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Abstract

Many students of statistics and econometrics express frustration with the way a
problem known as “bad control” is treated in the traditional literature. The issue
arises when the addition of a variable to a regression equation produces an unintended
discrepancy between the regression coefficient and the effect that the coefficient is
intended to represent. Avoiding such discrepancies presents a challenge to all analysts
in the data intensive sciences. This note describes graphical tools for understanding,
visualizing, and resolving the problem through a series of illustrative examples. By
making this “crash course” accessible to instructors and practitioners, we hope to
avail these tools to a broader community of scientists concerned with the causal
interpretation of regression models.

Introduction

Students, data analysts, and empirical social scientists have likely encountered the problem
of “bad controls” (Angrist and Pischke, 2009, 2014). The problem arises when an analyst
needs to decide whether or not the addition of a variable to a regression equation helps
getting estimates closer to the parameter of interest. Analysts have long known that some
variables, when added to the regression equation, can produce unintended discrepancies be-
tween the regression coefficient and the effect that the coefficient is expected to represent.
Such variables have become known as “bad controls,” to be distinguished from “good con-
trols” (also known as “confounders” or “deconfounders”) which are variables that must be
added to the regression equation to eliminate what came to be known as “omitted variable
bias”(Angrist and Pischke, 2009; Steiner and Kim, 2016; Cinelli and Hazlett, 2020a,b).
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The problem of “bad controls” however, has not received systematic attention in the
standard statistics and econometrics literature. While most of the widely adopted textbooks
discuss the problem of omitting “relevant” variables, they do not provide guidance on
deciding which variables are relevant, nor which variables, if included in the regression,
could induce, or worsen existing biases.1 Researchers exposed only to this literature may
get the impression that adding “more controls” to a regression model is always better. The
few exceptions that do discuss the problem of “bad controls” unfortunately cover only a
narrow aspect of the problem (e.g. Angrist and Pischke, 2009, 2014; Wooldridge, 2010;
Imbens and Rubin, 2015; Gelman et al., 2020). Typical is the discussion found in Angrist
and Pischke (2009, p.64)

Some variables are bad controls and should not be included in a regression model, even
when their inclusion might be expected to change the short regression coefficients.
Bad controls are variables that are themselves outcome variables in the notional
experiment at hand. That is, bad controls might just as well be dependent variables
too. Good controls are variables that we can think of having been fixed at the time
the regressor of interest was determined.

Here, “good controls” are defined as variables that are thought to be unaffected by the
treatment, whereas “bad controls” are variables that could be in principle affected by the
treatment. Similar discussion can be found in Rosenbaum (2002) and Rubin (2009), for
qualifying a variable for inclusion in propensity score analysis, as well as in Wooldridge
(2005). Some authors (e.g, Wooldridge, 2010; Gelman et al., 2020) briefly warn about
the potential of bias amplification of certain pre-treatment variables, but do not elaborate
further. Although an improvement over an absence of discussion, these conditions are
neither necessary nor sufficient for deciding whether a variable is a good control.

Recent advances in graphical models have produced simple criteria to distinguish “good”
from “bad” controls; these range from necessary and sufficient conditions for deciding which
set of variables should be adjusted for to identify the causal effect of interest (e.g, the back-
door criterion and adjustment criterion in Pearl (1995) and Shpitser et al. (2012)), to
deciding which, among a set of valid adjustment sets, would yield more precise estimates
(Hahn, 2004; White and Lu, 2011; Henckel et al., 2019; Rotnitzky and Smucler, 2020; Witte
et al., 2020). The purpose of this note is to provide practicing analysts a concise, simple,
and visual summary of these criteria through illustrative examples.

