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Goodness-of-fit statistics measure the compatibility of random samples against some theoretical
probability distribution function. The classical one-dimensional Kolmogorov-Smirnov test is a
non-parametric statistic for comparing two empirical distributions which defines the largest abso-
lute difference between the two cumulative distribution functions as a measure of disagreement.
Adapting this test to more than one dimension is a challenge because there are 2d−1 independent
ways of defining a cumulative distribution function whend dimensions are involved. In this paper
three variations on the Kolmogorov-Smirnov test for multi-dimensional data sets are surveyed:
Peacock’s test [1] that computes inO(n3); Fasano and Franceschini’s test [2] that computes in
O(n2); Cooke’s test that computes inO(n2).
We prove that Cooke’s algorithm runs inO(n2), contrary to his claims that it runs inO(nlgn).
We also compare these algorithms with ROOT’s version of the Kolmogorov-Smirnov test.
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1. Introduction

Let X andY be two independent stochastic variables whose cumulative distribution functions
F andG are unknown. A classical two-sample problem consists of testing the null hypothesis

H0 : F(x) = G(x), for everyx∈ Rd

against the general alternative

H1 : F(x) 6= G(x), for somex∈ Rd

This is the kind of problem that could arise in a context where, given an observed sample
X1, . . . ,Xn and a control (or maybe a guess) sampleY1, . . . ,Ym, one must determine whether they
come from the same distribution function. In the end we are asking if we can (dis)prove to a certain
level of significance the null hypothesis that the two sets come from the same population.

The nature of the sets is, however, important in defining the kind of test available. When
comparing whether educational patterns in London and Edinburgh are the same we are dealing
with tables of numbers binned in discrete categories. Searching for neutrinos detected from the
Supernova 1987A [3] demands dealing with points measured by pairs of time and amount of energy,
both seen as continuous variables. A well accepted test for binned distributions is based on the
χ2 statistic.Continuous data can always be binned by grouping the events into ranges, but comes
usually at the price of losing information.

For the one-dimensional continuous data, tests based on differences in the cumulative dis-
tribution functions are in general seen as very effective. The most widely used of these is the
Kolmogorov-Smirnov test, which uses the maximum absolute difference between the distribution
functions of the samples. This is in general an attractive test because it is distribution-free, it makes
use of each individual data point in the samples, and it is independent of direction of ordering of
the data.

Adapting goodness-of-fit tests to multi-dimensional space is generally seen as a challenge.
Tests based on binning face the hurdle of what is called in the literature "the curse of dimension-
ality": a high dimensional space is mostly empty, and binning tests can only start to be effective
when the data sets are very large [4].

Adapting the Kolmogorov-Smirnov test on the other hand demands defining a probability
function that is independent of the direction of ordering, which does not seem to be possible given
that there are 2d−1 ways of defining a cumulative distribution function in ad dimensional space.

In this paper we discuss the correctness and complexity of four variations of the Kolmogorov-
Smirnov test for comparing two two-dimensional data sets. In section2, we discuss the test intro-
duced by Peacock in [1], providing a lower-bound for its computation. In section3, the variation
of Peacock’s test introduced by Fasano and Franceschini in [2] is presented, together with a lower-
bound for computing it. Section4discusses Cooke’s test which is introduced in [5] as an implemen-
tation of Peacock’s test. We show that his test is not a faithful variation of Peacock’s test and that
the upper-bound for computing it is incorrectly stated in [5]. Section5 discusses the ROOT imple-
mentations of the Kolmogorov-Smirnov test. We claim that ROOT’s is not a Kolmogorov-Smirnov
test even in the one-dimensional space. Section6 presents experiments, and then a conclusion
section follows.
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2. Peacock’s variation on the Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is applicable to continuous, unbinned, one-dimensional data
samples. It assumes that a list of data points can be easily converted to a cumulative distribution
function. The test uses the maximum absolute difference between two cumulative distribution
functions. When comparing one data setF(x) against a known cumulative distribution function
P(x) the Kolmogorov-Smirnov statistic (K-S statistic) is

DKS = max|F(x)−P(x)|

When comparing two samples with cumulative distribution functionsF(x) andG(x) the statis-
tic is defined as

DKS = max|F(x)−G(x)|

Extending the K-S statistic to multi-dimensional space is a challenge. In one-dimensional
space the statistic is independent of the direction of ordering of data becauseP(> x) = 1−P(< x).
In an d dimensional space, however, there are 2d −1 independent ways of defining a cumulative
distribution function. In [1], Peacock introduced the idea of making the statistic independent of any
particular ordering by finding the largest difference between the cumulative distribution functions
under any possible ordering. Givenn points in a two-dimensional space, that amounts to calculating
the cumulative distribution functions in the 4n2 quadrants of the plane defined by all pairs(Xi ,Yj),
Xi andYj being coordinates of any pairs of points in the given samples.

