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Abstract

Generalized Linear Model (GLM) theory represents a significant advance beyond linear
regression theory, specifically in expanding the choice of probability distributions from
the Normal to the Natural Exponential Famuly. This Primer is intended for GLM users
seeking a handy reference on the model’s distributional assumptions. The Exponential
Family of Distributions is introduced, with an emphasis on variance structures that may

be suitable for aggregate loss models in property casualty insurance.
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A PRIMER ON THE EXPONENTIAL FAMILY OF DISTRIBUTIONS

INTRODUCTION

Generalized Linear Model (GLM) theory is a significant advance beyond linear
regression theory. A major part of this advance comes from allowing a broader family of
distributions to be used for the error term, rather than just the Normal (Gaussian)

distribution as required 1n hnear regression.

More specifically, GLM allows the user to select a distribution from the Exponential
Family, which gives much greater flexibility in specifying the vanance structure of the
variable being forecast (the ““response variable™). For insurance applications, this is a big
step towards more realisic modeling of loss distributions, while preserving the
advantages of regression theory such as the ability to calculaie standard errors for
estimated parameters. The Exponential family also includes several discrete distributions
that are attractive candidates for modeling claim counts and other events, but such models

will not be considered here

The purpose of this Primer is to give the practicing actuary a basic introduction to the
Exponential Family of distributions, so that GLM models can be designed 1o best

approximate the behavior of the insurance phenomenon.

Insurance Applications

Two major application areas of GLM have emerged in property and casualty insurance.
The first is classification ratemaking, which is very clearly illustrated in the papers by
Zehnwirth and Mildenhall. The second 1s in loss reserving. also given an excellent
treatment in papers by England & Verrall. In 1991, Mack pointed out a connection
between these two apphcatiors, so it is not surprising that a common modeling

framework works in both contexts.
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Both classification ratemaking and reserving seek to find the “best™ fitted values u, w
the observed values y . In both cases the response variable, Y., of which the observed
values y, are realizations, is measured in units of aggregate loss dotlars The response is

dependent on predictor variables called covanates. Following Mack, classification
ratemaking is performed using at least two covanates, which might include territory and
driver age. In the reserving application, the covariates might include accident year and

development year.

For our discussions, the choice of covariates used as predictors will not be important, but
it will always be assumed that the response variable Y represents aggregate loss dollars.
Some of the desirable qualities of the distribution for ¥, driven by this assumption, are:

¢ The distnbution is unbiased, or “balanced” with the observed values

e It allows zero values in the response with nonzero probability

e |tis posinvely skewed
Before seeing how specific distmbutions in the Exponential Family measure up to these
desirable qualities, some basic definitions are needed.
DEFINING THE EXPONENTIAL FAMILY
The General and Natural Forms

The general exponential family includes all distributions, whether continuous, discrete or

of mixed type. whose probability function or density can be written as follows:
General Form (ignoring parameters other than 6,):

S(,:6,) =expld(6,) e(v,)+ (6, )+ h(x,)]

where d. e, g, h are all known functions that have the same form for all y,.
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For GLM, we make use of a special subclass called the Natural Exponential Family, for
which d(9,)=8, and e(y,)= y,. Following McCullagh & Nelder, the “natural form™ for
this family includes an additional dispersion parameter ¢ that is constant for all y,

Natural Form:
f0,:6,.0)=expllp, »,-6(6,)}/al0)+c(y,0)]

where a. b. c are all known functions that have the same form for all y,.
For each form, 6, is called the canonical parameter for Y,.
Appendix A shows how the moments are derived for the Natural Exponential Family.

The natural form can also be written in terms of the mean y, rather than 8, by means of

a simple transformation:* u, = (8, )= E[y‘; 0, ]. This mean value parameterization of the

density function, in which u, is an explicit parameter, will be the form used in the rest of

the paper and the Appendices.

