Includes library and code generator for each language

Thrift

An efficient, cross-language serialization and RPC framework
Write interoperable servers and clients

Includes library and code generator for each language
Servers define interfaces with an IDL

struct UserProfile {
1: 132 uid,
2: string name,
3: string blurb

}

service UserStorage {

volid store(l: UserProfile user),
UserProfile retrieve(l: 132 uid)

}

Thrift

An efficient, cross-language serialization and RPC framework

Write interoperable servers and clients

Includes library and code generator for each language

Servers define interfaces with an IDL

Many supported languages

struct UserProfile {
1: 132 uid,
2: string name, C#
3: string blurb
}

C++

Erlang

service UserStorage { Haske”
volid store(l: UserProfile user),
UserProfile retrieve(l: 132 uid) Java

}

Objective C Ruby
OCaml Squeakr
Perl

PHP HTML
Python XSD

Facebook Chat r-

Motivation

Sasha Rush wrote
at 10:47pm on May 31st, 2008

deleted upon pictureds reguest. still think we should keep the name.

Write on Sasha's Wall

Daniel Corson wrote
at 10:40pm on May 31st, 2008

did you use the ConeyTypelnference app to make that

Write on Daniel's Wall

Daniel Corson wrote
at 10:02pm on May 31st, 2008

the JuliaLambdas

Write on Daniel's Wall

Sasha Rush wrote
at 10:47pm on May 30th, 2008

Also we need a nerdy, groan inducing name. I'm thinking ZuckerLambda.

Write on Sasha's Wall

Sasha Rush wrote
at 10:45pm on May 30th, 2008

| was just going to send you that link. Let's do it. Although maybe we should try one of
the old contests first. My practical haskell is still kind of slow.

Write on Sasha's Wall

Daniel Corson shared a link
at 9:38pm on May 30th, 2008

http:/ /www.icfpcontest.org/

Motivation

Sasha Rush wrote
at 10:47pm on May 31st, 2008

deleted upon pictureds reguest. still think we should keep the name.

Write on Sasha's Wall

 Inbox, Wall, Comments are

at 10:40pm on May 31st, 2008

asy n C h ro n O u S’ S I OW did you use the ConeyTypelnference app to make that

Write on Daniel's Wal

Daniel Corson wrote

Real-time conversation B < ioczomer i s

the JuliaLambdas

Write on Daniel's Wal

Unique advantages:

Sasha Rush wrote
at 10:47pm on May 30th, 2008

Also we need a nerdy, groan inducing name. I'm thinking ZuckerLambda.

List of friends for free

Write on Sasha's Wall

Sasha Rush wrote

Integrated Facebook content DR <o 5om n v 300, 2008

| was just going to send you that link. Let's do it. Although maybe we should try one of
the old contests first. My practical haskell is still kind of slow.

No install required

Daniel Corson shared a link
at 9:38pm on May 30th, 2008

http:/ /www.icfpcontest.org/

Timeline

Timeline

- Jan 2007: Chat prototyped at Hackathon

Timeline

- Jan 2007: Chat prototyped at Hackathon
- Fall 2007: Chat becomes a “real” project

4 engineers, 0.5 designer

Timeline

- Jan 2007: Chat prototyped at Hackathon
- Fall 2007: Chat becomes a “real” project
4 engineers, 0.5 designer

- Winter 2007-08: Code, code, code (learn Erlang)

Timeline

- Jan 2007: Chat prototyped at Hackathon
- Fall 2007: Chat becomes a “real” project
4 engineers, 0.5 designer
- Winter 2007-08: Code, code, code (learn Erlang)
- Feb 2008: “Dark launch” testing begins
Simulates load on the Erlang servers ... they hold up

Timeline

- Jan 2007: Chat prototyped at Hackathon
- Fall 2007: Chat becomes a “real” project
4 engineers, 0.5 designer
- Winter 2007-08: Code, code, code (learn Erlang)
- Feb 2008: “Dark launch” testing begins
Simulates load on the Erlang servers ... they hold up

= Apr 6, 2008: First user message sent:

Timeline

- Jan 2007: Chat prototyped at Hackathon
- Fall 2007: Chat becomes a “real” project
4 engineers, 0.5 designer
- Winter 2007-08: Code, code, code (learn Erlang)
- Feb 2008: “Dark launch” testing begins
Simulates load on the Erlang servers ... they hold up

= Apr 6, 2008: First user message sent: “msn chat?”