Peacock’s test demands partitioning then points in 4n2 quadrants and then computing the
maximum absolute difference between cumulative distribution functions in all quadrants. The
counting step can be performed by a brute force algorithm that for each point in a sample sweeps
through each quadrant, deciding whether the point is in it. That givesn steps, one for each point,
with complexityΘn2, giving the final complexity ofΘn3.

The counting steps can be dramatically improved by using a range-counting algorithm. A
set ofn points in two dimensions can be indexed by a range-count tree inO(nlgn) [6]. Given
such range-counting tree, any two-sided range-counting query can be answered inO(nlgn) time.
An efficient algorithm for Peacock’s test indexes the two samples of points in two range-counting
trees, and then performs one two-sided query for each quadrant defined by the test, giving a time
upper-bound ofO(n2 lgn).

Fact: The lower-bound for finding the maximum ofO(n2) quantities isωn2 [7].
Claim: The lower-bound for performing Peacock’s test onn points is theO(4n2) quadrants

and that isωn2 lgn [8].
Peacock’s test is very demanding. Performing the test on 218 points with the brute force

algorithm running on a 4GHz processor, would demand several days. Even the range-counting tree
based algorithm would demand days to perform the test on a sample with a million points, see
Table1.

3. Fasano and Franceschini test

Fasano and Franceschini introduced in [2] a variation on Peacock’s test that greatly reduces
the lower-bound for its computation. Their heuristic consists in considering quadrants centred in
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Set
Size

BFP
bound

BFP
time
(hours)

RCP
bound

RCP
time
(hours)

BFFF
bound

BFFF
time
(hours)

RCFF
bound

RCFF
time
(hours)

28 224 2−20 219 2−25 216 2−28 219 2−15

212 236 2−8 227 2−17 224 2−20 227 2−17

216 248 24 236 2−8 232 2−12 236 2−8

220 260 216 244 20 240 2−4 224 20

224 272 228 252 28 248 24 228 28

Table 1: Peacock versus FF complexity

each point of the given samples. An sample ofn points would definen quadrants. A brute force
algorithms performs, for each given point, a sweep through all quadrants to decide whether the
points is and must be counted in it. This algorithm is presented for example in [9].

An algorithm based on a range-counting tree can index then points inO(nlgn) time. After that
n two-sided range queries ofO(lgn) can be used two compute cumulative distribution functions
differences in all quadrants.

Claim: The lower-bound for computing the Fasano and Franceschini test is the lower-bound
for sortingn points in a two-dimensional plane, which isO(nlgn) [8].

Table 1 compares upper-bounds for performing these two tests using both brute force and
optimal algorithms. The identification in the columns are:

• BFFF: brute-force algorithm for Fasano and Franceschini test, as presented in [9].

• RCFF: range-counting tree version of Fasano and Franceschini test.

• RCP: range-counting tree version of Peacock test.

• BFP: brute-force algorithm for Peacock test.

The upper-boundcolumns present the asymptotic upper-bounds. Thetime columns present
number of hours to compute in the hypothetical world where we have a 4GHz processor that can
perform lgn range queries in lgn cycles.1

The Table indicates that for sets with up to a thousand (210) points any of the algorithms is
fast enough. For more than one million points (220), only the last Fasano and Franceschini test
implemented on top of a range-counting tree can give us times in the range of minutes.

4. Cooke’s test

In [5], Cooke introduces an efficient implementation for Peacock’s test. He describes the
algorithm, and presents implementations for it in both Python and C. Chan in [10], discusses a
parallel implementation for Cooke’s algorithm.

Cooke’s algorithm is evaluated here because it is the fastest of all tests based on the 1-D
Kolmogorov test, even if, as we show below, the claim that the test runs inO(nlgn) is false. The

1In isolation each of these assumptions is clearly false. Together they might resist Moore’s law for a few years.
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algorithm uses two binary trees each containing all points from both samples, each point marked
to identify its source. The trees are ordered byx coordinate. In the first tree, points are inserted in
increasing order of theyy coordinate. As a result, points with lowery coordinate will be allocated
next to the root. By sweeping the tree from leaves to root, the algorithm performs a sweep from
top to bottom in all quadrants defined by the tree. The second tree reverts the order of insertion
of points, locating points with highery coordinates next to the root. That produces a sweep from
bottom to top in the quadrants when the tree is swept from leaves to root. The number of points in
each quadrant is updated during the sweeps, by counting the number of points in each subtree, and
updating the maximum difference.