1See Chen and Pearl (2013) for a critical appraisal of econometrics textbooks, and Bollen and Pearl
(2013) for eight misconceptions that still prevail in statistics and the social sciences. Warnings regarding
the adjustment of post-treatment variables date back to at least Rosenbaum (1984), but a systematic
solution to the problem of covariate selection was not available before the development of causal graphical
models.
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Preliminaries and basic terminology

Causal diagrams, and more specifically directed acyclic graphs (DAGs), have become popu-
lar in the social and health sciences for explaining and resolving difficult problems of causal
inference in a rigorous, yet accessible manner. Many introductions to DAGs have now been
published in a number of academic fields, such as sociology (Elwert, 2013; Morgan and
Winship, 2015), economics (Hünermund and Bareinboim, 2019; Cunningham, 2021), psy-
chology (Rohrer, 2018), epidemiology (Greenland et al., 1999; Hernán and Robins, 2020)
and statistics (Pearl et al., 2009, 2016). Here we assume that readers are familiar with the
basic notions of causal inference, DAGs, and in particular “path-blocking” as well as back-
door paths. For those who need to refresh these notions, we provide a gentle introduction
in the appendix. Still, given the simplicity of our illustrative examples, even the uninitiated
reader will be able to understand and benefit from the main lessons of this crash course.

Briefly, causal DAGs provide a parsimonious representation of the qualitative aspects of
the data generating process. Letters (e.g, X) represent random variables, and arrows, such
as X → Y , denote a (possible) direct causal effect of X on Y . No assumptions need to be
made regarding the functional form of the causal relationships, nor about the distribution
of variables. For this crash course, it is important to recall the three main sources of
association that form the building blocks of a DAG, and when these are closed or opened:

1. Mediators, or chains, are patterns of the form X → Z → Y , meaning that X causally
affects Y through the mediator Z. Conditioning on Z in a chain blocks (closes) this
flow of association.

2. Common causes, or forks, are patterns of the form X ← Z → Y , meaning X and
Y share a common cause (a confounder) Z, thus inducing a non-causal association
between both variables. Conditioning on Z in a fork blocks this flow of association.

3. Common effects, or colliders, are patterns of the form X → Z ← Y , meaning that
both X and Y share a common effect Z. Contrary to the other two variables, by
default a common effect does not induce an association between X and Y . However,
conditioning on Z induces a non-causal association between both variables.

Moreover, one important fact to keep in mind is that controlling for a descendant of a
variable is equivalent to “partially” controlling for that variable. Any arbitrary path p
from X to Y (consisting of a sequence of mediators, common causes, or colliders) will be
blocked conditional on Z if, and only if, Z is a common cause or mediator along the path,
or if p contains a collider and Z is not that collider, nor any of its descendants. We say that
Z d-separates X from Y if Z blocks (closes) all paths from X to Y ; d-separation implies
that Y and X are conditionally independent given Z.

Note that causal paths from X to Y are paths of the form X → · · · → Y , namely,
those consisting of a sequence of (possibly empty) mediators. All other paths are non-
causal, and may induce “spurious” associations between X and Y . In particular, for a
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given variable X, we call “back-door” paths those confounding paths that begin with an
arrow pointing into X. If we are interested, then, in estimating the causal effect of X on
Y , our task is conceptually simple: we must block all spurious paths between X and Y ,
and we must not perturb any of the causal paths between them. This will be our guiding
principle for deciding whether or not Z should be included in the regression equation, and
it characterizes the essence of the graphical conditions known as the back-door criterion and
the adjustment criterion (Pearl, 1995; Shpitser et al., 2012). Readers can find the formal
statements of these graphical criteria in the appendix.

Illustrative examples

In the following set of models, the target of our analysis is the average causal effect (ACE)
of a treatment X on an outcome Y , which stands for the expected increase of Y in response
to a unit increase in X due to an intervention. Observed variables will be designated by
black dots and unobserved variables by white empty circles. Variable Z, highlighted in red,
will represent the variable whose inclusion in the regression equation is to be decided, with
“good control” standing for bias reduction, “bad control” standing for bias increase, and
“neutral control” when the addition of Z neither increases nor decreases the asymptotic
bias. For this last case, we will also make brief remarks about how Z could affect the
precision of the ACE estimate. Readers accustomed with the potential outcomes framework
should know that deciding whether Z is a “good control” is equivalent to deciding whether
ignorability of treatment assignment holds, conditional on Z. Readers who prefer to see
algebraic derivations can find in the appendix analytical expressions for each graph, under
the assumption of linearity2 (the problem of “bad controls” is, however, non-parametric,
i.e, it holds regardless of functional form assumptions).