Mean Value Natural Form:

Soan0)=explle (1) », -6l (1)) alo)+c(y,,0)]

To put this in context, a GLM setup based on Y consists of a hnear component, which
resembles a linear model with several independent variables, and a link function that
relates the linear part to a function of the expected value u, of Y, rather than to , itself.
In the GLM, the variables are called covanates, or factors If they refer to qualitative
categories. The function 8=1¢"" (}J) used 1n the mean value form is called the canonical
hnk function for a GLM setup based on Y, because it gives the best esumators for the
model parameters. Other link functions can be used successfully, so there is no need to

set aside practical considerations to use the canonical link function for Y.
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For most of this paper, every parameter of the distribution of Y, apart from u iiself, will
be considered a known constant. The derogatory-sounding term nuisance parameter is

used to idenufy all parameters that are not of immediate interest.

The Dispersion Function a(¢)

The natural form includes a dispersion function a(@) rather than a simple constant ¢.
This apparent complication provides an important extra degree of tlexibihty to model

cases in which the Y, are independent, but not identically distributed. The distributions of

the ¥, have the same form, but not necessarily the same mean and variance.

We do not need to assume that every point in the listoncal sample of n observations has
the same mean and variance. The mean Y, is estimated as a function of a linear
combination of predictors (covanates). The variance around this mean can also be a

function of external information by making use of the dispersion function a(g).

One way in which a model builder might make use of a dispersion function to help

improve a mode! Is to set a(¢)}= ¢/ w,, where ¢ is constant for all observations and w, is
a weight that may vary by observation. The values w; are a priori weights based on

external information that are selected in order to correct for unequal variances among the

observations that would otherwise violate the assumpton that ¢ 15 constant.

Now that we have seen how a non-constant dispersion function can be used to counteract
nor-constant variance in the response variable, we will assume that the weights are equal

to unity, so that each observation is given equal weight.



The Variance Function Var(Yy, and Uniqueness

Before looking at some specific distributions in the Natural Exponential Family, we
define a uniqueness property of the variance structure in the natural exponential family.
This property, presented concisely on page 51 of Jorgensen, states that the relationship

between the variance and the mean (ignoring dispersion parameter ¢ ) uniquely identifies

the distribution.

In the notation of Appendix A, we write Var(Y,) in terms of u as Var(Y,)=al)-V(y,),
so that the variance is composed of two components: one that depends on ¢ and external
factors, and a second that relates the variance to the mean. The function V(/,l ). called the

unit variance function, is what determines the form of a distribution, given that 1t is from

the natural exponential family with parameters from a particular domain.

The upshot of this result is that, among continuous distnbutions in this family, ¥(u)=1
implies we have a Normal with mean u and vanance ¢ =¢?, that V(u)=pu" arises
from a Gamma, and V(u)=u* from an Inverse Gaussian. For a discrete response,

V(u)=p means we have a Poisson

Uniqueness Property: The unit variance function V(i) umquely identifies its parent

distribution type within the natural-exponential family.

The implications of this Uniqueness Property are important for model design in GLM
because it means that once we have defined a vanance structure, we have specified the
distribution form. Conversely, if a member of the Exponential Family is specified, the

variance structure is also determined.



BASIC PROPERTIES OF SPECIFIC DISTRIBUTIONS

Our discussion of the natural exponential family will focus on five specific distnbutions:
s Normal (Gaussian)
® Poisson
e Gamma
¢ Inverse Gaussian

* Negative Binomial

The natural exponential famly is broader than the specific distributions discussed here.
It includes the Binomial, Logarithmic and Compound Poisson/Gamma (sometimes called
"Tweedie" - see Appendix C) curves. The interested reader should refer to Jorgensen for

details of additional members of the exponential family.

Many other distributions can be written in the general exponential form, if one allows for
enough nuisance parameters. For instance, the Lognormal is seen to be a member of the

general family by using e(3) =In{ ') instead of e(v)= y, but that excludes it from the
natural exponential family. Using a Normal response variable in a GLM with a log link

function applied to u is quite different from applying a log transform to the response

itself. The link function relates u, to the linear component; it does not apply to Y itself.

In the balance of this discussion, it is assumed that the variable Y is being modeled in

currency units. The function f(v) represents the probability or density function over a

range of aggregate loss dollar amounts.

Appendix B gives “cheat sheet” summaries of the key characteristics of each distnbution.
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The Normal (Gaussian) Distribution

The Normal distribution occupies a central role in the historical development of statistics.
[ts familiar bell shape seems to crop up everywhere. Most linear regression theory
depends on Normal approximations to the sampling distribution of estimators.
Techniques used in parameter estimation, analysis of residuals, and testing model

adequacy are guided largely by intuitions about the Normal curve and nis properties.