Timeline

- Jan 2007: Chat prototyped at Hackathon
- Fall 2007: Chat becomes a “real” project
4 engineers, 0.5 designer
- Winter 2007-08: Code, code, code (learn Erlang)
- Feb 2008: “Dark launch” testing begins
Simulates load on the Erlang servers ... they hold up
= Apr 6, 2008: First user message sent: “msn chat?”
= Apr 23, 2008: 100% rollout (Facebook has 70M users at the time)

Chat today

///\/_/

Wed 12:00 Thu 00: 00

Bytes/sec

>
>

Mon 12:00 Tue 00:00

Chat today

1+ billion user messages / day

Bytes/sec

Wed 12:00 Thu 00: 00

10+ million active channels at peak

1+ GB traffic at peak

100+ channel machines

Mon 12:00 Tue 00:00

Chat today

1+ billion user messages / day

Wed 12:00 Thu 00: 00

Bytes/sec

10+ million active channels at peak

1+ GB traffic at peak

100+ channel machines

- Work load has increased 10x
while machines not even 3x

Mon 12:00 Tue 00:00

Chat Architecture r-

Channel servers (Erlang)

web tier chatlogger

log writes

browsers messggg ehsi’sto ry, Lr—= log reads II

online list

message sends o
online list

presence
channel creation, r
message sends _

aggregate
online list

Channel servers (Erlang)

Channel servers (Erlang)

Channel servers (Erlang)

- Web, Jabber tiers authenticate, deliver messages

Channel servers (Erlang)

- Web, Jabber tiers authenticate, deliver messages

- One message queue per user (channel)

Channel servers (Erlang)

- Web, Jabber tiers authenticate, deliver messages
- One message queue per user (channel)

- Timing, idleness information

Channel servers (Erlang)

- Web, Jabber tiers authenticate, deliver messages
- One message queue per user (channel)

- Timing, idleness information

- HTTP long poll to simulate push (Comet)

Server replies when a message is ready

One active request per browser tab

Channel servers (Erlang)

- Web, Jabber tiers authenticate, deliver messages
- One message queue per user (channel)

- Timing, idleness information

- HTTP long poll to simulate push (Comet)

Server replies when a message is ready

One active request per browser tab

- User ID space partitioned statically (division of labor)

Channel servers (Erlang)

- Web, Jabber tiers authenticate, deliver messages
- One message queue per user (channel)

- Timing, idleness information

- HTTP long poll to simulate push (Comet)

Server replies when a message is ready

One active request per browser tab
- User ID space partitioned statically (division of labor)

- Each partition served by a cluster of machines (availability)

Erlang strengths

Concurrency

Concurrency

- Cheap parallelism at massive scale

Concurrency

- Cheap parallelism at massive scale
- Simplifies modeling concurrent interactions

Chat users are independent and concurrent
Mapping onto traditional OS threads is unnatural

Concurrency

- Cheap parallelism at massive scale
- Simplifies modeling concurrent interactions

Chat users are independent and concurrent
Mapping onto traditional OS threads is unnatural

- Locality of reference

Concurrency

- Cheap parallelism at massive scale
- Simplifies modeling concurrent interactions

Chat users are independent and concurrent
Mapping onto traditional OS threads is unnatural