Models 1, 2 and 3 – Good Controls (blocking back-door paths)

Z

X Y

(a) Model 1

U

Z

X Y

(b) Model 2

U

Z

X Y

(c) Model 3

Figure 1: Models 1, 2, and 3

In Model 1, Z stands for a common cause of both X and Y . Once we control for Z,
we block the back-door path from X to Y , producing an unbiased estimate of the ACE. In

2R code with numerical simulations for all examples can be found in: https://www.kaggle.com/code/
carloscinelli/crash-course-in-good-and-bad-controls-linear-r.
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Models 2 and 3, Z is not a common cause of both X and Y , and therefore, not a traditional
“confounder” as in Model 1. Nevertheless, controlling for Z blocks the back-door path from
X to Y due to the unobserved confounder U , and again, produces an unbiased estimate of
the ACE.

Models 4, 5 and 6 – Good Controls (blocking back-door paths)

Z

X M Y

(a) Model 4

U

Z

X M Y

(b) Model 5

U

Z

X M Y

(c) Model 6

Figure 2: Models 4, 5, and 6

When thinking about possible threats of confounding, modelers need to keep in mind
that common causes of X and any mediator (between X and Y ) also confound the effect of
X on Y . Therefore, Models 4, 5 and 6 are analogous to Models 1, 2 and 3—controlling for
Z blocks the back-door path from X to Y and produces an unbiased estimate of the ACE.

Model 7 – Bad Control (M-bias)

U1 Z U2

X Y

Figure 3: Model 7

We now encounter our first “bad control.” Here Z is correlated with the treatment and
the outcome and it is also a “pre-treatment” variable. Traditional econometrics textbooks
usually deem pre-treatment variables “good controls” (Angrist and Pischke, 2009, 2014; Im-
bens and Rubin, 2015). Careful analysis, however, reveals that Z is a “bad control.” Con-
trolling for Z will induce bias by opening the back-door pathX ← U1 → Z ← U2 → Y ,
thus spoiling a previously unbiased estimate of the ACE. This structure is known as the
“M-bias,” and has spurred several controversies. Readers can find further discussion in
Pearl (2009a, p. 186), Shrier (2009), Pearl (2009c,b), Sjölander (2009), Rubin (2009), Ding
and Miratrix (2015), and Pearl (2015).
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Undecidable—“Damned if you do, damned if you don’t.”

U1 Z U2

X Y

Figure 4: Variation of Model 7

Consider a variation of Model 7 such that Z has a direct effect on Y , as the one presented
in Figure 4. Note that now we have an open back-door path, X ← U1 → Z → Y , and
the unadjusted estimate is no longer unbiased. While adjusting for Z closes this back-door
path, it also opens back-door the path X ← U1 → Z ← U2 → Y , as we had in our previous
example. In either case, the causal effect is not identified, and whether adjusting for Z
reduces or increases the absolute value of the bias cannot be determined without further
assumptions (see appendix). In this case, progress can be made with sensitivity analyses,
by, for instance, positing plausible bounds on the the strength of the direct effect of Z on
Y , or on the strength of the effects of the latent variables (Cinelli et al., 2019; Cinelli and
Hazlett, 2020a).

