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Abstract 

Generahzed Linear Model (GLM) theory represents a significant advance beyond linear 

regression theor,], specifically in expanding the choice of probability distributions from 

the Normal to the Natural Exponential Famdy. This Primer is intended for GLM users 

seeking a hand)' reference on the model's d]smbutional assumptions. The Exponential 

Faintly of D,smbutions is introduced, with an emphasis on variance structures that may 

be suitable for aggregate loss models m property casualty insurance. 
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A PRIMER ON THE EXPONENTIAL FAMILY OF DISTRIBUTIONS 

INTRODUCTION 

Generalized Linear Model (GLM) theory is a signtficant advance beyond linear 

regression theory. A major part of this advance comes from allowmg a broader famdy of 

distributions to be used for the error term, rather than just the Normal (Gausstan) 

distributton as required m hnear regression. 

More specifically, GLM allows the user to select a distribution from the Exponentzal 

Family, which gives much greater flexibility in specifying the vanance structure of the 

variable being forecast (the "'response variable"). For insurance apphcations, this is a big 

step towards more realistic modeling of loss distributions, while preserving the 

advantages of regresston theory such as the ability to calculate standard errors for 

estimated parameters. The Exponentml family also includes several d~screte distributions 

that are attractive candtdates for modehng clatm counts and other events, but such models 

will not be considered here 

The purpose of this Primer is to give the practicmg actuary a basic introduction to the 

Exponential Family of distributions, so that GLM models can be designed to best 

approximate the behavior of the insurance phenomenon. 

Insurance Applications 

Two major apphcation areas of GLM have emerged in property and casualty insurance. 

The first is classification ratemakang, which is very clearly illustrated m the papers by 

Zehnwwth and Mddenhall. The second is in loss rese~'ing, also given an excellent 

treatment in papers by England & Verrall. In 1991, Mack pointed out a connection 

between these two apphcauons, so it is not surprising that a common modehng 

framework v, orks m both contexts. 

119 



Both classification ratemaking and resen'mg seek to fmd the "'best" fitted values ,u to 

the observed values y.. In both cases the response ',,affable, ?~, of  which the obse~'ed 

• ~alues ),, are realizations, is measured in units of aggregate loss dollars The response is 

dependent on predictor variables called covanates. Following Mack, classification 

ratemaking is performed using at least two covanates, winch might include territory and 

drrcer age. In the reserving application, the covariates might include accident year and 

development year. 

For our dtscussions, the choice of co'~ariates used as predictors will not be important, but 

i! will always be assumed that the response ~ariable Y represents aggregate loss dollars. 

Some of the desirable quahues of  the distribution for Y, driven by this assumption, are: 

• The dtsmbution is unbiased, or "'balanced" with the obse~'ed values 

• It allows zero values in the response with non-zero probability. 

• It is posmvely skewed 

Before seeing how specific thstrlbutions in the Exponential Family measure up to these 

desirable qualities, some basic definittons are needed. 

DEFINING THE EXPONENTIAL FAMILY 

The General and Natural Forms 

The general exponential family includes all thstributions, whether continuous, discrete or 

of mixed type. whose probability function or density can be written as follo~,~,s: 

General Form (ignoring parameters other than O,): 

f (y, ; e, ) = e.xp [d(O, ) e(,', ) + g (0,) + h L", }1 

where d. e, g, h are all known functions that have the same form for all y,. 
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For GLM, we make use of a special subclass called the Natural Exponential Family, for 

which d(O, ) = 0 and e(y, ) = y,. Following McCullagh & Nelder, the "natural form" for 

this family includes an additional dispersion parameter 0 that is constant for all y, 

Natural Form: 

fO',;O,,O)= exp[{O y, -b(O,)}/a(O)+c(y,,9)] 

where a. b. c are all known functions that have the same form for all y,. 

For each form, 0~ is called the canonical parameter for Y,. 

Appendix A shows how the moments are derived for the Natural Exponenlial Family. 

The natural form can also be written in terms of  the mean 11 rather than 0, by means of 

a stmple transformation:" g, = r(0, ) = Ely,; 0 ]. This mean value parameterization of the 

density function, in which /1. is an explicit parameter, will be the form used in the rest of 

the paper and the Appendices. 

Mean Value Natt,-al Form: 

/~v,;~,.~)= exp[{~"(~,)v,- b(~"(.,))},'~(~)+~(y,.~)] 

To put this in context, a GLM setup based on Y consists of  a hnear component, which 

resembles a linear model with several independent variables, and a link function that 

relates the linear pan to a function of the expected value .u of  Y,, rather than to p, itself. 

