A NOTE ON THE NON-EQUIVALENCE OF THE NEYMAN-PEARSON AND GENERALIZED

LIKELIHOOD RATIO TESTS FOR TESTING A SIMPLE NULL VERSUS

A SIMPLE ALTERNATIVE HYPOTHESIS

bу

Daniel L. Solomon

BU-510-M

May, 1974

1. Introduction

Some introductory textbooks in mathematical statistics pose a problem equivalent to the following [1]: "Show that the likelihood ratio principle leads to the same test, when testing a simple hypothesis H_O against an alternative simple hypothesis H_I, as that given by the Neyman-Pearson theorem." It is the object of this note to observe that a more careful wording of the problem would assume the existence of a (generalized) likelihood ratio test of a given size and to note that this existence is a non-trivial matter.

Suppose that $f(x;\theta_0)$ and $f(x;\theta_1)$ represent specified (joint) probability densities associated with the (perhaps vector valued) datum x and corresponding to the two states of nature θ_0 and θ_1 . For observed x, we wish to test the simple null hypothesis that $f(\cdot;\theta_0)$ produced x, against the simple alternative that $f(\cdot;\theta_1)$ is the true underlying density. We write $H_0:\theta=\theta_0$, $H_1:\theta=\theta_1$ and define

$$\lambda(x) = \frac{f(x; \theta_0)}{f(x; \theta_1)}, \quad \Lambda(x) = \frac{f(x; \theta_0)}{\max\{f(x; \theta_0), f(x; \theta_1)\}}.$$

Note that $0 \le \Lambda(x) \le 1$ and that $\Lambda(x) = \min\{\lambda(x), 1\}$. Finally, for specified $0 \le \alpha \le 1$, define the Neyman-Pearson (NP) and Generalized Likelihood Ratio (LR) tests as those with critical regions respectively

$$R_{\mathrm{NP}} = \{x | \lambda(x) < A_{\alpha}\}$$
, $R_{\mathrm{LR}} = \{x | \Lambda(x) < B_{\alpha}\}$,

where A and B are chosen (if they exist) to make

$$P_{\theta_0}(\lambda(X) < A_{\alpha}) = P_{\theta_0}(\lambda(X) < B_{\alpha}) = \alpha$$
.

2. Example

We will restrict attention to a continuous random variable to emphasize that the possible non-existence of B_{α} is not due to its discreteness. Rather, it is that $P_{\theta_1}\left(\Lambda(X)=1\right)>0$. Suppose, for example, that we seek size $\alpha=\frac{1}{2}$ tests of $H_0:\theta=0$ versus $H_1:\theta=1$ for one observation from $X\sim N(\theta,1)$. Then $\lambda(x)=e^{\frac{1}{2}-X}$ and $P_0\left[\lambda(X)<e^{\frac{1}{2}}\right]=P_0\left[X>0\right]=\frac{1}{2}$, i.e. $A_{\frac{1}{2}}=e^{\frac{1}{2}}$ and $P_0\left[\lambda(X)>0\right]=\frac{1}{2}$. But $P_0\left[\Lambda(X)=1\right]=P_0\left[\Gamma(X;0)\geq\Gamma(X;1)\right]=P_0\left[\Lambda(X)<B_{\alpha}\right]=\frac{1}{2}$. In fact there exist likelihood ratio tests only of size $\alpha\leq 1$ - .691 = .309 and $\alpha=1$.

3. The Result

We shall now show that if both NP and LR tests exist, then they are equivalent and establish conditions for their existence. First note that $\Lambda(x) = \min\{\lambda(x), 1\}$ $\leq \lambda(x)$ so that if $\lambda(x) < c$, then $\Lambda(x) < c$. Thus

$$P_{\theta_0}[\Lambda(X) < B_{\alpha}] = \alpha = P_{\theta_0}[\lambda(X) < A_{\alpha}] \le P_{\theta_0}[\lambda(X) < A_{\alpha}], \text{ and so } B_{\alpha} \le A_{\alpha}.$$

Next observe that B_{α} is a non-decreasing function of α and that for $B_{\alpha} > 1$, $P_{\theta_0}[\Lambda(X) < B_{\alpha}] = 1$, for $B_{\alpha} = 1$, $P_{\theta_0}[\Lambda(X) < B_{\alpha}] = 1 - P_{\theta_0}[\Lambda(X) = 1] = \alpha_0$ say, and $B_{\alpha} \le 1$ if and only if $P_{\theta_0}[\Lambda(X) < B_{\alpha}] \le \alpha_0$. Thus, there do not exist LR tests of size $\alpha > \alpha_0$, except the test of size $\alpha = 1$.

Now, except for non-existence due to the possible discreteness of X, there are LR tests of size $\alpha \leq \alpha_0$, and in this case $B_{\alpha} \leq 1$. So suppose $\alpha \leq \alpha_0$ and thus

$$\alpha = P_{\theta_0} \Big[\Lambda(X) < B_{\alpha} \Big] = P_{\theta_0} \Big[\min \{ \lambda(X), 1 \} < B_{\alpha} (\le 1) \Big]$$

$$= P_{\theta_0} \Big[\lambda(X) < B_{\alpha} \Big]$$

$$\leq P_{\theta_0} \Big[\lambda(X) < A_{\alpha} \Big] \quad \text{since } B_{\alpha} \le A_{\alpha}$$

$$= \alpha \quad .$$

Therefore $P_{\theta_0}[\lambda(X) < B_{\alpha}] = P_{\theta_0}[\lambda(X) < A_{\alpha}]$ and we may take $A_{\alpha} = B_{\alpha} \le 1$. In this case, $\Lambda(x) < B_{\alpha}$ if and only if $\min\{\lambda(x),1\} < B_{\alpha}$ if and only if $\lambda(x) < B_{\alpha} = A_{\alpha}$, i.e. $x \in R_{LR}$ if and only if $x \in R_{NP}$, so the tests are equivalent.

4. Summary

In summary, we have shown that there exist generalized likelihood ratio tests only of size $\alpha = 1$ and $\alpha \le \alpha_0$ where $\alpha_0 = 1 - P_{\theta_0} [\Lambda(X) = 1] = 1 - P_{\theta_0} [f(X; \theta_0) \ge f(X; \theta_1)]$, and that if such a test exists, it is equivalent to the Neyman-Pearson (most powerful) test of the same size.

REFERENCE

Craig, A. T. and R. V. Hogg. <u>Introduction to Mathematical Statistics</u>, 3rd ed., p. 307, Macmillan Company [1970].