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1 INTRODUCTION

Confounding is a simple concept. If we undertake to estimate the effect of one variable
(X) on another (Y) by examining the statistical association between the two, we ought to
ensure that the association is not produced by factors other than the effect under study. The
presence of spurious association, due for example to the influence of extraneous variables, is
called confounding as it tends to confound our reading and to bias our estimate of the effect
studied. Conceptually, therefore, we can say that X and Y are confounded when there is a
third variable Z that influences both X and Y'; such a variable is then called a “confounder”
of X and Y.

As simple as this concept is, it has resisted formal treatment for several decades, and
for a good reason: The very notions of “effect” and “influence”, relative to which “spu-
rious association” is to be defined, has resisted mathematical formulation. The empirical
definition of effect as an association that would prevail in a controlled randomized exper-
iment, cannot easily be expressed in the standard language of probability theory, because
that theory deals with static conditions, and does not permit us to predict, even from a full
specification of a population density function, what relationships would prevail if conditions
were to change, say from observational to controlled studies. Such predictions require extra
information, in the form of causal or counterfactual assumptions [Greenland and Robins
1986; Wickramaratne and Holford 1987], which is not discernible from density functions.

These difficulties notwithstanding, epidemiologists, biostatisticians, social scientists and
economists’ have made numerous attempts to express confounding in statistical terms, partly
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'Tn econometrics, the problem is mirrored by decades-long difficulties in defining “exogeneity”, [Engle et
al., 1983; Leamer, 1985; Aldrich 1993] which stands essentially for no confounding. According to Aldrich
(1993) and Imbens (1997) the difficulties are still unsettled.
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because statistical definitions, free of theoretical terms of “effect” or “influence,” can be
expressed in conventional mathematical form, and partly because such definitions may lead to
practical tests of confounding, so as to alert investigators whenever adjustment is necessary.
These attempts have converged on the following criterion:

Associational criterion: X and Y are not confounded if every variable Z that is not
affected by the exposure variable X is either:

(U1) unassociated with X, or
(Uy) unassociated with the outcome Y within strata of X.

This criterion, with minor variations or derivatives, can be found in almost every epidemi-
ology textbook [Rothman, 1986; Schlesselman, 1982; Rothman and Greenland, 1998] and in
almost every article dealing with confounding (e.g., [Miettinen and Cook, 1981; Greenland
et al., 1997; Weinberg, 1993]). In fact, the criterion has become so deeply entrenched in the
literature, that authors (e.g., Gail, 1986; Hauck et al., 1991; Steyer et al., 1996) often take
it to be the definition of no confounding, forgetting that ultimately confounding is only so
far useful as it tells about effect bias.?

The purpose of this paper is to bring to the attention of investigators several basic limi-
tations of the associational criterion. We will show that the associational criterion does not
ensure unbiased effect estimates, nor does it follow from the requirement of unbiasedness.
After demonstrating, by examples, the absence of logical connections between the statisti-
cal and the causal notions of confounding, we will define a stronger notion of unbiasedness,
called stable unbiasedness, relative to which a modified statistical criterion will be shown
necessary and sufficient. The necessary part will then yield a practical test for stable un-
biasedness which, remarkably, does not require knowledge of all potential confounders in a
problem. Finally, we will argue that the prevailing practice of substituting statistical crite-
ria for the effect-based definition of confounding is not entirely misguided, because stable
unbiasedness is in fact what investigators have been and should be aiming to achieve, and
stable unbiasedness is what statistical criteria can test.

2 FORMAL UNDERPINNING

To facilitate the discussion, we shall first cast the causal and statistical definitions of no
confounding in mathematical forms.?

Definition 1 (no confounding: causal definition)
Let M be a causal model of the data-generating process, that is, a formal description of how
the value of each observed variable is determined. Denote by P(y|do(z)) the probability of

2Hauck et al. (1991) dismiss the effect-based definition of confounding as “philosophic” and consider
a discrepancy between two statistical criteria to be a “bias”. Grayson (1987) even goes as far as stating
that the change-in-parameter method, a derivative of the associational criterion, is the only fundamental
definition of confounding (see [Greenland et al., 1989), for critiques of Grayson’s position).