In the GLM, the variables are called covanates, or factors if they refer to qualitative 

categories. The function 0 = r -~ (u) used m the mean value form is called the canomcal 

hnk function for a GLM setup based on ~", because it gives the best estimators for the 

model parameters. Other hnk functions can be used successfully, so there is no need to 

set aside practical considera,ons to use the canomcal link function for Y. 
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For most of  th~s paper, ever), parameter of the distribuuon of Y, apart from /1 itself, v,,dl 

be considered a known constant. The derogatory-sounding term nmsance parameter is 

used to identify all parameters that are not of  immediate interest. 

The Dispersion Function at(p) 

The natural form includes a dispersion function a(O) rather than a simple constant ¢ .  

This apparent comphcation provides an important extra degree of flexibdlty to model 

cases in which the ]'~ are mdependent, but not idenucally d~stnbuted. The dlstribuuons of  

the Y, have the sanle form, but not necessarily the same mean and variance. 

We do not need to assume that ever),, point in the tustoncal sample o f n  obser,'al~ons has 

the same mean and variance. The mean .u is esttmated as a function of  a linear 

combination of predictors (covanates). The variance around this mean can also be a 

funcuon of  external information by making use of the dtspersion function a(~).  

One way m which a model builder might make use of a dispersion functton to help 

improve a model is to set a ( ¢ ) =  ~/w~,  where ¢~ is constant for all observations and w is 

a weight that may var), by observatmn. The values ~; are a priori weights based on 

external infurmatton that are selected in order to correct for unequal variances among the 

observations that '~ould otherwme v~olate the assumpuon that ~b ~s constant. 

Now that we have seen how a non-constant d~sperslon function can be used to counteract 

non-constant variance in the response variable, ~e  will assume that the weights are equal 

to umty, so that each observation is given equal weight. 
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The Variance Function Var(Yo, and Uniqueness 

Before looking at some specific distributions m the Natural Exponential Family, we 

define a uniqueness property of the variance structure in the natural exponential family. 

This property, presented concisely on page 51 of  Jorgensen, states that the relationship 

between the variance and the mean (ignoring dispersion parameter ¢ ) uniquely identifies 

the distribution. 

In the notation of  Appendix A, we write VarO;)in terms of u. as Var(Y,)=a(C)).Z(g,), 

so that the variance is composed of  two components: one that depends on ¢ and external 

factors, and a second that relates the variance to the mean. The function V(/.t), called the 

unit variance function, is what determines the form of a distribution, given that it is from 

the natural exponential family with parameters from a paaicular domain. 

The upshot of  this result is that, among continuous distributions tn this family, V(,u)= 1 

implies we have a Normal with mean ,u and variance ~ = tr2, that V ( u ) = / 1 :  arises 

from a Gamma, and V(/.t)=/l ~ from an Inverse Gaussian. For a discrete response, 

V(/./) =/1 means we have a PoKsson 

Uniqueness Property: The unit variance.function V(fl ) umquely ident(lTes its parent 

distribution type within the natural'exponential family. 

The implications of  this Umqueness Property are important for model design in GLM 

because it means that once we have defined a variance structure, we have specified the 

distribution form. Conversely, if a member of  the Exponential Family is specified, the 

variance structure is also determined. 
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BASIC PROPERTIES OF SPECIFIC DISTRIBUTIONS 

Our discussion of the natural exponential family will focus on five specific distnbuttons: 

• Normal (Gaussian) 

• Poisson 

• Gamma 

• Inverse Gaussian 

• Negative Binomial 

The natural exponential famdy is broader than the specific distributions discussed here. 

It includes the Binomml. Logarithmtc and Compound Poisson/Gamma (sometimes called 

"Tweedle" - see Appendix C) curves. The interested reader should refer to Jorgensen for 

details of addittonal members of the exponential family. 

Many other d~stnbutions can be written in the general exponential form, if one allows for 

enough nuisance parameters. For instance, the Lognormal is seen to be a member of the 

general family by using e(y) = In(),) instead of e (y )  = y ,  but that excludes it from the 

natural exponential family. Using a Normal response variable in a GLM with a log link 

function appl,ed to/1 is quite different from applying a log transform to the response 

itself. The link function relates /1, to the hnear component; it does not apply to Y itself. 

In the balance of this discussion, it is assumed that the variable Y is being modeled in 

currency units. The functmn f ( y )  represents the probability or densi~' function over a 

range of aggregate loss dollar amounts. 

Appendix B gives "cheat sheet" summaries of the key characteristics of each distnbution. 
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The Normal (Gaussian) Distribution 

The Normal distribution occupies a central role in the historical development of statistics. 

Its familiar bell shape seems to crop up everywhere. Most linear regression theory 

depends on Normal approximations to the sampling distribution of estimators. 