Cooke’s unproved assumptions about his algorithm are:

• The dominating time is in the construction of the tree, which he believes is done inO(nlgn).

• That by sweeping all quadrants defined by the nodes from top to bottom and reverse he is
computing over all 4n2 quadrants defined by Peacock’s algorithm.

The first assumption is clearly false. The algorithnm uses an unbalanced binary tree and the
upper-bound to build such tree isO(n2)[11, 12]. Moreover the algorithm depends on ordering
the tree level byy coordinate. As such it would not help using a balanced tree instead because
the process of balancing would disturb the ordering in the levels. However, the algorithm is still
efficient. In the end, the expected time to construct an unbalanced binary tree isO(nlgn).

His second assumption is also false: his algorithm does not implement Peacock’s test. Indeed
it is not possible to select the maximum of 4n2 unknown quantities, something prescribed by Pea-
cock’s test, in less that 4n2 comparisons [7]. If Cooke’s algorithm computed Peacock’s test, one of
the following would be true:

• Cooke would have invented a new algorithm for selecting the maximum of a random se-
quence of numbers,

• or some of the quadrants defined by Peacock are redundant, which would make sweeping
them all unnecessary.

Tests performed with a few data sets clearly show that Cooke’s test is not Peacock’s test. Table
2 shows a set of tests. Each fileFi contains 1024 muon-simulated events, all samples from the same
distribution. The table shows that Cook’s test is definitely different from Peacock’s.

5. The Kolmogorov-Smirnov test in ROOT

ROOT [13] implements a 2-D Kolmogorov-Smirnov test using an extension of its 1D Kolmogorov-
Smirnov test. The two-dimensional test suffers from at least two serious limitations: it uses binned
data, a limitation already found in the one-dimensional test, and and it computes the statistic as an
average of two one-dimensional statistics.

ROOT’s 2-D Kolmogorov-Smirnov test computes two one-dimensional Kolmogorov-Smirnov
test over two given histograms. The Kolmogorov-Smirnov test is applied to find the probability
that thex coordinate in the two histograms comes from the same distribution. Then a similar test
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File Cooke
distance

Peacock
distance

F0 x F0 0.00195312 0
F1 x F1 0.00195312 0
F2 x F2 0.00195312 0
F3 x F3 0.00195312 0
F0 x F1 0.0595703 0.0595703
F1 x F2 0.0957031 0.0957031

Table 2: Comparing Cooke’s and Peacock’s tests

File 40 bins 400 bins 4000 bins

F0 x F1 0.999999999999 0.999999999999 0.999996452676
F1 x F2 0.000192577442914 0.00316115427651 5.08375684453e−06
F2 x F3 0.0640695497946 0.110550802587 0.390164713988
F3 x F4 0.653380519844 0.631485586153 0.230296596904

Table 3: ROOT’s test under different binning

compare they coordinate in the two samples. ROOT then computes the average of those two
probabilities. It is quite easy to define distributions that will completely fool this test. For example,
two samples that are equal in thex coordinate, and whosey coordinates are almost permutations of
each other will fool ROOT into determining that the samples have a great chance of being equal.

In addition, ROOT’s 1-D Kolmogorov-Smirnov test takes as input a pair of histograms with
binned data. This goes against the most fundamental principle of the Kolmogorov-Smirnov test, a
test defined to be applied to continuous unbinned data [14, 9]. Indeed ROOT seems to be the only
package to implement the Kolmogorov-Smirnov test over binned data, see for example [15, 16].
Table3shows results for two-sample comparisons under different binning. The files are all different
and they have 4096 points each. Results report probability that the files are different, next to one
indicating that compared samples are probably different. Notice that the third test shows an increase
in the probability (of likelihood) with the increase in the number of bins. The last one shows exactly
the opposite: a decrease in the probability (of likelihood) with the increase in the number of bins.

6. Experimental results

We performed tests with simulated data from Compact Muon Solenoid (CMS) experiment at
CERN to evaluate the quality of the four tests we discussed. Two sets of data were used, repre-
senting reconstructed muon tracks from simulated Z-particle decay within the CMS experiment at
CERN. The data pairs chosen were the reduced-χ2 goodness-of-fit parameter for the track fit and
Φ, the azimuthal angle of the reconstructed track around the beam-line axis. One set of data were
produced using the ideal detector positions, the second after introduction of small misalignments
representing the probable errors in positioning of the detectors when CMS first starts operation[17].