Model 8 – Neutral Control (possibly good for precision)

X Y

Z

Figure 5: Model 8

In Model 8, Z is not a confounder nor does it block any back-door paths. Likewise,
controlling for Z does not open any back-door paths from X to Y . Thus, in terms of
asymptotic bias, Z is a “neutral control.” Analysis shows, however, that controlling for
Z reduces the variation of the outcome variable Y , and helps to improve the precision of
the ACE estimate in finite samples (Hahn, 2004; White and Lu, 2011; Henckel et al., 2019;
Rotnitzky and Smucler, 2020).
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Model 9 – Neutral Control (possibly bad for precision)

X Y

Z

Figure 6: Model 9

Similar to the previous case, in Model 9 Z is “neutral” in terms of bias reduction.
However, controlling for Z will reduce the variation of the treatment variable X and so
may hurt the precision of the estimate of the ACE in finite samples (Henckel et al., 2019,
Corollary 3.4). As a general rule of thumb, parents of X which are not necessary for
identification are harmful for the asymptotic variance of the estimator; on the other hand,
parents of Y which do not spoil identification are beneficial. See Henckel et al. (2019) for
recent developments in graphical criteria for efficient estimation via adjustment in linear
models. Remarkably, these conditions also have been shown to hold in non-parametric
models for a broad class of non-parametric estimators (Rotnitzky and Smucler, 2020).

Model 10 – Bad Control (bias amplification)

U

X Y

Z

Figure 7: Model 10

We now encounter our second “pre-treatment” “bad control,” due to a phenomenon
called “bias amplification” (Bhattacharya and Vogt, 2007; Wooldridge, 2009; Pearl, 2011,
2010, 2013; Middleton et al., 2016; Steiner and Kim, 2016). Naive control for Z in this
model will not only fail to deconfound the effect of X on Y , but, in linear models, will
amplify any existing bias.
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Models 11 and 12 – Bad Controls (overcontrol bias)

X Z Y

(a) Model 11

X M

Z

Y

(b) Model 12

Figure 8: Models 11 and 12

If our target quantity is the ACE, we want to leave all channels through which the
causal effect flows “untouched.” In Model 11, Z is a mediator of the causal effect of
X on Y . Controlling for Z will block the very effect we want to estimate (the total effect
of X on Y ), thus biasing our estimates (this is usually known as “overcontrol bias”). In
Model 12, although Z is not itself a mediator of the causal effect of X on Y , controlling for
Z is equivalent to partially controlling for the mediator M , and will thus bias our estimates.
Models 11 and 12 violate the back-door criterion (Pearl, 2009a), which excludes controls
that are descendants of the treatment along paths to the outcome. Note that the same
conclusions would hold if we had an extra direct causal path X → Y .

Total versus direct effects

X Z

U

Y

Figure 9: Variation of Model 11

The previous considerations assume the researcher is interested in the total effect of X
on Y , as given by the ACE. If, instead, interest lies in the controlled direct effect (CDE)
of X on Y (i.e, the effect of X while holding Z constant by intervention, see Pearl (2009a,
2011) as well as the appendix), then adjusting for Z in Model 11 (Figure 8a) would indeed
be appropriate. However, consider a variation of Model 11 with an unobserved confounder
of Z and Y , denoted by U , as shown in Figure 9. First notice that U does not confound
the effect of X on Y , and thus our ACE estimate remains unbiased as it were in Model 11,
so long as we do not adjust for Z. On the other hand, here adjusting for Z now opens the
colliding path X → Z ← U → Y , thus biasing the CDE estimate.
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Model 13 – Neutral Control (possibly good for precision)

X M

Z

Y

Figure 10: Model 13

At first look, Model 13 might seem similar to Model 12, and one may think that ad-
justing for Z would bias the effect estimate, by restricting variations of the mediator M .
However, the key difference here is that Z is a cause, not an effect, of the mediator (and,
consequently, also a cause of Y ). Thus, Model 13 is analogous to Model 8, and so con-
trolling for Z will be neutral in terms of bias and may increase the precision of the ACE
estimate in finite samples. Readers can find further discussion of this case in Pearl (2013).