Techniques used in parameter estimation, analysis of residuals, and testing model 

adequacy are guided largely by intuitions about the Normal curve and ~ts properties. 

The Normal has been criticized as a distribution for insurance losses because: 

• Its range includes both negative and positive values. 

• It is symmetrical, rather than skewed. 

• The degree ofdtspersion supported by the Normal is quite hmited. 

Besides these criticisms, we should also note that a GLM with an unadjusted Normal 

response implies that the variance is constant, regardless of the expected loss volume. 

That ~s, if a portfolio with a mean of $1,000,000 has a standard deviation of $500,000, a 

larger portfolio with a $I00,000,000 mean would have the same standard deviation. 

A weighted dispersion function a(¢~)= ¢~/w, can be used to provide more flexibility in 

adjusting for non-constant variance. The weights w can be set so that the variance for 

each predicted value #, is proportional to some exposure base such as on-level premium 

or revenue. 

For the Normal d~smbuuon, this amounts to using weighted least squares. The 

parameters that minimize the sum of squares are equal to the parameters that maximize 

the likelihood. The least squares expression then becomes: 

Ordinary Least Squares = )-" (y, - .u,) :  

Weighted Least Squares = ~ w • (,v, - /a,  )2 

where **; = I / Exposures for category 
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Poisson and Over-Dispersed Poisson Distributions 

The Poisson distribution is a discrete distribution ranging over the non-negative integers. 

It has a mean equal to its variance. 

The Over-Dispersed Poisson distribution is a generalization of  the Poisson, in which the 

range is a constant ~ times the positive integers. That is, the variable Y can take on 

values {0,1~, 2~, 3~, 40,..}. It has a variance equal to ~ times the mean. 

Poisson Distribution 

0.3000 
0.2500 
0.2000 
0.1500 
0.1000 
0.0500 
0.0000 

0 1 2 3 4 5 6 7 fl 

Over-Dispersed Poisson Distribution ~ = 500 

0.3000 
0.2500 
0.2000 
0.1500 
0.1000 . . . . . . .  
0,0500 
0.0000 

i ! ~ : 

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 

The first important point to make concerning the Poisson is that, even though it is a 

discrete distribution, it can still be used as an approximation to a distribution of  aggregate 

losses. There is no need to interpret the probabilities as anything other than a discretized 

version of  an aggregate distribution. In fact, the Poisson immediately shows an 

advantage over the Normal: 

• It is defined only over positive values 

• It has positive skewness 
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An addmonal advantage of the Poisson ~s that it allows for a mass point at zero. The 

assumptton that the rat,o of the variance to the mean is constant ~s reasonable for 

insurance applications. Essentmlly, this means that '.,,'hen we add together independent 

random variables, we can add their means and variances. A very convement property, of 

the Over-Dispersed Poisson (ODP) is that the sum of ODP's  that share a common scale 

parameter ¢ will also be ODP. 

Gamma Distribution 

The Gamma distribution is defined over positive values and has a posmve skew. The 

probabdity density funcuon, v, Titten in the natural exponenttal form, ,s: 

. .  

From its form, we see that the Gamma belongs to one-parameter natural exponential 

family, but only if  we assume that the shape parameter a Is fixed and kno'.,,,n By 

holding o¢ constant, we treat the CV of the response variable as constant regardless of 

loss volume. As such, portfolios with expected losses of  $1,000,000 and $100.000,000 

would have the same CV. This seems unrealistic for many casualty insurance 

apphcations, although the Gamma may '.`.'ork well in high-',olume lines of  business, 

where GLM-based classlficauon rating plans and bulk loss reserving models work best. 

The Gamma distribution is closed under convolution in certain cases. When the PDF is 

written m the form below, the sum of two Gamma random variables X) ~ Gamma(cry,O) 

and X',. ~ Gamma(ct,.,O') ts also Gamma-distributed with X~.: - Gamma(ot~ +ct~,O), if 

they have a common0.  Unfortunately, we cannot capitahze on this property in GLM, 

since we require ct to be constant and 0. to ',ary. 

a - i  

f (y) - >' e-.,./0 
0"  • r ( a )  
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Inverse Gaussian Distribution 

The Inverse Gaussian d~stribution is occasionally recommended as a model for insurance 

losses, especially since its shape is very strnilar to the Lognormal. 

The probability density funcuon, wntten in the natural exponenual form is' 

+ , ' -  exp[{/  (2° 
In this form, the ¢ parameter ts again treated as fixed and known. The variance is equal 

to ¢./a3. In other words, the variance is proportional to the mean loss amount cubed. 

This tmplies that the CV of a portfolio of losses would increase as the volume of loss 

increases, which ~s an unreasonable assumption for insurance phenomena. 