3For simplicity, we will limit our discussion to unadjusted confounding; extensions involving measurement
of auxiliary variables are straightforward and can be found elsewhere [Pearl, 1995; Greenland et al., 1997].



the response event Y = y under the hypothetical intervention X = x, calculated according to
M. We say that X and Y are not confounded in M if and only if

P(y|do(z)) = P(y|z) (1)
where P(y|z) is the conditional probability generated by M.*

We bear in mind that the operator do(x), hence effect estimates and confounding, must
be defined relative to a specific causal, or data-generating model M as these notions are not
statistical in character and cannot be defined in terms of joint distributions. A given joint
distribution P(z,y) may be compatible with many different effect probabilities P(y|do(x)),
depending on the model that generates P(z,y). For example, we may have P(y|do(z)) =
P(y|z) in a model where X is an unconfounded cause of Y, P(y|do(z)) = P(y) in a model
where X has no causal effect on Y, while both models generate the same P(z,y).

Definition 2 (no confounding: associational criterion)
Let T be the set of variables in a problem that are not affected by X. We say that X and Y
are not confounded in the presence of T if every member Z of T satisfies:

(Uy) Z is not associated with X, (i.e., P(x|z) = P(z)), or

(Uy) Z is not associated with Y within strata of X (i.e., P(y|z,x) = P(y|x)).

Note that the associational criterion in Definition 2 is not purely statistical, as it invokes
the predicate “affected by” which is not discernible from probabilities, and rests on judg-
mental knowledge about causal relationships in the domain. This exclusion of variables that
are affected by treatments (or exposures) is unavoidable, and has long been recognized as a
necessary judgmental input in every analysis of treatment effect, in both observational and
experimental studies [Cox, 1958, p. 48]. We shall assume throughout that investigators pos-
sess the substantive knowledge required for reliably distinguishing between variables that are
affected by the treatment X and those that are not. We shall see later that this distinction
alone is not sufficient for establishing even the weakest test for confounding; knowledge of
whether variables affect the outcome Y will also be necessary.

1Readers unfamiliar with the do(z) operator [Pearl, 1995] may interpret P(y|do(z)) as the conditional
probability P*(Y = y|X = z) corresponding to a controlled experiment in which X is randomized. This
probability can be calculated from a causal model M either directly, by simulating the intervention do(X =
x), or (if M is Markovian) via the G-formula [Robins, 1986]

P(y|do(z)) = ) P(ylz,s)P(s)

where S stands for all variables preceding X. An equivalent definition of P(y|do(z)) can also be formulated
using a potential response variable Y, [Rubin, 1974] to read

P(y|do(z)) = P(Yz = y)



3 HOW THE STATISTICAL CRITERION FAILS

We will say that a criterion is permissive if it fails to detect cases of confounding, and
restrictive if it fails to detect cases of no confounding. There are several ways that the
statistical criterion of Definition 2 fails to match the causal criterion of Definition 1, some
are permissive and some restrictive. These will be addressed in turns.

3.1 Permissiveness Due to Individuation

The criterion in Definition 2 is based on testing each element of 7" individually. A situation
may well be present where two confounders, Z; and Z,, jointly confound X and Y and
yet, each element separately satisfies (U;) and (Us). This may occur because statistical
independence between X and individual members of T" does not guarantee the independence
of X and groups of variables taken from 7. An attempt to remedy Definition 2 by replacing
Z with T in (U;) and (Us) would be much too restrictive, because the set of all causes of X
and Y, when treated as a group, would surely fail the tests of (U;) and (Us).

3.2 Permissiveness Due to Small-World Assumptions

This aspect of permissiveness points to the impracticality of using the associational criterion
as a test for confirming cases of no confounding. To reach such confirmation, the associational
criterion requires that conditions (U;) and (Us) be satisfied for every potential confounder
Z in a problem. In practice, since investigators can never be sure whether a given set 1" of
potential confounders is complete, the statistical criterion will fail to recognize certain cases
as confounded.