- Locality of reference

- Bonus: carries over to non-Erlang concurrent programming

Distribution

Distribution

- Connected network of nodes

Distribution

- Connected network of nodes
- Remote processes look like local processes

Any node in a channel server cluster can route requests
Naive load balancing

Distribution

- Connected network of nodes
- Remote processes look like local processes

Any node in a channel server cluster can route requests
Naive load balancing

- Distributed Erlang works out-of-the-box (all nodes are trusted)

Fault Isolation

Fault Isolation

- Bugs in the initial versions of Chat:

Process leaks in the Thrift bindings
Unintended multicasting of messages
Bad return state for presence aggregators

Fault Isolation

- Bugs in the initial versions of Chat:

Process leaks in the Thrift bindings
Unintended multicasting of messages
Bad return state for presence aggregators

* (Horrible) bugs don’t kill a mostly functional system:

C/C++ segfault takes down the OS process and your server state

Erlang badmatch takes down an Erlang process
... and notifies linked processes

Error logging (crash reports)

Error logging (crash reports)

- Any proc_lib-compliant process generates crash reports

Error logging (crash reports)

- Any proc_lib-compliant process generates crash reports
- Error reports can be handled out-of-band (not where generated)

Error logging (crash reports)

- Any proc_lib-compliant process generates crash reports
- Error reports can be handled out-of-band (not where generated)
- Stacktraces point the way to bugs (functional languages win big here)

Error logging (crash reports)

- Any proc_lib-compliant process generates crash reports
- Error reports can be handled out-of-band (not where generated)
- Stacktraces point the way to bugs (functional languages win big here)
- Writing error_log handlers is simple:
gen_event behavior

Allows for massaging of the crash and error messages (binaries!)
Thrift clientin the error log

Error logging (crash reports)

- Any proc_lib-compliant process generates crash reports
- Error reports can be handled out-of-band (not where generated)
- Stacktraces point the way to bugs (functional languages win big here)
- Writing error_log handlers is simple:
gen_event behavior

Allows for massaging of the crash and error messages (binaries!)
Thrift clientin the error log

- WARNING: excessive error logging can OOM the Erlang node!

Hot code swapping

Hot code swapping

- Restart-free upgrades are awesome (!)

Pushing new functional code for Chat takes ~20 seconds
No state is lost

Hot code swapping

- Restart-free upgrades are awesome (!)

Pushing new functional code for Chat takes ~20 seconds
No state is lost

“ Teston arunning system

Hot code swapping

- Restart-free upgrades are awesome (!)

Pushing new functional code for Chat takes ~20 seconds
No state is lost

“ Teston arunning system

- Provides a safety net ... rolling back bad code is easy

Hot code swapping

- Restart-free upgrades are awesome (!)

Pushing new functional code for Chat takes ~20 seconds
No state is lost

“ Teston arunning system

- Provides a safety net ... rolling back bad code is easy

- NOTE: we don’t use the OTP release/upgrade strategies

Monitoring and Error Recovery

Monitoring and Error Recovery

- Supervision hierarchies

Organize (and control) processes
Systematize restarts and error recovery

Extended supervisor with a “directory” type
one_for_one with string -> child pid map

Monitoring and Error Recovery

- Supervision hierarchies

Organize (and control) processes

Systematize restarts and error recovery

Extended supervisor with a “directory” type

one_for_one with string -

- net_kernel (Distributed Er

sends nodedown, nodeu

> child pid map
ang)

D MESSAgES

any process can subscribe

Monitoring and Error Recovery

- Supervision hierarchies

Organize (and control) processes

Systematize restarts and error recovery

Extended supervisor with a “directory” type

one_for_one with string -

- net_kernel (Distributed Er

sends nodedown, nodeu

> child pid map
ang)

D MESSAgES

any process can subscribe

- heart: monitors and restarts the OS process

Hibernation

Hibernation

* Drastically shrink memory usage with erlang:hibernate/3

Throws away the call stack, minimizes heap
Enters a wait state for new messages
“Jumps” into a passed-in function for a received message

