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Abstract: For both the academic and the financial communities it is a familiar stylized fact that stock 

market returns have negative skewness and excess kurtosis. This stylized fact has been supported by a vast 

collection of empirical studies. Given that the conventional measures of skewness and kurtosis are computed 

as an average and that averages are not robust, we ask, “How useful are the measures of skewness and 

kurtosis used in previous empirical studies?” To answer this question we provide a survey of robust 

measures of skewness and kurtosis from the statistics literature and carry out extensive Monte Carlo 

simulations that compare the conventional measures with the robust measures of our survey. An application 

of the robust measures to daily S&P500 index data indicates that the stylized facts might have been accepted 

too readily. We suggest that looking beyond the standard skewness and kurtosis measures can provide 

deeper insight into market returns behaviour. 
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1.  Introduction 
 

It has long been recognized that the behavior of stock market returns does not agree with the 

frequently assumed normal distribution. This disagreement is often highlighted by showing the 

large departures of the skewness and kurtosis of returns from normal distribution counterparts. For 

both the academic and the financial communities it has become a firm and indisputable stylized 

fact that stock market returns have negative skewness and excess kurtosis. This stylized fact has 

been supported by a huge collection of empirical studies. Some recent papers on this issue include 

Bates (1996), Jorion (1988), Hwang and Satchell (1999), and Harvey and Siddique (1999, 2000). 

     The role of higher moments has become increasingly important in the literature mainly because 

the traditional measure of risk, variance (or standard deviation), has failed to capture fully the "true 

risk" of the distribution of stock market returns. For example, if investors prefer right-skewed 

portfolios, then more reward should be given to investors willing to invest in left-skewed portfolios 

even though both portfolios have the same standard deviation. This suggests that the "true risk" 

may be a multi-dimensional concept and that other measures of distributional shape such as higher 

moments can be useful in obtaining a better description of multi-dimensional risk. In this context, 

Harvey and Siddique (2000) proposed an asset pricing model that incorporates skewness and 

Hwang and Satchell (1999) developed a CAPM for emerging markets taking into account 

skewness and kurtosis. 

     Given this emerging interest in skewness and kurtosis in financial markets, one should ask the 

following question: how useful are the measures of skewness and kurtosis used in previous 

empirical studies? Practically all of the previous work concerning skewness and kurtosis in 

financial markets has used the conventional measures of skewness and kurtosis (that is, the 

standardized third and fourth sample moments or some variants of these). It is well known that the 

sample mean (also its regression version, the least squares estimator) is very sensitive to outliers. 

Since the conventional measures of skewness and kurtosis are essentially based on sample 

averages, they are also sensitive to outliers. Moreover, the impact of outliers is greatly amplified in 

the conventional measures of skewness and kurtosis due to the fact that they are raised to the third 

and fourth powers. 

     In the statistics literature, a great deal of effort has been taken to overcome the non-robustness 

of the conventional measures of location and dispersion (i.e. mean and variance), and some 

attention has been paid to the non-robustness of the conventional measures of skewness and 
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kurtosis. In the finance literature, there has been some concern with non-robustness of conventional 

measures of location and dispersion, but almost no attention to the non-robustness of conventional 

measures of skewness and kurtosis. In this paper, we consider certain robust alternative measures 

of skewness and kurtosis based on quantiles that have been previously developed in the statistics 

literature, and we conduct extensive Monte Carlo simulations to evaluate and compare the 

conventional measures of skewness and kurtosis and their robust counterparts. Our simulation 

results demonstrate that the conventional measures are extremely sensitive to single outliers or 

small groups of outliers, comparable to those observed in U.S. stock returns. An application of 

robust measures to the daily S&P500 index indicates that the familiar stylized facts (negative 

skewness and excess kurtosis in financial markets) may have been too readily accepted. 