The Normal has been criticized as a disoribution for insurance losses because:
e Iis range includes both ne gative and positive values.
e It is symmetrical, rather than skewed.

* The degree of dispersion supported by the Normal is quite hmited.

Besides these criticisms, we should also note that a GLM with an unadjusted Normal
response implies that the variance is constant, regardless of the expected loss volume.
That 1s, if a portfolio with a mean of $1,000,000 has a standard deviation of $500,000, a

larger portfolio with a $100,000,000 mean would have the same standard deviation.

A weighted dispersion function a(¢)=¢/w, can be used to provide more flexibility in
adjusting for non-constant variance. The weights w, can be set so that the variance for

each predicted value u, is proportional to some exposure base such as on-level premium

or réevenue.

For the Normal distnbution, this amounts to using weighted least squares. The
parameters that minimize the sum of squares are equal to the parameters that maximize

the likelihood. The least squares expression then becomes:

Sy -u)

Weighted Least Squares = Z w- (v~ 1, )z

Ordinary Least Squares

where w, = | / Exposures for category 1
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Poisson and Over-Dispersed Poisson Distributions

The Poisson distribution is a discrete distribution ranging over the non-negative integers.

It has a mean equal to its variance.

The Over-Dispersed Poisson distribution is a generalization of the Poisson, in which the
range is a constant ¢ times the positive integers. That is, the variable Y can take on

values {0, 1¢, 2¢, 39, 4¢,} It has a variance equal to ¢ times the mean.

Poisson Distribution

=

T

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

The first important point to make concerning the Poisson is that, even though it is a
discrete distribution, it can still be used as an approximation to a distribution of aggregate
losses. There is no need to interpret the probabilities as anything other than a discretized

version of an aggregate distribution. In fact, the Poisson immediately shows an

advantage over the Normal:
e It is defined only over positive values

o It has positive skewness
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An additional advantage of the Poisson 1s that it allows for a mass point at zero. The
assumption that the ratio of the variance to the mean is constant 1s reasonable for
insurance applicauions. Essenually, this means that when we add together independent
random vanables, we can add their means and vanances. A very convenient property of
the Over-Dispersed Poisson (ODP) is that the sum of ODP's that share a common scale

parameter ¢ will also be ODP.
Gamma Distribution

The Gamma distribution is defined over positive values and has a posiive skew. The

probability density function, written in the natural exponenual form, 1s:

1 = expla | 25 cimw le -1 e v =
S = e-\p[a [(“) ln(m] (-1 Infa .J+ln(]_(a))]

From its form, we see that the Gamma belongs to one-parameter natural exponential
family, but only 1f we assume that the shape parameter @ 1s fixed and known By
holding ¢ constant, we treat the CV of the response variable as constant regardless of
loss volume. As such, portfolios with expected losses of $1,000,000 and $100.000,000
would have the same CV. This seems unrealistic for many casualty insurance
applications, although the Gamma may work well in high-volume lines of business,

where GLM-based classificatton rating plans and bulk loss reserving models work best.

The Gamma distribution is closed under convolution in certain cases. When the PDF is
written 1n the form below, the sum of two Gamma random variables X, ~ Gamma(«,,0)
and X, ~ Gamma(a,,0) 15 also Gamma-distributed with X, , ~ Gammala, +'a:,9), if
they have a common@. Unfortunately, we cannot capitalize on this property in GLM,
since we require & to be constant and 6, to vary.

a-1

"’
6% -I'a)

etle

SO
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Inverse Gaussian Distribution

The Inverse Gaussian distribution is occasionally recommended as a model for insurance

losses, especially since its shape is very similar to the Lognormal.

The probability density function, written in the natural exponential form 1s’

o= olfGEp (i)

In this form, the ¢ parameter is again treated as fixed and known. The variance is equal

to ¢-u’. In other words, the variance is proportional to the mean loss amount cubed.

This implies that the CV of a portfolio of losses would increase as the volume of loss

increases, which 1s an unreasonable assumption for insurance phenomena.