The Inverse Gaussian dismbution also has a practical difficulty that is worth noting. The 

difficulty is seen when the cumulative distribuuon function (CDF) is written: 

For small values of CV, this expression requires a very accurate evaluation for both 

EXP(-) and the tails of NOR.MSDIST(.) functiorl In practice, this represents a problem 

since commonly used sofb.vare often does not provide values m the extreme tails. 
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The Negative Binomial Distribution 

The Negative Binomial dKstributnon, like the Polsson, is a discrete distribution that can be 

used to approximate aggregate loss dollars. As in the Over-Dispersed Poisson, we can 

add a scale parameter 0 to Increase the flexibility of the cur,'e. 

The Negative Binomial distribution has a variance function equal to: 

¢~.u 2 with unit variance V ( g ) = . u . [ l + ~ )  v~(y )  = ~ . u  + ~-- 

The variance can be interpreted as the sum of an unsystematic (or "random") 

and a systematic component~.,u 2. The inclusion of a systematic component 0. # ,  

component implies that some relative variability, as measured by a coefficient of 

variation, remains even as the mean grows very large. That is, 

 .cv = = / ° - +  - = 
. . . . .  E [y l  . ~ - V u  k 

We would expect the variance of a small portfolio of risks to be driven by random 

elements represented by the unsystematic component. As the portfolio grows by adding 

more and more similar risks, the vanance would become dominated by the systematic 

component The parameter k can be interpreted as the expected size ofloss ,u for which 

the systematic and unsystematnc components are equal. 

Stated differently, the k parameter us a selected dollar amount. When the expected loss 

is below the amount k, the variance ~s closer to being proportional to the mean and the 

distnbu,on starts to resemble the Poisson. When the expected loss is above the amount 

k, the variance is closer to being proponLonal to the mean squared and the distribution 

approaches a Gamma shape 
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Tlus '~ariance structure f'mds a close parallel to the concept of "mixing", as used in the 

Heckman-Meyers collectwe risk model. The unsystematnc risk is then typically called 

the "'process variance" and the systematic risk the "'parameter vanance". 

Total Variance = E[Var( v)] + Var(u') 

Process Parameter 
Variance Variance 

A practical calculation problem arises if we wish to simultaneously estimate the k and /z 

parameters. The k paranleter is imbedded in a factorial function and is not independent 

of the scale parameter ¢), as shown in the probability function below Because of this 

complexity, the k will need to be set by the model user separately from the fit of /.*. 

This can be repeated for different ,.alues, with a fmal selection made by the user. 

Prob(Y=))  = expIIInl-~.l.v+lnl--~lkl,"~p~-Inl(k+Y)"(#-II]. Y,"¢) )] 

The Lognormal Distribution -Not! 

Because of its popularity in insurance applications, it is worthwh,le to include a brief 

d~scussion of the Lognormal distribution. 

The Lognormal distribution ~s a member of the general exponential famdy, but its densnty 

cannot be v,'ritten in the natural form: 

f (Y) = exp[ [ / l l n ( ) ' ) - ~ : ' 2 j ' O - ( l n ( v ) ,  202 + l n ( ~ ) + l n ( ) , ) / ] . .  
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To employ a Lognormal model for insurance Losses Y, we apply a log transform to the 

observed values of  the response, and fit a Normal distribution assumption to the 

transformed data. The response variable is therelbre In(I,') rather than Y. 

~,~,qule it initially seems attractive to be able to use the Iognormal along with GLM theory, 

there are a number of  problems w~th this approach. The first is purely practical. Since 

we are applying a logarithmic transform In(y)to our observed y, ,  any zero or negative 

values make the formula unworkable. One possible workaround is to add a constant 

amount to each y. in order to ensure that the logarithms exist. 

A second problem is that while the estimate of .fi, (the mean of ~ y j )  ) will be unbiased, 

we cannot simply exponentiate it to estimate the mean of y, in the original scale of 

dollars. A bias correction Ls needed on the GLM results. 

A third potential problem arises from the fact that the lognormal model implicitly 

assumes, as does the Gamma, that all loss portfolios ha,.e the same CV. If we believe 

that the y, come from distributRons with identical CV's,  then the GLM model with the 

Gamma assumption can be used as an alternative to the Lognormal model. This would 

allow us to steer clear of  the first two problems. 

H I G H E R  M O M E N T  P R O P E R T I E S  OF S P E C I F I C  D I S T R I B U T I O N S  

Now that we have reviewed the basic propemes tor five specuqc members of  the nalural 

exponential family, including theu- variance structure, we will examine the overall shape 

of the curves being used. 
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Moments 

The variances for the natural exponential family members described in the previous 

section may be summarized as follows 

Distribution Variance 

Normal Vat(y) = 0 

[Over-D,spersed] Poisson V a r ( y )  = ¢.# (constant V/M) 

¢ #2 [Over-Dispersed] Negative Binomial V a r ( y )  = ¢~" la * -~" 

Gamma /,'arO.,) = 0..u 2 (constant CV) 

Inverse Gaussian V a t ( y )  = O" l.t 

Two higher moments, representing skewness and kurtosis, can be represented in a similar 

sequence as functions of the CV. 