 

2.  Review of Robust Measures of Skewness and Kurtosis 

 

We consider a process Ntty ,...,2,1}{ =  and assume that the ty ’s are independent and identically 

distributed with a cumulative distribution function F . The conventional coefficients of skewness 

and kurtosis for ty  are given by: 
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where  )( tyE=µ  and ,)( 22 µσ −= tyE  and expectation E  is taken with respect to F .  Given the 

data Ntty ,...,2,1}{ = , 1SK  and 1KR  are usually estimated by the sample averages 
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     Due to the third and fourth power terms in 1SK  and 1KR , the values of these measures can be 

arbitrarily large, especially when there are one or more large outliers in the data.  For this reason, it 

can sometimes be difficult to give a sensible interpretation to large values of these measures simply 

because we do not know whether the true values are indeed large or there exist some outliers. One 

seemingly simple solution is to eliminate the outliers from the data.  Two problems arise in this 

approach. One is that the decision to eliminate outliers is taken usually after visually inspecting the 
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data; this can invalidate subsequent statistical inference.  The other is that deciding which 

observations are outliers can be somewhat arbitrary. 

     Hence, eliminating outliers manually is not as simple as it may appear, and it is desirable to 

have non-subjective robust measures of skewness and kurtosis that are not too sensitive to outliers. 

We turn now to a description of a number of more robust measures of skewness and kurtosis that 

have been proposed in the statistics literature. It is interesting to note that among the robust 

measures we discuss below, only one requires the second moment and all other measures do not 

require any moments to exist. 

 

2.1  Robust Measures of Skewness 

 

Robust measures of location and dispersion are well known in the literature. For example, the 

median can be used for location and the interquartile range for dispersion.  Both the median and the 

interquartile range are based on quantiles.  Following this tradition, Bowley (1920) proposed a 

coefficient of skewness based on quantiles: 
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is easily seen that for any symmetric distribution, the Bowley coefficient of skewness is zero.  The 

denominator 13 QQ −  re-scales the coefficient so that the maximum value for 2SK  is 1, 

representing extreme right skewness and the minimum value for 2SK  is –1, representing extreme 

left skewness. 

     The Bowley coefficient of skewness has been generalized by Hinkley (1975):    
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 for any α  between 0 and 0.5. Note that the Bowley coefficient of skewness is a special case of 

Hinkley's coefficient when α  = 0.25. This measure, however, depends on the value of α  and it is 

not clear what value should be used for α . One way of removing this dependence is to integrate 

out ,α  as done in Groeneveld and Meeden (1984): 



 5

          

{ }
{ }

.
||

)()1(

2)()1(

2

2

5.0

0

11

5.0

0 2
11

3

QyE
Q

dFF

dQFF
SK

t −
−

=

−−

−+−
=

∫
∫

−−

−−

µ

ααα

ααα

 

This measure is also zero for any symmetric distributions and is bounded by –1 and 1. 

     Noting that the denominator || 2QyE t −  is a kind of dispersion measure, we observe that the 

Pearson coefficient of skewness [Kendall and Stuart (1977)] is obtained by replacing the 

denominator with the standard deviation as follows: 
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     Groeneveld and Meeden (1984) have put forward the following four properties that any 

reasonable coefficient of skewness )( tyγ  should satisfy: (i) for any ),0( ∞∈a  and ),,( ∞−∞∈b  

)( tyγ  = )( bay t +γ ; (ii) if ty  is symmetrically distributed, then )( tyγ  = 0; (iii) )( tyγ−  = )( ty−γ ; 

(iv) if F  and G  are cumulative distribution functions of ty  and tx , and GF c< , then )( tyγ  ≤  

)( txγ  where c<  is a skewness-ordering among  distributions (see Zwet (1964) for the definition). 

Groeneveld and Meeden proved that 1SK , 2SK  and 3SK  satisfy (i)-(iv), but 4SK  satisfies (i)-(iii) 

only. 

 

2.2  Robust Measures of Kurtosis 

 

Moors (1988) showed that the conventional measure of kurtosis ( 1KR ) can be interpreted as a 

measure of the dispersion of a distribution around the two values σµ ± .  Hence, 1KR  can be large 

when probability mass is concentrated either near the mean µ  or in the tails of the distributions. 