The Inverse Gaussian distnbution also has a practical difficulty that is worth noting. The

difficulty is seen when the cumulative distribution function (CDF) is written:

~

F(y) = NORMSDIST[‘-"'” -L]»rExP(L).NOWSDIST[-__(-"*“) _‘_]

Jyu CV cv? ou cv

For small values of CV, this expression requires a very accurate evaluation for both
EXP(-) and the tails of NORMSDIST(:) function In practice, this represents a problem

since commonly used software often does not provide values 1n the extreme tails.



The Negative Binomial Distribution

The Negative Binomial distribution, like the Poisson, is a discrete distribution that can be
used to approximate aggregate loss dollars. As in the Over-Dispersed Poisson, we can

add a scale parameter @ to increase the flexibility of the curve.

The Negative Binomial distribution has a variance function equal to:

Var(yy = ¢'#+%-ﬂz with unit variance V(ﬂ)=ll'[1+i:-)-

The variance can be interpreted as the sum of an unsystematic (or “random”)

[

component ¢- i, and a systematic component;-u’. The inclusion of a systematic

component implies that some relative variability, as measured by a coefficient of

variation, remains even as the mean grows very large. That is,
.JV )
m CV = m YY) o (e, ’2_
prai w— E[¥] wa=\y ok P

We would expect the variance of a small portfolio of risks to be driven by random
elements represented by the unsystematic component. As the portfolio grows by adding
more and more similar risks, the vanance would become dominated by the systematic

component The parameter £ can be interpreted as the expected size ofloss u for which

the systematic and unsystematic components are equal.

Stated differently, the & parameter 1s a selected dollar amount. When the expected loss
is below the amount k , the variance 1s closer to being proportional to the mean and the
distribution starts to resemble the Poissen. When the expected loss is above the amount
k , the variance is closer to being proportional to the mean squared and the distribution

approaches a Gamma shape
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This variance structure finds a close parallel to the concept of “mixing”, as used in the
Heckman-Mevyers collective risk model. The unsystemauc risk is then typically called

the “process variance™ and the systematic nisk the “parameter vanance™.

Total Variance = E[var(y)] + Var(u)
g Ct2 Ty

Process  Parameter
Variance  Vanance

A practical calculation problem anses if we wish to simultaneously estimate the &k and u

parameters. The & parameter is imbedded in a factorial function and is not independent

of the scale parameter ¢, as shown in the probability function below Because of this
complexity, the & will need to be set by the mode! user separately from the fit of u.

This can be repeated for different values. with a final selection made by the user.

oy 4 k (k+y)io-1
Prob(Y =3) = exp[(h(u+k]_;+m[—u+k]A].tp ln[ vie ]]

The Lognormal Distribution - Not!

Because of 1its popularity in insurance applications, it 1s worthwhile to include a brief

discussion of the Lognormal distribution.

The Lognormal distribution 1s a member of the general exponential family, but its density

cannot be written in the natural form:

32
Sy = Cxp[(#-'“()’)-#z"z}'@“ m_&:p_)_+h‘(.\/3ﬂ¢)+h()')]]-



To employ a Lognormal model for insurance losses Y, we apply a log transform to the
observed values of the response, and fit a Normal distribution assumption to the

transformed data. The response vanable is therefore In{ ¥') rather than Y .

While it initially seems attractive to be able to use the lognormal along with GLM theory,

there are a number of problems with this approach. The first is purely practical. Since
we are applying a logarithmic transform In{ »)to our observed y,, any zero or negative
values make the formula unworkable. One possible workaround is to add a constant

amount to each v, in order to ensure that the logarithms exist.

A second problem is that while the esumate of ji, (the mean of In( ¥,)) will be unbiased,

we cannot simply exponentiate it to estimate the mean of ), in the onginal scale of

dollars. A bias comrection 15 needed on the GLM results.

A third potential problem arises from the fact that the lognormal model implicitly
assumes, as does the Gamma, that all loss portfolios have the same CV. If we believe
that the y, come from distributions with identical CV's, then the GLM model with the

Gamma assumption can be used as an alternative to the Lognormal model. This would

allow us to steer clear of the first two problems.

HIGHER MOMENT PROPERTIES OF SPECIFIC DISTRIBUTIONS

Now that we have reviewed the basic properties for five specific members of the natural
exponential family, including thewr variance structure, we will examine the overatl shape

of the curves being used.