We used the bootstrap method for hypothesis testing, algorithm 16.1 of [18]. As described
earlier in this paper, we worked with two-sample tests. Given two samples, our target is to find out
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Files Theta ASL

F0 x F0 0 1
F1 x F1 0 1
F2 x F2 0 1
F3 x F3 0 1
F0 x F1 0.0595703 1
F1 x F2 0.0957031 0.961538
F2 x F3 0.0976562 0.961538
F3 x F0 0.0400391 1
F0 x F4 0.0375977 1
F1 x F5 0.0317383 1
F2 x F6 0.0463867 0.980769
F3 x F7 0.0283203 1
F4 x F4 0 1
F5 x F5 0 1
F6 x F6 0.0664062 0.961538
F7 x F7 0 1

Table 4: Peacock:H0 acceptance

if the null hypothesis (that they come from the same distribution) is true. The bootstrap method here
consists in running the statistics being tested once for the original samples to obtain one statistic,
sayθ̂ , and then run again by resampling the original sets.

In our tests,̂θ was obtained for the original samples of sizesm andn. Then fifty tests were
performed over samples obtained by permutation with replacement from the union of the original
samples.

It is important to keep in mind that Peacock, Fasano and Franceschini, and Cooke tests com-
pute distance between samples. Lower distances indicate greater chances that the samples come
from the same population. For these statistics, we are computing

Prob(θ̂ ∗ ≥ θ̂)

ROOT’s results show probabilities that the compared samples do not come from the same
distribution. Again in ROOT’s case, we are computing

Prob(θ̂ ∗ ≥ θ̂)

Tables4, 5, and6 show results of runs for Peacock, Fasano and Franceschini, and Cooke tests,
using pairs of samples from the same distribution. Tables7, 8, and9 show results for comparing
samples from the same distribution using ROOT with 40, 400 and 4000 bins respectively. In
each Table, the first column identifies the samples, the others give the distanceθ̂ computed by the
respective test, and the significance level obtained. FilesF0 throughF3 have 1024 points each. Files
F4 throughF7 have 2048 points each. It should be noticed that samples from the same distribution
are being compared, with small distances between pairs of samples being expected.
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Files Theta ASL

F0 x F0 0.000976562 1
F1 x F1 0.000976562 1
F2 x F2 0.000976562 1
F3 x F3 0.000976562 1
F0 x F1 0.0527344 1
F1 x F2 0.09375 0.943396
F2 x F3 0.0927734 0.90566
F3 x F0 0.0361328 1
F0 x F4 0.0341797 1
F1 x F5 0.0288086 1
F2 x F6 0.0444336 0.962264
F3 x F7 0.0253906 1
F4 x F4 0.000488281 1
F5 x F5 0.000488281 1
F6 x F6 0.0625 0.924528
F7 x F7 0.0458984 0.962264

Table 5: Fasano and Franceschini:H0 acceptance

Files Theta ASL

F0 x F0 0.00195312 1
F1 x F1 0.00195312 1
F2 x F2 0.00195312 1
F3 x F3 0.00195312 1
F0 x F1 0.0595703 0.169811
F1 x F2 0.0957031 0.0566038
F2 x F3 0.0976562 0.0188679
F3 x F0 0.0400391 0.90566
F0 x F4 0.0380859 0.943396
F1 x F5 0.0322266 0.981132
F2 x F6 0.046875 0.698113
F3 x F7 0.0288086 1
F4 x F4 0.000976562 1
F5 x F5 0.000976562 1
F6 x F6 0.0664062 0.0188679
F7 x F7 0.0507812 0.0377358

Table 6: Cooke:H0 acceptance
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Files Theta ASL

F0 x F0 0.0 1.0
F1 x F1 0.0 1.0
F2 x F2 0.0 1.0
F3 x F3 0.0 1.0
F0 x F1 0.081412658923 0.452830188679
F1 x F2 0.947605449092 0.0188679245283
F2 x F3 0.969351430782 0.0188679245283
F3 x F0 2.9058913591e-05 0.962264150943
F0 x F4 1.0 0.0188679245283
F1 x F5 1.0 0.0188679245283
F2 x F6 1.0 0.0188679245283
F3 x F7 1.0 0.0188679245283
F4 x F4 0.0 1.0
F5 x F5 0.0 1.0
F6 x F6 0.935443883178 0.0377358490566
F7 x F7 0.199500407284 0.415094339623

Table 7: ROOT: same distribution (40 bins)