Normal 

Poisson 

Skewness 

E[cY-. 'I 
V a r ( Y )  I'2 

CV 

Negative Binomml (2 - p )  . C V  

Gamma 2. C V  

Inverse Gaussian 3- CV 

Kurtosis 

Var( r )"  : 

3+CV:  

3+ (6 " (I - p)  + p a )" C V  2 

3+6  " C V  ~ 

3+15 .CV:  
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The Negative Binomial distribution can be seen to represent values in the range between 

the Poisson and Ganmm distributions, since 0 < p <  1. The graph below shows the 

relationship between the CV and the skewness coefficient. 

6 

5 : [ ~ Neg Binom,al 

i 4 ~. LogNormal 
3 × Inv Gausslan 

2 L .1. Gamma 
Poisson 
Normal 

0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Coefficient of Variation (CV) 

The Lognormal disa'ibution is shown for comparison sake, and has a coefficient of 

skewness equal to (3 + CV z ). CV.  

Measuring Tail Behavior: The Unit Hazard Function h (y) 

In order to evaluate tail behavior of the curves in the exponential family, we will examine 

the hazard function hw(y), the average hazard rate over an interval of fixed width '~.v". 

Unit Hazard Function 

h..(y) = FO; + w ) -  F(y)  for continuous distributions, w= layer width 
I -  FO,) 

h (v) 
Pr(y < Y < y +  w) 

Pr(Y > y) 
for discrete distributions, w = fixed integer. 
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The more familiar hazard function h(y)  = f(y)/[l-F(y)] presented in Klugrnan 

[2003] is sometimes called the "failure rate", because it represents the conditional 

probability or density of a failure m a given instant of time, given that no failure has yet 

taken place. The umt hazard function measures the change in F(.v) over a small interval 

of width w, rather than a rate at a given instant in time. 

The unit hazard function has a useful interpretation in insurance applications. It is 

roughly the probability of a partial limit loss in an excess layer. For example, in a layer 

of $10,000,000 excess $90,000,000, we seek the probabihty that a loss will not exceed 

$100,000,000, given that it is in the layer. A high value for h , 0 ' )  would mean that a loss 

above $90.000,000 would be unlikely to e.,daaust the full $10,000,000 layer 

For most insurance applications, we would expect a decreasing unit hazard functton. 

That is. as we move to higher and lugher layers, the chance of  a partml loss would 

decrease. For instance, if we consider a layer such as $10,000,000 xs $990,000,000 we 

would expect that any loss above $990,000,000 would almost certainly be a full-limit 

loss. This would imply h (y) ~ 0. 

The decreasing hazard funcuon is not what we generally find in the exponentml family. 

For the Nornlal and Potsson, the hazard function approaches I, implying that full-limit 

losses become less likely on tugher layers - exactly the opposite of what our 

understanding of  insurance phenomena would suggest. The Negative Binomial, Gamma 

and Inverse Gaussian distributions asymptotically approach constant amounts, mimicking 

the behavior of  the exponential d,stribution 
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The table below shows the asymptouc behavior as we move to higher attachment points 

for a layer of',vldth w. 

Distribution LimLting Form of h (y) Comments 

Normal lim h ( y )  = 1 No loss exhausts the limit 

Poisson ~ n  h (),)  = I 

Negative Bmomial [rift h , ( y )  = I - ( I - p ) "  

Gamma lhn h ( y )  = I - e  "''°'~' 

Inverse Gausstan Inn h ( y )  = I - e  - ' ' a° ' '~  

Lognormal Irn h ( v )  = 0 Every loss ts a full-limit loss 

From this table, we see that the members of the natural exponential family have tail 

behavior that does not fully reflect the potential for extreme e,.ents m hea,.5' casualty 

msurance. It would seem that the natural exponential distnbuuons used with GLM are 

more appropriate for insurance hnes without much potenual for extreme events or natural 

catastrophes. 

S M A L L  S A M P L E  ISSUES 

The results calculated in Generalized Linear Models generally rely on asymptotic 

behavior assuming a large number of  obse~at ions  are avadable. Untbrtunately, this is 

not alv,'ays the case in Property & Casualty insurance. For instance, in per-nsk or per- 

occurrence excess of loss reinsurance, there may not be a large enough volume of losses 

to rely upon asymptotic approxtmations. 