Moments

The variances for the natural exponential family members described in the previous

section may be summarized as follows

Distribution Variance

Normal Var(y) =

[Over-Dispersed] Poisson Var(y) = ¢-u (constant V/M)
[Over-Dispersed] Negative Binomial Var(y) = ¢-u + %-p’

Gamma Var(y) = ¢-u® (constant CV)
Inverse Gawssian Var(y) = o-u’

Two higher moments, representing skewness and kurtosis, can be represented in a similar

sequence as functions of the CV.

Skewness Kurtosis

£l - uy'] £y -uy']

Var(Y)'? Var(Y)"?
Normal 0 3
Poisson cv 3+ CV?
Negative Binomial (2-p)-CV 3+ (6-(1 - p)+p)Cr?
Gamma 2.¢cv 3+6-CV?
Inverse Gaussian 3-CV 3+15-CV*?




The Negative Binomial distribution can be seen to represent values in the range between
the Poisson and Gamma distributions, since 0< p<1. The graph below shows the

relationship between the CV and the skewness coefficient.

6
25 X [ =3 Neg Binomal
% 4 —¥— LogNormal
5 3 ——Inv Gausslan
E 2 —&—Gamma
g —&— Poisson
§ 1 —&—Normal

0

00 02 4 06 08 10 1.2

Coefficient of Variation (CV)

The Lognormal distribution is shown for companson sake, and has a coefficient of

skewness equal to (3+C¥V?)-CcV .
Measuring Tail Behavior: The Unit Hazard Function h_(y)

In order 1o evaluate tail behavior of the curves in the exponential family, we will examine

the hazard function h_(y), the average hazard rate over an interval of fixed width *w™.

Unit Hazard Function

h(y) = Ey+w)-Fly) for continuous distributions, w= layer width

1-F()

Pr(y<Y<y+w)

b Pr(Y > y)

for discrete distributions, w = fixed integer.



The more familiar hazard function A(y) = f())/[l- F(})] presented in Klugman
[2003] is sometimes called the “failure rate™, because it represents the conditional
probability or density of a failure in a given instant of time, given that no failure has yet
taken place. The umt hazard function measures the change in F(v) over a small interval

of width w, rather than a rate at a given instant in time.

The unit hazard function has a useful interpretation in insurance applications. It 1s
roughly the probability of a partial limit loss in an excess layer. For example, in a layer
of $10,000,000 excess $90,000,000, we seek the probability that a loss will not exceed
$100,000,000, given that it is in the layer. A high value for A_(y) would mean that a loss
above $90.000,000 would be unlikely to exhaust the full $10,000,000 layer

For most insurance applications, we would expect a decreasing unit hazard function
That is. as we move to higher and hugher layers, the chance of a parual loss would
decrease. For instance, if-we consider a layer such as $10,000,000 xs $990,000,000 we
would expect that any loss above $990,000,000 would almost certainly be a fulllimit

loss. This would imply 4, (v)—0.

The decreasing hazard function is not what we generally find in the exponenual family.
For the Normal and Poisson, the hazard function approaches 1, implying that full- limit
losses become less likely on higher layers — exactly the opposite of what our
understanding of insurance phenomena would suggest. The Negative Binomial, Gamma
and Inverse Gaussian distributions asymptotically approach constant amounts, mimicking

the behavior of the exponential distribution
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The table below shows the asymptotic behavior as we move to higher attachment points

for a layer of width w.

Distribution Limiting Form of A_(y) Comments

Normal PL"_ A =1 No loss exhausts the limit
Poisson F_‘l hy) =1

Negative Binomial fm h.(y) = 1=(t-p)

Gamma lm h,(y) = LT

Inverse Gaussian E_“_ B () = t-em oo

Lognormal I"_H_ h(y) =0 Every loss 1s a full-limit loss

From this table, we see that the members of the natural exponential family have tail
behavior that does not fully reflect the potential for extreme events in heavy casualty
insurance. It would seem that the natural exponential distnbutions used with GLM are
more appropriate for insurance lines without much potenual for extreme events or natural

catastrophes.