Models 14 and 15 – Neutral Controls (possibly helpful in the case
of selection bias)

X Y

Z

(a) Model 14

X Y

U

Z

W

(b) Model 15

Figure 11: Models 14 and 15

Contrary to folklore, not all “post-treatment” variables are inherently bad controls. In
Models 14 and 15 controlling for Z does not open any confounding paths between X and
Y . Thus, Z is neutral in terms of bias. However, controlling for Z does reduce the variation
of the treatment variable X and so may hurt the precision of the ACE estimate in finite
samples. Additionally, in Model 15, suppose one has only samples with W = w recorded (a
case of selection bias3, which we explain next). In this case, controlling for Z can help to

3Some economists may denote confounding bias as “selection bias,” meaning preferential selection to
treatment (Angrist and Pischke, 2009, 2014). Here selection bias means preferential selection into the
available data.

9



obtain the W -specific effect of X on Y by blocking the colliding path due to W . In linear
models, controlling for Z actually fully recovers the ACE (see appendix).

Models 16 and 17 – Bad Controls (selection bias)

X Y

U

Z

(a) Model 16

X Y

Z

(b) Model 17

Figure 12: Models 16 and 17

Contrary to Models 14 and 15, here controlling for Z is no longer harmless, and induces
what is classically known as “selection bias” or “collider stratification bias.” Adjusting
for Z in Model 16 opens the colliding path X → Z ← U → Y and so biases the ACE.
In Model 17, adjusting for Z not only opens the path X → Z ← Y , but also the colliding
path due to the latent parents of Y , thus biasing the ACE and motivating our final example.

Model 18 – Bad Control (case-control bias)

X Y

Z

Figure 13: Model 18

In our last example, Z is not in the causal pathway from X to Y , Z is not a direct cause
of X, and Z is connected to Y . Thus, one might surmise that, as in Model 8, controlling for
Z is harmless for identification, and perhaps beneficial for finite sample efficiency. However,
controlling for the effects of the outcome Y will induce bias in the estimate of the ACE,
even without the direct arrow X → Z, thus making Z a “bad control.” This happens
because Z is in fact a descendant of a collider: the outcome Y itself. A visual explanation
of this phenomenon using “virtual colliders” can be found in Pearl (2009a, Sec. 11.3). The
same phenomenon can also be explained by explicitly drawing the potential outcomes on
the DAG (see both explanations in the appendix). Model 18 is special case of selection bias
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usually known as “case-control” bias. Finally, although controlling for Z will generally bias
numerical estimates of the ACE, it does have an exception when X has no causal effect
on Y . In this scenario, X is still d-separated from Y even after conditioning on Z. Thus,
adjusting for Z is valid for testing whether the effect of X on Y is zero.

Bad controls in applied research

Despite their simplicity, these illustrative examples should provide practitioners with a
principled framework to understand many problems found in real world applications. To
demonstrate, we now briefly present three cases of bad controls discussed in applied re-
search, coming from diverse areas such as epidemiology, sociology, and economics.

The birth-weight paradox (Hernández-Dı́az et al., 2006). Infants born to smokers
were found to have higher risks of mortality than infants born to non-smokers. However,
among infants with low birth-weight (LBW), this relationship was reversed. This reversal
of effects has created many controversies in epidemiology—does it mean that maternal
smoking is beneficial for LBW infants? A plausible reason for such a finding could simply
be collider stratification bias, as shown in Model 16. Here X is maternal smoking, Y infant
mortality, Z birth-weight, and U stands for unobserved risk-factors (such as birth-defects
and malnutrition), that could also affect birth-weight. Note that stratifying the analysis
by birth-weight would induce a spurious association between smoking and mortality due
to the competing risk-factors. LBW infants of non-smokers need to have alternative causes
for their LBW (such as malnutrition), and such causes could also lead to higher mortality.