Wtule we include here a brief discussion of the uncertainty m our parameter esttmates. 

this is an area in which much more research ts needed. 
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Including Uncertainty in the Mean I~ 

Most of our dnscussion of the exponential family has focused on the d~strnbution of future 

losses around an estimated mean ,u. However, the actuary is more often asked to 

provide a confidence interval around the estimated value of the mean /~. The estimate 

,O is also a random variable, wnth a mean, variance and higher moments. However, 

GLM models generally produce an approximation to this distribution by making use of 

the asymptotic behavior of the coefficients ]J in the linear predictor being Normal. 

The calculatnon of the variance in the parameter estimates, which leads to the confidence 

interval around the estimated mean .O, is accomplished using the matrix of second 

derivatives of the loglikelihood function. A comprehensive discussion of that calculation 

can be found m McCullagh & Nelder or Klugman [1998]. 

In general, the &stribution of the estimator ~ will not be the same exponential family 

form as that of Y. In other words, the process and parameter variances are variances of 

different dismbution forms. As a practical solutnon, the actuary will want to select a 

reasonable curve form (e.g., a gamma or Iognormal) wLth mean and variance that match 

the estimated/.~ and Var(l~) from the model. 

Including Uncertainty in the Dispersion 

In all of the d:scussmn to th~s point, the dispersion parameter 4~ has been assumed to be 

fixed and known. It is estimated as a side calculation, separate from the estimate of the 

parameters fl used to estimate the mean /2. 

So long as the separate esumate of the dispersnon paran~eter is based on a large number of 

observations, this approximauon is reasonable A problem arises m certain Lnsumnce 

applncatLons where there are relauvely few observations, and our esumate of the 

dispersion is far from certain. 
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In normal linear regression, the uncertainty in the dispersion parameter (cr 2 instead of  ¢ ) 

is modeled by using a Student-t distribution rather than a Normal distribution. The use of 

a Student-t distribution is equivalent to an assumption that the parameter cr ~ (or ~)  .s 

distributed as Inverse Gamma with a shape parameter equal to its degrees of freedom v.  

That is: 

'.. 2, ~ F ( v J 2 - 1 )  
2 ' .  e -~ '~' E re ' ]  : "F'(v .'~-) ' for 2k < v, 

g(~) = ,_..~ 
~2 . F (v /2 )  where v = degrees of  tieedom. 

A similar "mixing" of  the dispersion parameter can be made for curves other than the 

Normal. it is not always easy to explicitly calculate the mixed distribution, but the 

moments can be found with the formula above. 

For calculation purposes, if the distribution is used in a simulation model, tie mixing can 

be accomplished m a two-step process. First we simulate a value for ~ from an Inverse 

Gamma distribution. Second we simulate a value from the loss distribution conditional 

on the simulated ¢~. 

The real difficulty with the uncertainty in the dispersion parameter is that it has a 

significant effect on Me higher moments on the distfibutton, and therefore on the tail - 

the pan of the distribution where the actuaD, may have the greatest concern. As ~ae 

formula for the moments of the Inverse Gamma shows, many of  the higher moments will 

not exist. 

Another important note on the uncenainn,.' tn the dispersion parameter relates to the use of 

the Lognormal distribution. When the log transform is applied to the observed data in 

order to use linear regression, we have uncertainty m the dispersion of the logarithms 

MY,)-  When the transformed data In(),,) has a Student-t distribution, the 

untransformed data y, follows a Log-T dismbution The Log-T has been recommended 

by Kreps and Murphy for use in estimating confidence intervals in reserving applications. 
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What neither author noted, hov.ever, ~s that none of the moments of  the Log-T 

thstr~button exists. We are able to calculate percentdes, but not a "confidence interval" 

around the mean. because the mean itself does not exist. 

C O N C L U S I O N S  

The use of the Natural Exponential Family of thstnbutions m GLM allows for more 

realistic variance structures to be used in modeling insurance phenomena This is a real 

advance beyond linear regressmn models, which are restricted to the Normal distribution. 

The Natural Exponential Family also allows the actuary, to work dtrectly with their loss 

data m units o f  dollars, wtthout the need for logarithmic or other transformattons. 

Hov,'ever. these ad,,antages do not mean that GLM has resolved all ~ssues for actuarial 

modeling. The  curve forms are generally thin-tailed distributions and should be used 

with caution ~ insurance apphcatmns with potenttal for extreme e~,ents, or with a small 

sample of  Iustoncal data. 
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Appendix A: Deriving Moments for the Natural Exponential Family 

As stated in this paper, the probabdity density function fO') for the natural exponential 

family is gtven by: 

f b ' ;  0. ¢)  = exp[ (0 .y  -b(O))/a(¢)+c(y,~)] 

In the natural form, a, b, c are suitable known functions, 0 is the canonical parameter for 

Y, and ~ is the dispersion parameter. The umt cumulant function b(O), which is useful 

m computing moments of Y, does not depend on .v or 0. Likewise, the disperston 

function a($) does not depend on y or 0 The catch-all function c6', Cp) has no 

dependence on O. 