Based on this interpretation, Moors (1988) proposed a robust alternative to 1KR : 
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justified this estimator on the ground that the two terms, )( 57 EE −  and )( 13 EE − , are large (small) 

if relatively little (much) probability mass is concentrated in the neighbourhood of 6E  and 2E , 

corresponding to large (small) dispersion around σµ ± .  The denominator is a scaling factor 
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ensuring that the statistic is invariant under linear transformation. As we do for ,1KR  we center the 

Moors coefficient of kurtosis at the value for the standard normal distribution.  It is easy to 

calculate that ,15.171 −=−= EE  ,68.062 −=−= EE 32.053 −=−= EE  and 04 =E  for )1,0(N  

and therefore the Moors coefficient of kurtosis is 1.23. Hence, the centered coefficient is given by: 
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     While investigating how to test light-tailed distributions against heavy-tailed distributions, Hogg 

(1972, 1974) found that the following measure of kurtosis performs better than the traditional 

measure 1KR  in detecting heavy-tailed distributions: 
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).1,0(∈α  According to Hogg’s simulation experiments, α  = 0.05 and β  = 0.5 gave the most 

satisfactory results. Here, we adopt these values for α  and β . For ),1,0(N  we have 

06.205.005.0 =−= LU  and ,80.05.05.0 =−= LU  implying that the Hogg coefficient with α  = 0.05 

and β  = 0.5 is 2.59. Hence, the centered Hogg coefficient is given by: 
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3.  Monte Carlo Simulations 

 

In this section we conduct Monte Carlo simulations designed to investigate how robust the 

alternative measures of skewness and kurtosis are in finite samples. The simulations were carried 

out on a 700MHz PC using MATLAB. The random number generator used in the simulations is 

that from the MATLAB Statistics Toolbox. 

     We choose three symmetric distributions and one non-symmetric distribution for our simulation 

study. Our symmetric distributions are the standard normal distribution N(0,1), and the Student 

−t distributions with 10 and 5 degrees of freedom [T-10, T-5]. These represent moderate, heavy 

and very heavy tailed distributions. For the non-symmetric distribution we use the log-normal 

distribution with µ  = 1, σ  = 0.4 (shifted by 
2)4.0(5.01+− e  so that the mean is zero) denoted Log-

N(1,0.4). For a range of values for N  (50, 250, 500, 1000, 2500 and 5000), we generate Ntty ,...,2,1}{ =  

using the four distributions and calculate the various measures of skewness and kurtosis discussed 

in the previous section. The number of replications for each experiment is 1000. The true values of 

the skewness and kurtosis measures for the various distributions are provided in Table 1. If our 

statistics are consistent, then their Monte Carlo distributions should collapse around these values as 

∞→N . 

     The simulation results are reported in Figures 1-8. Each figure is divided into two sections: A 

and B. Figure A shows smoothed histograms of estimated coefficients of skewness or kurtosis for 

the 5 different sample sizes and 4 data generating distributions. We use a kernel density method to 

smooth the histograms. In order to provide additional information, Figure B displays box-plots for 

the corresponding smoothed histograms. As usual, each box represents the lower quartile, median, 

and upper quartile values. The whiskers are lines extending from each end of the box and their 

length is chosen to be the same as the length of the corresponding box (i.e. the inter-quartile range). 

The number at the end of each whisker is the number of observations beyond the end of the 

whiskers.  

     As expected, the performance of 1SK  (Figure 1) deteriorates as the distribution moves from 

N(0,1) to T-10 and T-5. The sampling distributions tend to have large dispersion and the number of 

observations outside the whiskers is noticeably increasing. For the lognormal case, 1SK  is not a 

good measure when N  is small, which is indicated by the fact that the center of the box-plot is 

quite different from the limiting value (1.32), although it does move towards the limiting value as 
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∞→N . These problems, however, are not present in the other robust measures, 2SK  (Figure 2), 

3SK  (Figure 3), 4SK  (Figure 4). That is, the sampling distributions are fairly stable and similar 

across various distributions and also, for the lognormal case, the center of the box-plot stays near 

the limiting value even for N = 50.  

     The performance of 1KR  (Figure 5) is even worse than 1SK  as the distribution moves from 

N(0,1) to T-10 and T-5. For the T-5 case, the center of the box-plot is still far away from the true 

value 6 even for N = 5000. The small sample bias of 1KR  for Log-N(1,0.4) is also evident in the 

box-plot.  Other robust estimates ( 2KR  and 4KR ) do not exhibit these problems at all.  The 

sampling distribution of 3KR  indicates that there is a small finite sample bias when the number of 

observations is less than 1000. 