SMALL SAMPLE ISSUES

The results calculated in Generalized Linear Models generally rely on asymptotic
behavior assuming a large number of obsernvations are available. Unfortunately. this is
not always the case in Property & Casualty insurance. For instance, in per-nsk or per-
occurrence excess of loss reinsurance, there may not be a large enough volume of losses

to rely upon asymptotic approximations.

While we include here a brief discussion of the uncertainty in our parameter estimates,

this is an area in which much more research 1s needed.




Including Uncertainty in the Mean u

Most of our discussion of the exponential family has focused on the distribution of future
losses around an estimated mean u. However, the actuary is more often asked to
provide a confidence interval around the estimated value of the mean 2. The estimate
4 is also a random variable, with a mean, variance and higher moments. However,
GLM models generally produce an approximation to this distribution by making use of

the asymptotic behavior of the coefficients ﬂ in the linear predictor being Normal.

The calculation of the vanance in the parameter esumates, which leads to the confidence

interval around the estimated mean g, is accomplished using the matrix of second

derivatives of the loglikelihood function. A comprehensive discussion of that calculation
can be found in McCullagh & Nelder or Klugman [1998].

In general, the distribution of the estimator £ will not be the same exponential family

form as that of Y. In other words. the process and parameter variances are variances of
different distribution forms. As a practical solution, the actuary will want to select a
reasonable curve form (e.g., a gamma or lognormal) with mean and variance that match

the estimated &i and Var(g) from the model.

Including Uncertainty in the Dispersion ¢

In all of the discussion to this point, the dispersion parameter ¢ has been assumed to be
fixed and known. It is estimated as a side calculation, separate from the estimate of the

parameters [ used to estimate the mean fi .

So long as the separate estimate of the dispersion parameter is based on a large number of
observations, this approximation is reasonable A problem arises in certain tnsurance
applications where there are relauvely few observations, and our estimate of the

dispersion is far from certain.



In normal linear regression, the uncertainty in the dispersion parameter (2 instead of ¢)
is modeled by using a Student-t distribution rather than a Normal distribution. The use of
a Student-t distribution is equivalent to an assumption that the parameter a? (or ¢)1s

distributed as Inverse Gamma with a shape parameter equal to its degrees of freedom v .
That is:

L [vi2-1)
7, oM E[¢p*] = A ———=, for2k<v,
g@) = —— (@' Twrzy ooy
¢Tl T(v/2) where v = degrees of freedom.

A similar “mixing” of the dispersion parameter can be made for curves other than the
Normal. It is not always easy to explicitly calculate the mixed distribution, but the

moments can be found with the formula above.

For calculation purposes, if the distribution is used in a simulation model, the mixing can
be accomplished 1n a two-step process. First we simulate a value for ¢ from an Inverse
Gamma distribution. Second we simulate a value from the loss distribution conditional

on the simulated ¢ .

The real difficulty with the uncertainty in the dispersion parameter is that it has a
significant effect on the higher moments on the distribution, and therefore on the tail -
the part of the distribution where the actuary may have the greatest concemn. As the
formula for the moments of the Inverse Gamma shows, many of the higher moments will

not exist.

Another important note on the uncertainty in the dispersion parameter relates to the use of
the Lognormal distribution. When the log transform is applied to the observed data in

order to use linear regression, we have uncertainty in the dispersion of the logarithms
I{v,). When the transformed data In(y,) has a Swdent-t distribution, the
untransformed data y, follows a Log-T distnbution The LogT has been recommended

by Kreps and Murphy for use in estimating confidence intervals in reserving applications.



What neither author noted, however, 1s that none of the moments of the LogT
distribution exists. We are able to calculate percentiles, but not a “confidence interval”

around the mean, because the mean itself does not exist.

CONCLUSIONS

The use of the Nawral Exponential Family of distnibutions in GLM allows for more
realistic variance structures to be used in modeling insurance phenomena This is a real

advance beyond linear regresston models, which are restricted to the Normal distribution.

The Natural Exponential Family also allows the actuary to work directly with their loss

data i units of dollars, without the need for logarithmic or other transformations.