Files Theta ASL

F0 x F0 0.0 1.0
F1 x F1 0.0 1.0
F2 x F2 0.0 1.0
F3 x F3 0.0 1.0
F0 x F1 0.0584077905556 0.660377358491
F1 x F2 0.832456544994 0.0188679245283
F2 x F3 0.894883937055 0.0377358490566
F3 x F0 9.32213365805e-05 1.0
F0 x F4 1.0 0.0188679245283
F1 x F5 1.0 0.0188679245283
F2 x F6 1.0 0.0188679245283
F3 x F7 1.0 0.0188679245283
F4 x F4 0.0 1.0
F5 x F5 0.0 1.0
F6 x F6 0.857287521801 0.0566037735849
F7 x F7 0.208282378927 0.320754716981

Table 8: ROOT: same distribution (400 bins)
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Files Theta ASL

F0 x F0 0.0 1.0
F1 x F1 0.0 1.0
F2 x F2 0.0 1.0
F3 x F3 0.0 1.0
F0 x F1 0.248590402425 0.433962264151
F1 x F2 0.912996158571 0.0188679245283
F2 x F3 0.877199278419 0.0754716981132
F3 x F0 0.000599746915281 1.0
F0 x F4 1.0 0.0188679245283
F1 x F5 1.0 0.0188679245283
F2 x F6 1.0 0.0188679245283
F3 x F7 1.0 0.0188679245283
F4 x F4 0.0 1.0
F5 x F5 0.0 1.0
F6 x F6 0.749179307943 0.11320754717
F7 x F7 0.110671664737 0.679245283019

Table 9: ROOT: Same distributions (4000 bins)

Statistic asl σasl

Peacock 0.9915864375 0.000245013276662
FF 0.981132 0.0009968039872
Cooke 0.6768867125 0.190904241164
ROOT(40 bins) 0.498820754717 0.221714429809
ROOT(400 bins) 0.510613207547 0.224918416993
ROOT(4000 bins) 0.524764150943 0.217596712946

Table 10: Mean and Standard Error for ASL for each test

Table10shows the means and standard errors for the ASL obtained for all tests. Least standard
error is for Peacock’s test, followed by Fasano and Franceshini’s. Cooke’s test and ROOT’s test
both present standard errors more than a hundred times higher than the other two tests.

Table11 shows results of tests for samples comparing aligned against misaligned data. The
first column describes the file. Then come the distances obtained for each of the tests:P for
Peacock,FF for Fasano and Franceschini,C for Cooke,R40 for ROOT with 40 bins,R4000for
ROOT with 4000 bins. FilesGi have data from the simulation of misaligned tracks. FilesG0

throughG3 have 1024 points each. FilesG4 throughG7 have 2048 points each.

ROOT’s results point to much larger differences between the samples than the other tests,
results that seem unlikely given that we are comparing aligned against misaligned data and differ-
ences are not expected to be so big. In addition, ROOT shows large differences in results for the
same pair of samples when the binning is changed.
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Files P FF C R40 R4000

F0 x G0 0.0957031 0.0908203 0.0957031 0.0 2.08980157956e-07
F1 x G1 0.150391 0.147461 0.150391 0.999999544256 0.999998609916
F2 x G2 0.150391 0.139648 0.150391 0.980636391814 0.930160784516
F3 x G3 0.114258 0.107422 0.114258 0.257610913545 0.845952035138
F0 x G1 0.100098 0.0966797 0.100098 1.0 1.0
F1 x G2 0.138672 0.134766 0.138672 1.0 1.0
F2 x G3 0.128906 0.125977 0.128906 1.0 1.0
F3 x G0 0.110352 0.108887 0.110352 1.0 1.0
F0 x G4 0.0834961 0.0805664 0.0834961 1.14419584918e-12 3.5473241915e-06
F1 x G5 0.134766 0.131836 0.134766 0.999807422557 0.999994916243
F2 x G6 0.121582 0.119141 0.121582 0.935930450205 0.609835286012
F3 x G7 0.0961914 0.0942383 0.0961914 0.346619480156 0.769703403096

Table 11: H0 rejection

7. Conclusion

In this paper, we tested four variations of the Kolmogorov-Smirnov test for two-dimensional
data sets. We compared Peacock’s, Fasano and Franceschini’s , Cooke’s, and ROOT’s tests. We
established precise computing bounds for the first three of them. We have shown that Cooke’s
test, contrary to what is stated in [5], is not an implementation of Peacock’s test. Tests comparing
samples from the same distribution indicate that Peacock’s and Fasano and Franceschini’s tests
are more stable than the others. Experiments with ROOT have shown results with large discrep-
ancies when the size of bins is changed. We are now extending these tests to incorporate three
new statistics for multi-dimensional tests, including statistics based on minum energy and graph
matching.
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