The unit cumulant function b(O) ns so named because it can be used to calculate 

cumulants, which are directly related to the random variable's moments 

We recall from statistics that the Moment Generating Functton MGF(t) is defined as: 

MGF(t)  = Se '~ • f ( y ) d y  for continuous variables 

and that 

d Y ' ]  - a ' , v s r ( t )  
m 

The Cumulant Generating Function K(t) ts defined as In[MGF(t)], and the cumulants: 

a" K(t) . 
I~" = a I " :~(, 

There ns an easy mapping between the first Four cumulants and the moments: 

= EL,.'] = = 

r :  : E l ( y - p ) : ]  : ra~(y) ~, : E[( . , , -~) 'J -3 .Var(v) :  
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For the Natural Exponential Family, the Cumulanl Generating Function can be written in 

a very convenient form: 

K(t)  = b(O +a (O) . t ) -b (O)  , so that 
a(¢) 

I¢ = b'"(O).a(ck)'-' where b"l(O) = O' b(O) 
30 '  

In the mean value form, ,.,,,here 0 = r-it ,u),  the chain rule is used to find derivatives m 

terms of  /1. The fimction b'(O) is the umt variance function, denoted VO0 when 

expressed in terms of/.2. 

Mean E[Y;O]= b ' (O)=/ l  

Variance Wr[Y ;O ] = b'(O ). ~(¢,)= V(~ ). ~(~ ) 

S,e,,. ,e,,= e',lo!. ay I;= li. 

v d ,  " a(~) 
K u r m s i s = 3 +  Var [ r ;o ] "  =3+ IV(u)] (.u)+ i(.u) .--p---~-~ 
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Appendix BI: Normal Distribution 

Density Function: 

Natural Form: 

] - -  , _  2 

y ~  (-~, ~) 

f ( y )  = exp y - / 1 ' , ' 2 ) , " 0 -  ÷In 

Cumulative Dismbuuon Function in Excel@ Notation: 

FO') = NORMDIST(v,/.t, ~'O, I) 

Moments: E[Y] = H 

r a t ( Y )  = 

S k e w n e s s  = E[(Y-P)~] 
Var(Y)~ '- 

Kurtosis  = E[(Y-/2) ']  
Vat(y) ~': 

-- 0 

= 3 

Convolution of independent Normal random variables: 

,v,(~,,¢)~N (~ ,~,) = ^,.,(u. +u,~, +~ ) 
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Appendix  B2: Over-Dispersed Poisson 

Probability. Function: Prob(Y =y )  = (Y/0)! 

y ~ (0, 1O, 2¢,, 30, 40  . . . .  ) 

NaturalForm Prob(} '=y) = exp[(In(/,t) y- / . t ) /q~-y . ln(~) /4~-In[(y/O) ' ) ]  

Cumulative Distribution Function in Exeel,~ Notation: 

Moments: ElY] = u 

Var(} ')  = 0 /.t 

s k . , , . . . , -  E[, :Y-.) ' I  
Var(  Y ) ~ ' : 

K.r,o.. = E [ ( Y - . ) ' ]  
Var( )')4 2 

C[ . ' "  = 

= 3 ÷ C V  2 

= C V  

Convolution of independent Ore r-Dispersed Polsson random variables: 

O D P , ( . u , , @ ) ® O D P ,  ila , ~ )  :=. O D P , . , ( # , ÷ # ; , O )  

where ~ is a ~:onstant variance/mean ratio 
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Appendix B3: Gamma 

Density Funciion: i>,oTf,i,-, so,) : t -~-? t T j  r--~T 

y ~  (o, =~) 

Natural Form: fO ' )  = e x p I a ( ( ~ - ~ ) - I n ( p ) / + ( ~ - l ) l n ( a y ) + l n ( v - ~ ) )  1 

Cumulative Distribution Function in Excel® Notation: 

Moments E[Y] = p 

u~ f~ gar ( r )  = - -  CV = 
ot 

Skewness = E[(Y-/~)z] 2 Var(Y)V: = ~ = 2 . C V  

Kurtosis = E[(Y-U) ' ]  = 3 ÷ 6 . C V  2 
Var(Y) 4': 

Convolution of independent Gamma random variables: 

G , ( ~ , , c t , = l a , , ' f l ) ® G . ( p , , a ,  =l .~ , ' f l )  ~ G, . . , (p  +p. , ,o t  + a ~ )  

