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We formulate an efficient exact method of propagating optical wave packets (and cw beams) in isotropic and
nonisotropic dispersive media. The method does not make the slowly varying envelope approximation in time
or space and treats dispersion and diffraction exactly to all orders, even in the near field. It can also be used
to determine the partial differential wave equation for pulses (and beams) to any order as a power series in
the partial derivatives with respect to time and space. The method can treat extremely focused pulses and
beams, e.g., from near-field scanning optical microscopy sources whose transverse spatial extent in smaller
than a wavelength.  1997 Optical Society of America
Recently1,2 a formulation to propagate light pulses in
homogeneous dispersive nonisotropic media was devel-
oped and experimentally verif ied.3 This formulation
showed that the wave equation contains terms that
rotate the three-dimensional (3D) wave packet of an
optical pulse propagating as an extraordinary wave
(EW) about an axis perpendicular to the propagation
vector. The formulation involved an expansion in
terms of the dimensionless parameters sv0t0d21 and
l0ys2ps0d, where t0 is the pulse duration, v0 is the
central frequency, l0 is the central wavelength, and
s0 is the transverse width of the pulse. In this
Letter we generalize the treatment of Refs. 1 and 2 by
formulating a method for propagating optical pulses
and cw beams that is valid to all orders in sv0t0d21

and l0ys2ps0d. Therefore, the method can be applied
to propagate (without approximation) extremely short
pulses and extremely focused pulses and cw beams.
Consequently, it can be used to calculate effects of
near-field diffraction exactly, not only in vacuum but
also in dispersive media and even in nonisotropic
dispersive media. For example, in near-f ield scanning
optical microscopy,4 – 7 an optical beam with a cross
section that is a very small fraction of the incident
wavelength can be generated at the end of an opti-
cal fiber pulled into a narrow tip and coated with
metal. The slowly varying envelope approximation
(SVEA) cannot be used to propagate such a nonclas-
sical beam when it leaves the fiber. However, the
present method can exactly propagate such beams (or
pulses8) in vacuum, isotropic, and nonisotropic media.
Near-field optical propagation of pulses or beams
whose transverse dimensions are comparable with or
smaller than the wavelength requires incorporation
of evanescent-wave contributions.9,10 Hence, incorpo-
rating radiation tunneling is crucial. In the present
formulation, it emerges naturally. Moreover, one can-
not adequately propagate pulses shorter than several
optical cycles by keeping only small-order time-
derivative terms in the wave equation, but one can
efficiently and exactly propagate them by using the
present method.

We begin by defining the slowly varying envelope
(SVE) of the electric field by extracting the wave with
0146-9592/97/090579-03$10.00/0
central wave vector K0 and central frequency v0 of the
pulse, Esx, td ­ Asx, tdexpsiK0x 2 v0td. The SVE is
given by

Asx, td ­
1

s2pd4

Z 1`

2`

d3KdvAsK, vd

3 exphifsK 2 K0d ? x 2 sv 2 v0dtgj . (1)

One can derive the propagation equation for the SVE
by differentiating Asx, td with respect to the position
coordinate in the direction of s0 ­ K0yjK0j, which we
choose to be along the space-f ixed z axis:

≠Asx, td
≠z

­
1

s2pd4

Z 1`

2`

d3KdvAsK, vd fisK 2 K0d ? s0g

3 exphifsK 2 K0d ? x 2 sv 2 v0dtgj . (2)

Equations (1) and (2) present a decomposition of the
electric field in terms of the normal modes in the
medium; these modes are plane waves that satisfy
the medium’s dispersion relation (DR) [there are two
branches of the DR in general, and a sum over them
is necessary in Eqs. (1) and (2)]. Because of the DR,
the variables K and v are not independent and the
four-dimensional integrals in Eqs. (1) and (2) can be
reduced to three dimensions. For numerical applica-
tions we eliminate integration over Kz, using the DR
to express Kz in terms of Kx, Ky , and v. The DR is
derived by substitution of the plane-wave solution into
the Faraday and Ampere equations and use of the con-
stitutive equations for the displacement and magnetic
induction to obtain the equation sK ? KdEsK, vd 2