This limitation implies in fact that any statistical test whatsoever is destined to be over-
permissive. Since practical tests always involve proper subsets of 7', the most we can hope
to achieve by statistical means is a test that would reliably detect cases of confounding when
criteria such as (U;) and (U,) are violated. This prospect, too, will turn out unachievable,
as the next two subsections demonstrate.

3.3 Restriction Due to Barren Proxies

Example 1 Imagine a situation where exposure is influenced by a person’s education (E),
disease is influenced by both exposure (X) and age (A), while car-type (Z) is influenced by
both age (A) and education (E). These relationships are shown schematically in Figure 1.

The variable car-type (Z) violates the two conditions in Definition 2 because:
1. car-type is indicative of education, hence, it is associated with the exposure variable

2. car-type is indicative of age, hence it is a associated with the disease among the exposed
and the nonexposed.

Yet, in this example the effect of X on Y is not confounded; the type of car owned by a person
has no effect on either exposure or disease and is merely one among many irrelevant prop-
erties that are associated with both via intermediaries. Formal analysis (e.g., [Pearl, 1995])

4



X - exposure
Y - disease
Z = type of car owned by patient
VA E = education
4 =
X . age
Figure 1:

establishes that, indeed, Eq. (1) is satisfied in this model, and, moreover, adjustment for Z
would generally yield a biased result:

YN E(Y|X =2,Z =2)P(Z =z) # E(Y|do(z))

Thus we see that the traditional criterion based on statistical association fails to identify
an unconfounded effect and would tempt one to adjust for the wrong variable. This failure
occurs whenever we attempt to adjust for a variable Z that is a barren prozy, that is, a
variable that has no influence on X or Y but is a proxy for factors that do have such
influence.

Readers may not consider this failure to be too serious because experienced epidemi-
ologists would rarely regard a variable as confounder unless it is suspect of having some
influence on either X or Y. Nevertheless, adjustment for proxies is a prevailing practice
in epidemiology and should be done with great caution [Weinberg, 1993; Greenland et al.,
1997]. To reflect this caution, the statistical criterion must be modified to exclude barren
proxies from the test set 7. This yields a modified criterion in which 7" comprises only
variables that (causally) influence Y (possibly through X):

Definition 3 (no confounding: modified associational criterion)

Let T be the set of variables in a problem that are not affected by X but may affect X or
Y. X and Y are said to be unconfounded by the presence of T if every member of 7 of T
satisfies either (Uy) or (Us) of Definition 2.

J. Robins [Robins and Pearl, 1997] has devised an alternative modification of Definition 2
which avoids the problems created by barren proxies without requiring one to judge whether
a variable has an effect on Y. Instead of restricting the set T to causes of Y, conditions
(U;) and (Us) are replaced by the requirement that 7" should be composed of two disjointed
subsets 17 and 15, such that both:

(Uy) T is unassociated with X, and
(U3) T3 is unassociated with Y given X and T3.

This modification of the associational criterion further rectifies the permissiveness due to
individuation (subsection 3.1) because (U;) and (U;) treat T} and T3 as compound variables.
However, because T and 715 must include all potential confounders, we cannot conclude the



presence of confounding upon testing proper subsets of 7', as aspired in subsection 3.2. Thus,
this criterion cannot be considered a basis for practical tests of detecting confounding.

However, the next subsection reveals a more fundamental limitation in our ability to test
confounding by statistical means.

3.4 Restriction Due to Incidental Cancelations

We will present a case void of barren proxies in which the effect of X on Y is not confounded
in the sense of Eq. (1) and yet it is confounded in the sense of Definition 3.

Example 2 Consider a causal model defined by the linear equations:

x = az+e (2)
Bz + vz + € (3)
where ¢; and €, are correlated unmeasured variables having cov(ej,e3) = r and Z is an

exogenous variable, uncorrelated with €; or €. The diagram associated with this model is
depicted in Figure 2.