However. these advantages do not mean that GLM has resolved all 1ssues for actuanal
modeling. The curve forms are generally thin-tailed distribuuions and should be used
with caution m insurance applications with potenual for extreme events, or with a small

sample of hustonical data.
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Appendix A:  Deriving Moments for the Natural Exponential Family

As stated in this paper, the probability density function f{3) for the natural exponential
family is given by:

S(:8.0)=exp[ (6 y-b(0))ialp)+c(y.0)]

In the natural form, a. b, ¢ are suitable known functions, 8 is the canonical parameter for
Y, and ¢ 1s the dispersion parameter. The umt cumulant function b(@), which is useful

in computing moments of Y, does not depend on v or ¢. Likewise, the dispersion

function a(p) does not depend on y or 8 The catchall function c(v. ¢ has no

dependence on 6.

The unit cumulant function b(@) 1s so named because it can be used to calculate

cumulants, which are directly related to the random variable’s moments

We recall from Staustics that the Moment Generating Function MGF(f) is defined as:

MGF(1y = Je'-‘ - f(v)ydy for continuous variables

and that
E[Y’] _ 9" MGF(1) _
ar -

The Cumulant Generating Function K(r) is defined as ln[MGF(r)] , and the cumulaats:

3 K(r)
at”

=0

There 15 an easy mapping between the first four cumulants and the moments:
k= £yl = u <, = El-ny]

x, = Ely-uF] = var(y) ko = Ely-u)|-3-var(yy
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For the Natural Exponential Family, the Cumulant Generating Function can be written in

a very convenient form:

5(6 +a(9)-1)- b(6)
a(¢)

K(r) , 50 that

3’ blo)
00"

k, = b"7(6) a(¢) where '"'(9) =

In the mean value form, where 8 =t "'(u), the chain rule 15 used to find derivatives in

terms of u. The function 5°(8) is the umt variance function, denoted ¥/ when

expressed in terms of 4.
Mean E[Y;6]=56)=yu
Vanance Var[Y:0]=57(6)-a(¢)=¥ (u)- ale)

b"(0)- alp)’ _

d alo
Skew = =—[rv R RaL24
ewness Var[Y;G]” du[ (u )j )

ae)
Vi

~—1

Var[ Y6 ]:

Kurtosis =3 +w =3 +|i-(1i;[VQU)] V(I-l)+(i”(#)]zj|'
u du
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Appendix Bl: Normal Distribution

Density Function: fo) = 2'”¢ ,exp[ -(,\'Z;p). )
¥ € (oo, co)
2
Natural Form: f) = e.\'p[(u v-pti2ie —[';—¢+ln(‘/27¢)]]

Cumulative Distribution Function in Excel® Notation:

F(y) = NORMDIST(v, u,Jo.1)
Moments: E[Y] = H
Var(Yy = ¢
, 3
Skewness = ___E[()—ll),] =0
Var(Y)**
Kurtosis = __E[()’—u)] =3

Var(¥)y'?

Convolution of independent Normal random variables:

N1, 0, )0N (u,.0,) = N (4 +u.0, +0)
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Appendix B2: Over-Dispersed Poisson

U ]m e’

Probability Function: Prob(Y =) = |—
¢ (y/0)!

vy e (0, 19, 2¢. 30, 4, ..)

expl(in( 1) ¥~ 1)/ 0~ y-In(0)/ ~ In( 7 6)")}

Natural Form Prob(Y =y) =

Cumulative Distribution Function in Excel® Notauon:

I - GAMMADIST| & 2 +111
o0

Prob(Y<y) =
Moments: Ey] = u
Var(Y) = ¢ u o = |2
u
Skewness = M = 2. = CV
Var(Y)* u
Kurtosis = ——E[(Y_u)] = 3+CV?

Var(Y)'*

Convolution of independent Ove r-Dispersed Poisson random variables:

ODP, (u,, ¢)®ODP (u ,¢) = ODP_ (u,+p,,0)

where ¢ is a Constant variance/mean ratio



Appendix B3: Gamma

Density Function: £ [tu_a] [i) %:—)u

y € {0, =)

exp[a-[(%)—u u>]+<a— 1) ln(a-.v>+m[%))]

Cumulative Distribution Function in Excel® Notation:

Natural Form: 7O

F(») = GAMMADIST(H, a,l, 1]
u

Moments- Er] = u

! 1
var(y) = - cv = L
o a

- u)? 7

Skewness = E[(Y—‘,:)] = — = 2.CV

Var(r)'? Ja

Kurosis = S =B _ 5 6 cp

Var(Y)*?