     Next we add a single outlier to the same set of generated random numbers Ntty ,...,2,1}{ =  and 

calculate the same set of measures in order to see the impact of the single outlier on the various 

measures. The outlier is constructed to occur at time )1,0(∈τ . In order to inject some realism into 

the simulation study, we use the daily S&P500 index to calculate the size and location of the 

outlier. The sample period is January 1, 1982 through June 29, 2001 with 5085. The largest outlier 

(-20.41%) is caused by the 1987 stock market crash. The timing of the crash in this sample period 

is τ  = 0.3 (the location of the outlier in the sample divided by the total number of observations). 

We calculate the 25th percentile of the sampling distribution of the S&P index. It turns out that the 

25th percentile is -0.42. The size of the outlier relative to the 25th percentile is then given by 

62.4842.0/41.20)25.0(/ 1
][ =−−== −Fym Tτ . Therefore, we first generate random numbers 

Ntty ,...,2,1}{ =  and calculate the 25th percentile ).25.0(1−F  The outlier is then )25.0(1−mF  and we 

replace the observation ]3.0[ Ty  with the outlier. 

     The results are reported in Figures 9-16. The impact of one outlier on 1SK  is clearly visible in 

Figure 9. Note that the center of the sampling distributions of 1SK  is moving toward to zero (the 

true value for all symmetric distributions) once N  is greater than 500, but even for N  = 5000, the 

center is far from zero. No whiskers from the box-plots contain the true value 0 in their upper tails. 

The maximum impact occurs approximately when N = 500.  In that case the center of the box-

plots is around between -13 and -10. In contrast, the outlier has no impact on 2SK  at all. This is 

expected since 2SK  is based on quantiles whose values are not changed by a single observation. 
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On the other hand, we see the moving-box type of convergence for the other robust skewness 

estimators ( 3SK  and 4SK ). This is because these measures involve µ  and σ , and the outlier must 

have some impact on the sample mean and sample standard deviation. Even for N  = 5000 the 

medians of the sampling distributions of 3SK  and 4SK  for the symmetric generating distributions 

are slightly less than zero. If one does not want to have any impact of a single outlier when 

measuring skewness, then 2SK  is preferable. However, if one wishes to take into account the 

outlier in the calculation, but does not want to have as severe a distortion as appears in 1SK , then 

3SK  or 4SK  might be a better measure.  

     The impact of the single outlier on 1KR  is truly spectacular (Figure 13). The effect is 

maximized around at N = 1000 in which the center of box-plots are between 150 and 300 for 

various distributions when the true value should be between 0 and 6. Once N  becomes larger than 

1000, 1KR  converges towards its true value, but even with N = 5000 the medians are still between 

80 and 200. The results indicate that it may not be possible to attach any meaningful interpretation 

to a large value of 1KR  even when there are sufficiently many observations. The Moors coefficient 

2KR , on the other hand, is not influenced by the outlier at all (Figure 14). For the same reason as 

for 2SK , this is because 2KR  is based on octiles, which are not affected by a single observation. 

The centered Hogg coefficient 3KR  is mildly influenced by the outlier, especially when the number 

of observations is very small, but the influence disappears quickly as N  increases (Figure 15). The 

source of the influence is the terms 05.0L  and 5.0L . As explained before, αL  is the average of the 

lower α  percentile tails. Hence, when N  is small (e.g. 50), the outlier becomes one of the 

percentiles and enters the calculation of αL . On the other hand, the impact on 4KR  is present only 

when N  = 50 (Figure 16). This is because the term )025.0(1−F  in the formula is equal to the 

outlier when the number of observations is very small. The same comment can be applied to the 

choice of kurtosis measures: 2KR  completely ignores a single outlier while 3KR  and 4KR  reflects 

to some degree the presence of an outlier without much distortion. 

     If an outlier occurs only once and its size does not depend on the sample size (N ), then its 

impact on any statistic will eventually disappear as the sample size goes to infinity. This must be 

true for even 1SK  or 1KR , despite their being severely degraded in finite samples. In reality, 

however, we tend to find that large outliers recur through time: for example, the 1987 stock market 
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crash and the 1998 Asian crisis. One way of modelling this phenomenon is to use a mixture 

distribution. Suppose that a process }{ ty  is generated from ),( 11 σµD  with probability p  and 

from ),( 122 γσσµ =D  with probability p−1 . If the probability p  is very close to one and 2σ  is 

fairly large compared to 1σ ,  then the process has recurring outliers with probability p−1  through 

time. In our simulations we determine the values of p  and γ , again using the daily S&P index. 