Hibernation

* Drastically shrink memory usage with erlang:hibernate/3

Throws away the call stack, minimizes heap
Enters a wait state for new messages
“Jumps” into a passed-in function for a received message

* Perfect for along-running, idling HTTP request handler

Hibernation

* Drastically shrink memory usage with erlang:hibernate/3

Throws away the call stack, minimizes heap
Enters a wait state for new messages
“Jumps” into a passed-in function for a received message
* Perfect for along-running, idling HTTP request handler
- But ... not compatible with gen_server:call (and gen_server:reply)
gen_server:call has its own receive() loop

hibernate() doesn’t support an explicit timeout
gen_hibernate: a few hours and a look at gen.erl

hipe_bifs

hipe_bifs

Cheating single assignment

- Erlang is opinionated:
- Destructive assignment is hard because it should be

10 10 10 te/ge 10 20 20
1% 1e 1% 20 1% 20 1% 20
10 10 1020

1e 1% 19 1% 10 1% 1020
1% je 1o 1710 10 10 Lo

hipe_bifs

- Erlang is opinionated:

Destructive assignment is hard because it should be

- hipe_bifs:bytearray_*(): manipulate references to mutable arrays (!)

Necessary for aggregating Chat users’ presence

1o 10 1% 10 20 20 20 2
1% 1e 1% e 1% e 1% e

Same in-memory format as presence servers (C++)

Don’t tell anyone! 1e1010 10 s0/20 20 1

1% e 1e 1% 10 1010}

Setbacks

“What’s Erlang?”

“What’s Erlang?”

- Lack of Erlang educational resources (at start of 2007)

Few industry-focused English-language resources
Few blogs (outside of Yariv’s and Joel Reymont’s)
U.S. Erlang community limited in number and visibility

“What’s Erlang?”

- Lack of Erlang educational resources (at start of 2007)

Few industry-focused English-language resources
Few blogs (outside of Yariv’s and Joel Reymont’s)
U.S. Erlang community limited in number and visibility

- Engineers are uncomfortable with FP

Universities have very conservative curricula
FP:academia, Al :: ‘normal programming’:industry

“If you want to succeed, learn C++ and Java”, not “use the right tool for
the job”

Not similar to rest of the codebase, not hiring specifically for FP

Institutional pressures

Institutional pressures

- Hard to get others to join the effort

Institutional pressures

- Hard to get others to join the effort
- Can’t reuse specialized infrastructure

PHP-, C++-centric tools
Chat deploy process is a one-off

Institutional pressures

- Hard to get others to join the effort
- Can’t reuse specialized infrastructure
PHP-, C++-centric tools
Chat deploy process is a one-off
 Divides department into us vs. them
We’re “the Erlang guys”
Sole responsibility for fixing bugs
Less time for us to evangelize and innovate elsewhere

Institutional pressures

- Hard to get others to join the effort
- Can’t reuse specialized infrastructure

PHP-, C++-centric tools
Chat deploy process is a one-off

 Divides department into us vs. them

We’re “the Erlang guys”
Sole responsibility for fixing bugs
Less time for us to evangelize and innovate elsewhere

- (Seemingly) contrary to “move fast” value

What has worked

What has worked

What has worked

- Use FP from the beginning

What has worked

- Use FP from the beginning
- Qutline language strengths, give evidence

What has worked

- Use FP from the beginning
- Qutline language strengths, give evidence
- Internal tech talks

What has worked

- Use FP from the beginning
- Qutline language strengths, give evidence
- Internal tech talks

- ICFP Programming Contest: give the FP people an excuse!

What has worked

- Use FP from the beginning

- Qutline language strengths, give evidence

- Internal tech talks

- ICFP Programming Contest: give the FP people an excuse!
- Language independence with Thrift

What has worked

- Use FP from the beginning

- Qutline language strengths, give evidence

- Internal tech talks

- ICFP Programming Contest: give the FP people an excuse!
- Language independence with Thrift

- “The right tool for the job”

facebook

c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