Figure 2:

It is not hard to show that the regression of Y on X gives (assuming standardized
variables):
y=(B+r+ay)z+e

where cov(z,€) = 0. Thus, whenever the equality » = —ary holds, the regression coefficient
of X is an unbiased estimate of 3, meaning that the effect of X on Y is unconfounded (no
adjustment is necessary). Yet the associational conditions (U;) and (Us) are both violated
by the variable Z, since Z is associated with X (if o« # 0) and with Y, given X (if y is chosen
properly, to render p,,., nonzero).

This example demonstrates that the condition of unbiasedness (Definition 1) does not
imply the modified criteria of Definition 3. Hence, the associational criterion might falsely
classify some unconfounded situations as confounded and, worse yet, adjusting for the false
confounder (Z in our example) will introduce bias into the effect estimate.



4 STABLE UNBIASEDNESS

This discrepancy calls for a reexamination of the notion of confounding and unbiasedness as
defined in Eq. (1). The reason that X and Y were classified as unconfounded in Example 2
was that, by setting » = a-y, we were able to make the spurious association represented by r
cancel the one mediated by Z. In practice, such perfect cancelation would be an incidental
event, specific to a peculiar combination of experimental conditions, and would not persist
when the parameters of the problem (i.e., a,~, and r) undergo slight changes, say when
the study is repeated in a different location or at different time. In contrast, the condition
of no confounding found in Example 1 does not exhibit such volatility. In this example,
the unbiasedness expressed in Eq. (1) would continue to hold regardless of the strength
of connection between education and exposure and regardless on how education and age
influence the type of car that a patient owns. We will call this type of unbiasedness stable,
as it is robust to change in parameters, and remains intact as long as the configuration of
causal connections in the model remains the same.

This distinction between stable and incidental unbiasedness behooves us to reexamine
whether we should regard a criterion as over-restrictive if it misclassifies as confounded cases
of incidental cancelation and, more fundamentally, whether we should insist on including
such peculiar cases in the definition of unbiasedness given the precarious conditions under
which Eq. (1) is satisfied. While these questions are partly a matter of choice, there is
ample evidence that our intuition regarding confounding is driven by considerations of stable
unbiasedness, not merely incidental one. On the pragmatic side, failing to detect situations
of incidental unbiasedness should not introduce a noticeable error in observational studies
because, as we have seen in Example 2, statistical tests are incapable of recognizing such
cases.

Assuming that we are prepared to classify as unbiased only cases in which unbiasedness
remains robust to changes in parameters, the questions remain (1) how to give this new notion
of “stable unbiasedness” a formal, nonparametric formulation and (2) whether statistical
criteria are available for testing stable unbiasedness. Both questions can be answered using
an approach based on graphical models.

Pearl [1993, 1995] describes a graphical criterion, called the “back-door criterion”, for
identifying conditions of unbiasedness in a causal diagram. In the simple case of no adjust-
ment (for measured covariates), the criterion states that X and Y are unconfounded if every
path from X to Y that ends with an arrow pointing into X must also contain a pair of ar-
rows pointing head to head. The criterion is valid whenever the missing links in the diagram
represent absence of causal connections among the corresponding variables. Because the
causal assumptions embedded in the diagram are so explicit, the back-door criterion has two
remarkable features. First, no statistical information is needed; the topology of the diagram
suffices for reliably determining whether an effect is confounded (in the sense of Definition
1) and whether an adjustment for a set of variables is sufficient for removing confounding
when one exists. Second, any model that meets the back-door criterion would in fact satisfy
Eq. (1) in an infinite class of models (or situations), each generated by assigning different
parameters to the causal connections in the diagram.

To illustrate, consider the diagram depicted in Figure 1 of Example 1. The back-door
criterion will identify the pair (X, Y") as unconfounded, because the only path ending with an



arrow into X is the one traversing (X, F, C, A,Y), and this path contains two arrows pointing
head-to-head at C'. Moreover, since the criterion is based only on graphical relationships, it
is clear that (X,Y’) will continue to be classified as unconfounded regardless of the strength
or type of causal relationships that are represented by the arrows in the diagram. In contrast,
consider Figure 2 in Example 2, in which two paths end with arrows into X. The back-door
criterion will fail to certify the effect of X on Y as unconfounded because none of these paths
contain head-to-head arrows. This determination ignores the fact that under special choice
of parameters (r = —ary) the effect of X on Y may be unbiased.