We treat a change larger than 7% per day as an outlier. Over the sample period, there are six 

observations whose absolute values are greater than 7%. Our estimate for p  is then given by 

9988.05085/5079ˆ ==p  and p̂1−  = 0.0012. The sample standard devia tion of the sample 

without the six outliers is 0.94, and the sample standard deviation of the six outliers is 9.99. Hence, 

the ratio is 63.1094.0/99.9 = . The sample mean of the six outliers is -7.322.  Taking into account 

these estimates, we choose the following set of parameter values for our simulations: ,01 =µ  

11 =σ , ,72 −=µ  10=γ  and .9988.0=p  Hence, the random numbers are generated by 

)1,0(9988.0 D  + )10,7(0012.0 −D  using the same four distributions for D . We present the true 

values of the skewness and kurtosis measures for these mixture distributions in Table 2. We 

provide a short discussion of how to obtain these values in the Appendix.  

     The simulation results are displayed in Figures 17-24. The behaviour of 1SK  (Figure 17) is 

quite different from that of 1SK  with a single outlier in that the dispersion of sampling distributions 

increases as the sample size becomes larger. This may seem surprising because we usually expect 

the dispersion of a sampling distribution to shrink as N  increases. In the single outlier case we 

guaranteed the occurrence of the outlier in each sample regardless of the value of N . In the 

mixture distribut ion case, on the other hand, when N  is small, the sample may not have any 

outliers due to the high value of .9988.0=p  This may explain why the dispersion of the sampling 

distribution of 1SK  is small when N  is small, and becomes larger as N  increases.  In most 

distributions, the center of box-plots converges to the true value rather slowly: with N = 5000 it is 

still far from the true value; -2.27 for N(0,1), -2.00 for T-10, -1.71 for T-5 and 0.52 for Log-

N(1,0.4). The other robust skewness measures ( ,2SK ,3SK 4SK ) are in general not influenced by 

this type of outlier: the dispersion is quite small even for small N  and there is no finite sample 

bias. As for 1SK , the sampling distributions of 1KR  (Figure 21) tend to have larger dispersion as 

N  approaches 5000. Two other measures ( ,2KR  4KR ) are robust to these recurring outliers and 
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their medians converge to the true limiting values reasonably quickly (Figures 22 and 24). The 

Hogg coefficient 3KR  (Figure 23) has a finite sample bias for small N , but this disappears once 

the number of observations becomes larger than 500. 

  

4.  Application: Skewness and Kurtosis of the S&P500 Index 

 

In this section we apply conventional and robust measures of skewness and kurtosis to the same 

S&P500 index data described in the previous section. The sample period of January 1, 1982 

through Jun 29, 2001 yields 5085 observations, and the unit is percent return.  

     First we compute the conventional measures of skewness and kurtosis using all observations.  

For this sample period, we have 1SK  = -2.39 and 1KR  = 53.62, which is consistent with the 

previous findings in the literature; i.e. negative skewness and excess kurtosis. Next we use robust 

measures to estimate skewness and kurtosis. The results are displayed in the first column of Table 

3. The outcomes are interesting in that all but one robust estimate support the opposite 

characterization of skewness and kurtosis. All the robust skewness measures are pretty close to 

zero and  hence indicate that there is little  skewness in the distribution of the S&P500 index. Given 

that all robust kurtosis measure iKR  ( i  = 2,3,4) are centered by the values for N(0,1), positive 

values ( 2KR  = 0.28, 3KR  = 0.77, 4KR  = 1.16) indicate that there exists excess kurtosis, but this is 

considerably more mild than usually thought. 