,,,,here fl is a constant vanance/mean raUo 
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Appendix B,l: Inverse Gaussian 

I e x p r - ( y - / z ) z  / Density Function. f O ' )  = ~ ~ 2~M2). ) 

y ~ (o, ~) 

Natural Form: 

Cumulative Distribution Function in Excel@ Notation: 

F(y) -- NO~SD,ST((/a. ~qr~,y j(y-/a) )+ ~ f  2_2I/.NORMSDIST{I (~./a J P ~ ) ' J  _(Y+M) ) 

Moments: ElY] = 

Var(Y) = ~.#~ 

Skewness = 

Kurtosis -- 

c v  = 4~.~ 

E[ir-~)'] : 3 ,./;G~ : 3 c , ,  
Var( y)s ,. 

E[(Y-u) ' ]  = 3 . x 5  c z '  
Var(Y)" 2 

Convoluuon of independent Inverse Gausstan random variables: 

to,(,,,~,=p/~,~)eza.,(~,:,~,=:~,,~,.') = IG. . . (s , .+ . . , , , / , . .  = ~ 0 / ( . . + s , , )  ~) 

',,,here /] IS a constant variance/mean ratio 
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Appendix B5: [Over-Dispersedl Negative Binomial 

Probability Function: 

Natural Form: 

P r o b ( Y = y )  = 

(k + y) "O - 1 I" p' '" "(I - P r o b ( Y = y )  = [, .v,'@ P)"'* 

y 6 (0, 10, 20. 3@, 4¢ . . . .  ) 

Cumulative Dtstribution Functton m Excel,~ Notation: 

Prob(Y _< )') = BETADIST( ku+k'@'q/J Y+I) 

Moments.  ElY] = k . ( l - P )  = /1 so p =  k 
p / . t+k 

Var( Y ) = @.k ( i - p )  _ ¢~./..t.e@ p:  ~ . . u :  

CZ = ~ .O_k 

sk¢ , , , . e ,~  - E,.Y-uI',=[~ l ¢ 2 - p : ,  CV 
ear( }')J' ' 

Kurtos,s = E[(Y-'u) '~] = 3 + ( 6  (I - p)+ p" ).CV: 
l'ar( )') ~' 2 

Convolution of  independent O'. er-D~spersed Negatwe Bmomm] random variables: 

NB,(#,,dP, p)®NB,(I~,,O,p) ~ NB,.~(II, +II ,gp, p) 
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Appendix C: Compound Poisson/Gamma (Tweedie) Distribution 

The Tv.,eedie distribution can be interpreted as a collective risk model with a Polsson 

frequency and a Gamma seventy. 

Probability Function: 

[ 

f (Yl  ).,O,c_x) = []k~l e-~' 

. ~.te-J..'~ ta-~e-~ 6* 

Poisson Gamma 

y = 0  

) ' > 0  

This form appears complicated, but can be re-parameterized to follow the natural 

exponential family form. 

[12-p 
We set: ~ =  2 - p  ~ 0 = 0 . ( p - I )  /1 ''-~ 

p - l  O ( 2 - p )  

a + 2  
and I < p < 2 ,  since p =  

~x+l 
and a > O  

f ( Y [ P , O , P )  = exp ( 2 - p ) ' *  ( p - I ) . g  • c(v,O'. 

where 

cry.O) = 
[ ~  y = 0 

V ~ ." -p,~p-ii-i 
[0 (2-P~] ~ [0 (P-I)] ~'''p''°'' ' FI.k(2-p),'(p-lJ) k! y>O 
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The density function f ( y  I.u,~p, p) can then be seen to follow the "natural form" for the 

exponenual family. 

Moments: E[Y] = 2 . 0 . c t  = U 

Far(Y) = ; t ' 0  2 U ( a + l )  = ~ /./P 

Cv = + ~ a  = 

Skewness - E[(Y- / ' t )3] -  ~ . . O ' . a . ( a + l ) . ( a + 2 )  = p .  C V  
V,~,-(Y)' : (;t.O' .c,.(a+O)": 

Kurtosts = E[ (Y- /z ) ' ]  = 3 + p . ( 2 p - I )  CV 2 
liar( r ) "  2 

For GLM, a p value m the (I. 2) range must be selected by the user. The mean /1 and 

dispersion ¢~ are then estimated by the model. 

The Compound Poisson/Gamma is a continuous distribution, with a mass point at zero. 

The evaluation of  the cumulative distribution function (CDF) is somewhat inconvenient, 

but can be accomplished using any of  the collective risk models available to actuaries. 

Finally, we may note that the convolution of independent Tweedie random variables: 

TW(A, O,a /®TW(X. , ,O, tx )  =:, TW..,(A +A,,O,ct) 
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