To formally distinguish between stable and incidental unbiasedness, we use the following
general definition:

Definition 4 Let A be a set of assumptions (or restrictions) on the data-generating process,
and let C4 be a class of causal models satisfying A. The effect of X on'Y 1is said to be stably
unbiased given A if P(y|do(z)) = P(y|z) holds in every model M in Ca. Correspondingly,
we say that the pair (X,Y) is stably unconfounded, given A.

The assumptions often used to specify causal models are both parametric and topological.
For example, the structural equation models used in the social sciences and economics are
usually restricted by the assumptions of linearity, and normality. C4 in this case would
consist of all models created by assigning different values to the unspecified parameters in
the equations and to the non-zero entries of the covariance matrix. A more general type of
assumptions emerge when we specify merely the topological structure of the diagram, but
let the error distributions and the functional form of the equations remain undetermined.
We now explore the statistical ramifications of this general type of assumptions.

Definition 5 Let Ap be the set of assumptions embedded in a causal diagram D, then X and
Y are stably unconfounded given Ap if P(y|do(x)) = P(y|x) holds in every parameterization
of D. By parameterization we mean an assignment of functions to the links of the diagram
and prior probabilities to the exogenous variables in the diagram.

A formal explication of the assumptions embedded in a causal diagram is given in
[Pearl, 1995]. Succinctly, if D is the diagram associated with the causal model then: Every
missing arrow, say between X and Y, represents the assumption that X has no effect on Y
once we intervene and hold the parents of Y fixed. Every missing bi-directed link between
X and Y represents the assumption that there are no common causes for X and Y, except
those shown in D. Whenever the diagram D is acyclic, the back-door criterion provides a
necessary and sufficient test for stable no confounding which, in the simple case of no ad-
justment, reduces to the nonexistence of a common ancestor, observed or latent, of X and
Y .®> Thus, we have:

Theorem 1 Let Ap be the set of assumptions embedded in an acyclic causal diagram D.
Variables X and Y are stably unconfounded given Ap if and only if X and Y have no
common ancestor in D.

5In the diagram of Figure 2, for example, X and Y are understood to have two common ancestors; one
is Z and the second is the (implicit) latent variable responsible for the double-arrowed arc between X and
Y (i.e., the correlation between €; and e€s.)



Proof. The “if” part follows from the validity of the back-door test [Pearl, 1995]. The “only
if” part requires the construction of a specific model in which Eq. (1) is violated, whenever
X and Y have a common ancestor in D). This is easily done using linear models and Wright’s
rules for path coefficients. O

Theorem (1) provides a necessary and sufficient condition for stable no confounding
without invoking statistical data, as it relies entirely on the information embedded in the
diagram. Of course, the diagram itself has statistical implications which can be tested
[Pearl, 1988], but those tests do not specify the diagram uniquely [Pearl and Verma, 1991;
Spirtes et al., 1993].

Suppose however that we do not possess all the information required for constructing
a causal diagram but, instead, we know merely for each variables Z whether Z has causal
influence on Y and whether 7 is affected by X. The question is whether this more modest
information, together with statistical data, is sufficient to qualify or disqualify a pair (X,Y)
as stably unconfounded. The answer to the latter is positive.

5 OPERATIONAL TEST FOR STABLE NO CON-
FOUNDING

Theorem 2 Let Ay be the assumption that the data is generated by some (unspecified)
acyclic model M, and that 7 is a variable in M that is both unaffected by X and possibly
affecting Y. If any of the associational criteria (Uy) and (Us) of Definition 2 is violated,
then (X,Y) are not stably unconfounded given Aj.