Convolution of independent Gamma random variables:
Gu, o, =u, 'B®G (u,.a =p,p) = G (4 +4, 0 +a,)

where B 1s a constant variance/mean ratio



Appendix B4: Inverse Gaussian

o v— 2
Density Function. S = ! -exp (& 1“)
2oy 204’y

y € (0, =)

Natural Form: f0

(]

o

”

b=l
| — |
P,
—_—
=
N’
—
= |-
—
S |-

\
TN
$|-
+

g5
—_
N

=
=3
-
o

Cumulative Distribution Function in Excel® Notation:

(y—u) 2 (y+u)
F(y) = NORMSDIST| =——== [+ EXP| —— | NORMSDIST| - —=—==
[u-J«’-y] [¢-u] T( u ¢-,v]

Moments: E[Y] = U
Var(Y) = o-u’ cV = ,/¢.u
P!
Skewness = E[“—lj)J = 3 /¢.# = 3.CV
Var(Y) ©
Kurtosis = i(}-_—ur)—z—] = 3+15-C¥?
Var(Y)

Convolution of independent Inverse Gaussian random vanables:
1G, (1,0, =B/u)®IG, (1,0, =Bru) = G, (u,+u,.0,., =B/iu,+u))

where B 1s a constant variance/mean ratio
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Appendix BS: [Over-Dispersed] Negative Binomial

(k+y)ie-1

Probability Function: Prob(Y =y) = [ 0
»i

]-p""-(l—p)-"‘

v e (0, g, 20. 30. 4¢, ..)

Natural Form:

‘ k (k+v)l9-1
Prob()’:y) = e‘(p[[h(ﬁ)y+h[m]k]"@+ h’l[ ;?;P ]:|

Cumulative Distribution Function in Excel® Notation:

Prob(Y < y) = BETADIST(L.-E,XH]
utk ¢

Moments. Ely] = k-g_—m = u S0 p=
P Utk

ar(ry = o k-8B o gyl
~

k
cv = (2.2
u k
3
Skewness = M = (2-p) CV
Var(¥)"*
Kurtosis = 5[()——“4),] = 3+(6 (1-py+p)ci?
Far(Y)*~

Convolution of independent Over-Dispersed Negative Binomial random variables:

NB,(1,.0.p)® NB, (i, 0.p) = NB,, (4, +4,.0.p)
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Appendix C:  Compound Poisson/Gamma (Tweedie) Distribution

The Tweedie distribution can be interpreted as a collective risk model with a Poisson

frequency and a Gamma severity.

Probability Function:

f1A8.@ = yoe (0 %)
- Alc-l vla-xen 8
& 1 8" Tka)

Poisson Gamma

This form appears complicated, but can be re-parameterized to follow the natural

exponential famuly form.

2-p i -1
We set: a="£ =t 0=0-(p-1) u*
p-l ¢ (2-p)

. a+2
and 1< p<2, since p=——and a >0
a+l

v

, _ [T SR Nl § N
fyipe.p = exv[[(z_m"‘(p_“_”p-l] ¢]c(.\.¢:

where

oy =
Jl-pitp-n-l

- ¥

. y>0
.Zulw 2-p\ fo - " T2-pyip-t) &
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The density function f(y|u.9,p) can then be seen to follow the “natural form” for the

exponenual family.

Momenlts:

ElY] = 26a = u

Var(Y) = 4-6* a (a+l) = ¢ u’

. ’1 | ' 9
¥ = —_—t— = —
¢ 1 a wr

E[(y_“)ll _ A8a(atl)(@+2) _ p CV

Skewness =

Var(y)' * (A-02a @+’
Kurtosis = E[(Y-_I»l)‘] = 3+p-(2p-1) CV?
Var(r)"?

For GLM, a p value m the (1. 2) range must be selected by the user. The mean g and

dispersion ¢ are then estimated by the model.

The Compound Poisson/Gamma is a continuous distribution, with a mass point at zero.

The evaluation of the cumulative distribution function (CDF) is somewhat inconvenient,

but can be accomplished using any of the collective risk models available to actuaries.

Finally, we may note that the convolution of independent Tweedie random variables:

TH,(A,.0,0)®TW,(A,0,0) = TW, (A, +1.6.a)
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