KfK ? EsK, vdg 2 v2yc2mêsK, vdEsK, vd ­ 0. Defin-
ing the refractive index nsK, vd by the relation K ­
nsK, vd svycds, where s is a unit vector in the direction
of K, and substituting this definition into the DR, for
every s we obtain a secular equation for the refractive
index and a set of equations for the direction of the
electric (and magnetic) vector. The detrimental equa-
tion is conveniently evaluated in the principal-axis
coordinate system hX, Y , Zj. Here we explicitly con-
sider the uniaxial crystal case (the changes necessary
for isotropic or biaxial media are easy to make). For
uniaxial crystals, we define the Z-axis in the direction
 1997 Optical Society of America
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of the uniaxial axis and the X axis in the optical plane
defined by the uniaxial axis and the wave vector K0.
The secular equation for nsK, vd has two solutions; an
ordinary wave (OW) solution, n ­ nosvd, that is inde-
pendent of s and an EW solution with refractive index
given by nsv, ud ­ fcos2sudyn2

osvd 1 sin2sudyn2
e svdg21/2,

where the angle u is defined so that tansud ­ fsK2
X 1

K2
Y dyK2

Zg1/2, n2
esvd ­ msvdeZ svd, n2

osvd ­ msvdeX svd ­
msvdeY svd. This can be rewritten as

sK2
X 1 K2

Y dyn2
e svd 1 K2

Zyn2
osvd ­ v2yc2. (3)

To use this equation conveniently for propagation, it is
useful to rewrite it in the space-f ixed coordinate frame
with the z axis along K0 and the x axis in the optical
plane. The transformation between the space-f ixed
sx, y, zd and the principal sX, Y , Zd coordinate frames
involves a rotation about the y axis by an angle u0. On
applying the rotation to Eq. (3), we obtain a quadratic
equation for Kz whose solution for EW’s in uniaxial
media is

Kz ­
1
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n2sins2u0d
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2
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n2
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#
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x
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(4)

where n ; nsv, u0d. Note that Kz can be imaginary
for any value of v for sufficiently large Kx and Ky; the
argument of the square root in Eq. (4) then becomes
negative, yet K still satisfies the DR, Eq. (3), and as
such is included in the Fourier integrals in Eqs. (1) and
(2). Hence, evanescent modes are naturally included
in our method. For OW’s in a uniaxial medium (and
for an isotropic medium) one can simply set n ­ ne ­ no,
and Kz is either real or imaginary, but for EW’s Kz
is either real or complex. This procedure can also
be generalized to biaxial media, for which all waves
are EW’s because of the reduced symmetry; here, two
rotations must be applied between space-f ixed and
principal-coordinate frames, since n ­ nsv, u0, f0d.

Previously, the partial differential equation (PDE)
for the SVE of an optical pulse propagating in a non-
isotropic medium was derived to second order in spatial
variables and to third order in time,1,2 and the mean-
ing of each term in the PDE was explained. Using
Eq. (2), we obtain exactly the same propagation equa-
tion by eliminating the integral over Kz and expanding
the expression for Kz appearing in Eq. (4) as a func-
tion of Kx, Ky to second order and to third order in
v. The present approach is vastly simpler than the
one used in Refs. 1 and 2, since here there exists a
direct correspondence between the powers of Kx, Ky ,
and sv 2 v0d and i≠y≠x, i≠y≠y , and 2i≠y≠t, respec-
tively. The explicit correspondence between the two
methods was shown with the Maple computer algebra
system11 to fifth order in time and space, thus demon-
strating that the coefficients appearing in the PDE are
identical in the two methods. Moreover, Eq. (1) or (2)
together with Eq. (4) allows determination or propaga-
tion of the SVE to all orders in space and time. The
expansion parameters for obtaining the PDE to suc-
cessively higher orders are l0ys4pn0s0d for space vari-
ables and sv0t0d21 for time, where n0 ; nsK0, v0d. The
SVEA corresponds to truncation of the expansion of
Kz in Eq. (2), and we obtained the paraxial approxima-
tion by retaining up to second-order terms in x and y.
The mixed space–time second-order terms account for
the tilting of the pulse during propagation.1,2 Higher-
order effects become important when either expansion
parameter is less than unity or when the propagation
distance is much larger than the initial width of the
pulse. If Kz is not expanded but the full expression
for Kz in Eq. (4) is retained with Eq. (2), the SVEA and
the paraxial approximation are avoided and diffraction
and dispersion effects are included to all orders.