Proof. Whenever X and Y are stably unconfounded, Theorem 1 rules out the existence of
a common ancestor of X or Y in the diagram associated with the underlying model. The
absence of a common ancestor, in turns, implies the satisfaction of either (U;) or (Us), when-
ever Z satisfies Az. This is a consequence of the d-separation rule [Pearl, 1988; Greenland
et al., 1997] for reading the conditional independence relationships entailed by a diagram.®
|

Theorem 2 implies that the traditional associational criteria (U;) and (U;) could be
used in a simple operational test for stable no confounding, as it does not require us to
know the causal structure of the variables in the domain, or even to enumerate the set of
relevant variables. Finding just one variable Z that satisfies A; and violates (U;) and (Us)
permits us to disqualify (X,Y’) as stably unconfounded, though (X,Y’) may incidentally be
unconfounded in the particular experimental conditions prevailing in the study.

To the best of my knowledge, Theorem 2 communicates the first formal connection be-
tween statistical associations and confounding that is not based on the small-world assump-
tion. It is remarkable that the connection can be formed under such weak set of added
assumptions; the qualitative assumption that a variable has influence on Y and is not af-
fected by X suffices to produce a necessary statistical test for stable no confounding.

Theorem 2 also establishes a formal connection between confounding and “collapsibility”
— a criterion under which a measure of association remains invariant to the omission of
certain variables.

61t is also an immediate corollary of Theorem 7(a) in [Robins and Pearl, 1997].



Definition 6 (Collapsibility) Let g[P(y, z)| be any functional that measures the association
between Y and X in the joint distribution P(z,y). We say that g is collapsible on a variable
7 if

E.g[P(z,yl|z) = g[P(z,y)]

It is not hard to show that if g stands for any linear functional of P(y|z), for example the
risk difference P(y|z,) — P(y|x2), then collapsibility holds whenever Z is either unassociated
with X or unassociated with Y given X. Thus, any violation of collapsibility means viola-
tion of the statistical criterion of Definition 2, hence violation of stable unbiasedness. This
provides a rationale for the widespread practice of testing confoundedness by the change-in-
parameter method, that is, labeling a variable Z a confounder whenever the “crude” measure
of association, collapsed over the levels of 7, is not equal to the stratum-specific measures
of association [Breslow and Day, 1980; Kleinbaum et al., 1982; Yanagawa, 1984; Grayson,
1987]. Theorem 2 suggests that the intuitions responsible for this practice were shaped by a
quest for a stable condition of no confounding, not merely incidental one. Moreover, condi-
tion Az in Theorem 2 justifies a requirement made by some authors that a confounder must
be a causal determinant of, not merely associated with, the outcome variable Y.

6 CONCLUSIONS

Past efforts to establish a theoretical connection between statistical associations (or col-
lapsibility) and confounding have been unsuccessful for three reasons. First, the lack of
mathematical language for expressing claims about causal relationships and effect bias has
made it difficult to assess the disparity between the requirement of effect unbiasedness (Def-
inition 1) and statistical criteria purporting to capture unbiasedness.” Second, the need to
exclude barren proxies from consideration has somehow escaped the attention of researchers
(In Example 1, P(y|z) is not collapsible on Z, and still X,Y are stably unconfounded.)
Finally, the distinction between stable and incidental unbiasedness has not received the at-
tention it deserves and, as we have observed in Example 2, no connection can be formed
between associational criteria (or collapsibility) and confounding without a commitment to
the notion of stability. Such commitment rests critically on the conception of a causal model
as an assembly of independent mechanisms which may vary independently of one another. It
is only in anticipation of such independent variations that we are not content with incidental
unbiasedness, but seek conditions of stable unbiasedness. The mathematical formalization
of this conception has led to related notions of graph-isomorph [Pearl, 1988, p. 93|, stability
[Pear]l and Verma, 1991] and faithfulness [Spirtes et al., 1993] which assist the elucidation
of causal diagrams from sparse statistical associations. The same conception has evidently
been shared by authors who aspired to connect statistical criteria with confounding.

"The majority of papers on collapsibility (e.g., Bishop, 1971; Whittemore, 1978; Geng, 1992) motivate the
topic by citing Simpson’s paradox and the dangers of obtaining confounded effect estimates. Of these, only
a handful pursue the study of confounding or effect estimates, most prefer to analyze the more managable
phenomenon of collapsibility as a stand-alone target. Some go as far as naming collapsibility “nonconfound-
edness” [Steyer et al., 1996]).
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