     Next we re-compute all the statistics after removing the single observation corresponding the 

1987 stock market crash. The results are reported in the second column of Table 3. The values for 

1SK  and 1KR  are dramatically reduced to 1SK  = -0.26 and 1KR  = 6.80, but the other robust 

measures hardly change. This clearly shows that the single observation must be very influential in 

the calculation of 1SK  and 1KR , which is consistent with what we find in our simulations.  On that 

basis, we may argue that it is difficult to attach a meaningful interpretation to the value of 1KR  

(53.62) calculated using all observations. Finally, as we have done in the simulations, we remove 

the six observations whose absolute values are larger than 7%. The results are in the third column 

of Table 3. Not only the conventional measures become substantially smaller ( 1SK  = -0.04 and 

1KR  = 3.43)  as in the case where the single crash observation is removed, but also they indicate 

that there exist no negative skewness and the magnitude of kurtosis is not as large as previously 
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believed. The implication of all other robust measures are qualitatively the same; that is, no 

negative skewness and quite mild kurtosis. 

 

5.  Conclusion 

 

The use of robust measures of skewness and kurtosis reveals interesting evidence, which is in sharp 

contrast to what heretofore has been firmly regarded as true in the finance literature. Rather than 

arguing that we have obtained definite evidence to refute the long-believed stylized facts about 

skewness and kurtosis, we hope that the current paper will serve as a starting point for further 

constructive research on these important issues. We do propose however, that the standard 

measures of skewness and kurtosis be viewed with skepticism, that the robust measures described 

here be routinely computed, and, finally, that it may be more productive to think of the S&P500 

index returns studied here as being better described as a mixture containing a predominant 

component that is nearly symmetric with mild kurtosis and a relatively rare component that 

generates highly extreme behaviour. Viewing financial markets in this way further suggests that 

useful extensions of asset pricing models now embodying only skewness and kurtosis may be 

obtained by accommodating mixtures similar to those discussed here. 
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Appendix 

 

Everitt and Hand (1981) provided the first five central moments of a two-component univariate 

normal mixture. Extending their results, we consider the following mixture distribution. 

          21 )1( gppgf −+=  

where ig  has mean iµ  and variance ,2
iσ  and is assumed to have up to 4th moment. Let 
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where µµδ −= ii , and iS  and iK  are the skewness and kurtosis of ig  respectively. Moreover, let 

1X  and 2X  be the random variables governed by 1g  and 2g .  In our simulation set-up, we have 

222 µγ −= XX .  Then it is easily seen that both skewness and kurtosis are invariant under this 

linear transformation. Hence, we have 21 SS =  and 21 KK = , and the values of 1S  and 1K  are in 

Table 1.  All central moments up to 4v  can be now calculated in order to obtain the skewness and 

kurtosis of the corresponding mixture distribution. 
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Table 1. Values of skewness and kurtosis for various distributions 

             (no outlier and single outlier cases) 

         N(0,1)           T-10            T-5    Log-N(1,0.4) 

          1SK              0              0              0             1.32 

          2SK              0              0              0             0.13 

          3SK              0              0              0             0.25 

          4SK              0              0              0             0.18 

          1KR              3              1              6             3.26 

          2KR              1.23              0.04              0.10             0.04 

          3KR              2.59              0.20              0.46             0.19 

          4KR              2.91              0.28              0.63             0.27 

 

 

Table 2. Values of skewness and kurtosis for various distributions 

              (mixture distribution case) 

         N(0,1)           T-10            T-5    Log-N(1,0.4) 

          1SK            -2.27           -2.00           -1.71              0.52 

          2SK              0              0              0              0.14 

          3SK            -0.01           -0.01           -0.01              0.24 

          4SK            -0.01           -0.01           -0.01              0.17 

          1KR            52.76           57.33          101.47             49.18 

          2KR             0.01            0.04            0.10              0.40 

          3KR             0.09            0.29            0.53              0.27 

          4KR             0.01            0.28            0.66              0.27 

 

 

 

 



 16

 

Table 3.  Skewness and kurtosis of the S&P500 Index 

 Using all observations Without the 1987  

crash observation 

Without the 6  

observations ( ≥  7%) 

          1SK             -2.39           -0.26            -0.04 

          2SK              0.08            0.08             0.08 

          3SK              0.04            0.04             0.05 

          4SK              0.02            0.03             0.03 

          1KR            53.62            6.80             3.44            

          2KR              0.28            0.28             0.28 

          3KR              0.77            0.73             0.67 

          4KR              1.16            1.16             1.13 

 