Keeping terms up to third order, we see that the PDE
for A is
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1 · · · . (5)

For an EW in a uniaxial medium, there are only four
third-order terms in the PDE: b3≠3y≠t3, gtxx≠3y≠t≠x2,
gtyy≠3y≠t≠y2, and gttx≠3y≠t2≠x. The f irst term gives
rise to third-order dispersion. The second and third
terms are responsible for the curvature of the propa-
gating front of the pulse; they are not included in
the paraxial approximation. These terms are present
even in an isotropic medium and account for the spheri-
cal surface of a propagating front originating from a
point source. The explicit expression for gtxx in terms
of the refractive index and its derivatives is

gtxx ­
c
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(6)
In isotropic media, or for OW’s in uniaxial media, n
has no dependence on u, leaving only the f irst term on
the right-hand side of Eq. (6), and gtxx ­ b1g2

xx. The
fourth sgttxd term is not present in isotropic media or
for OW’s in uniaxial media. It, too, distorts the pulse
but in a fashion that reverses the roles of t and x, as
described elsewhere.11

As a numerical example, we propagate an EW
pulse in a positive uniaxial rutile (TiO2) crystal.
Equation (2) is numerically propagated with the
split-step Fourier transform method.12 This method
can be easily applied whether the full expression
for Kz in Eq. (4) is retained and evaluated in fre-
quency and momentum space or the expression is
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Fig. 1. 3D surface and contour plot of jAsx, y, z, tdj versus
ct and x for a propagation distance of z ­ 0.5 mm in
the frame traveling with the z component of the group.
The dashed contour plot ellipses show the second-order
expansion result.

expanded and the derivatives with respect to time
and space are evaluated in frequency and momentum
space. We carried out calculations with a pulse
of light composed of a frequency superposition of
Bethe–Bouwkamp solutions for a circular aperture9;
the pulse enters a crystal and has both OW and EW
polarizations. The boundary-value problem at the
surface of the dispersive medium is solved to yield
the ref lection and transmission amplitudes into the
various modes.10 However, presenting this analysis
here would complicate the description of the physical
effects that we wish to emphasize, since boundary-
matching issues would have to be discussed in detail.
Instead, we take an initial EW Gaussian pulse with
l0 ­ 410 nm, spatial width in y sy ­ ` (so that we
can display the results in a 3D plot), temporal width
t0 ­ 33.3 fs, and u0 ­ 50± relative to the optic axis.
Figure 1 shows a 3D surface and a contour plot of
jAsx, y, z, tdj versus ct and x for a propagation distance
of z ­ 0.5 mm in the frame traveling with the z
component of the group velocity. For comparison,
the second-order expansion result is included in the
contour plot as a dashed curve (the third-order result
is very similar to the exact result and is not shown).
First, let us consider the second-order result. The
pulse is not centered at the origin because of the
gx walk-off term in Eq. (6). Its temporal duration
increased by roughly a factor of 2 relative to the input
pulse because of group-velocity dispersion sb2d, and its
spread in x increased by a factor of ,1000 because of
gxx. The tilt of the elliptical wave packet that is due
to gxt is ,20±. In the exact result, the distortion and
curvature are due mainly to the gtxx term (the effect
of gttx is negligible here). The curvature of the pulse
results for the same reason that the wave front from a
point source is a sphere. The tilt and walk-off of the
exact wave packet are also quite evident.

In summary, the present method can be used to
calculate diffraction and propagation of pulses and
beams in isotropic and nonisotropic dispersive media
efficiently and exactly, even in the near f ield. To our
knowledge, this the only method available to treat
the kinds of propagation described here, from the
smallest scales, e.g., propagation of light from near-
field microscopes in nonisotropic media, to the largest
scales, e.g., pulse propagation of light from pulsars
in the intergalactic medium (which is nonisotropic
because of magnetic fields).
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