Homophily bias in social network analysis (Elwert and Winship, 2014). An
important task in the causal inference of social networks is to estimate the causal effects
of social contagion, also known as “interpersonal effects.” However, social ties in the
analysis of social networks may be pre-treatment colliders as exemplified in the “M-bias”
structure of Model 7. Suppose we are interested in assessing whether the civic engagement
of individual 1 (X) leads to the civic engagement of individual 2 in the subsequent time
period (Y ). Let Z denote whether such individuals are friends, and U1 and U2 denote the
personal characteristics (such as altruism) of individuals 1 and 2, respectively. Here, the
social tie Z is a collider, and computing the association of Y and X between friends (Z = 1)
would bias the interpersonal causal effects in civic engagement.

The Antebellum Puzzle (Schneider, 2020). An interesting puzzle of economic his-
tory is the fact that, during the nineteenth century in Britain and the United States, the
average height of adult men fell even though the economic conditions of these countries
improved alongside childhood nutrition. One possible explanation for such a paradoxical
finding is selection bias in the forms of Models 17 and 18 wherein researchers using data
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from individuals enlisted in the military or in prison are effectively conditioning on col-
liders. For military records, consider Model 18, and let X denote childhood nutrition, Y
adult height, and Z an indicator of whether the individual was enlisted in the military. The
causal path from Y to Z represents the fact that taller men may have better opportunities
in the civilian market, and thus shorter men were more likely to enlist. Restricting the
analysis to those enlisted in the military is therefore equivalent to controlling for Z, and
leads to selection bias. Now for prison records, consider Model 17, and let Z be an indi-
cator of whether the individual was arrested. Here one could argue that both childhood
nutrition and adult height have pathways to committing a crime through socio-economic
opportunities, thus again leading to selection bias.

These examples are by no means exhaustive. Readers can find other interesting cases
across applied sciences, such as: the threats of collider bias in understanding risk factors
of COVID-19 (Griffith et al., 2020); the “Obesity paradox,” in which obesity appears to
benefit individuals who survive heart failure (Banack and Kaufman, 2013); and examples of
“bad controls” due to adjustment of mediators and colliders in multigenerational mobility
(Breen, 2018), anesthesiology research (Gaskell and Sleigh, 2020) or animal science (Bello
et al., 2018). Further discussion of bad controls in theoretical and applied works can be
found in Pearl and Mackenzie (2018).

Multiple controls

When considering multiple controls, the status of a single control as “good” or “bad” may
change depending on the context of the other variables under consideration. Neverthe-
less, the main lessons from our illustrative examples remain. A set of control variables Z
will be “good” if: (i) it blocks all non-causal paths from the treatment to the outcome;
(ii) it leaves any mediating paths from the treatment to the outcome “untouched” (since
we are interested in the total effect); and, (iii) it does not open new spurious paths between
the treatment and the outcome (e.g., due to colliders). As to efficiency considerations, we
should give preference to those variables “closer” to the outcome, in opposition to those
closer to the treatment—so long as, of course, this does not spoil identification.

Finally, we remind readers that, when considering models with more complicated struc-
tures, one can always resort to specialized computer programs. Open-source software im-
plementing algorithms for selecting adjustment sets can be found in the R packages pcalg
(Kalisch et al., 2012), dagitty (Textor et al., 2016)4, and causaleffect (Tikka and Karva-
nen, 2017). Users familiar with the software SAS may find the procedure CAUSALGRAPH useful
(Thompson, 2019). A web application implementing the methods discussed in Bareinboim
and Pearl (2016) is also available.5 In other words, given a causal diagram, the problem of
deciding which variables are good or bad controls has been automatized.

4Also available online in www.dagitty.net.
5Available online at www.causalfusion.net.
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Beyond adjustment

Here we have focused on the identification of causal effects through simple covariate adjust-
ment, classifying Z as a “good” or “bad” control according to this criterion. However, other
identification opportunities may be available. For instance, going back again to Model 10,
Z is what is usually known as an “instrumental variable.” In this case, while Z is indeed a
“bad control,” it can still be used as an instrument to bound or point identify causal effects
under certain parametric assumptions, albeit using a different formula (Wright, 1928; Bow-
den and Turkington, 1990; Balke and Pearl, 1994; Angrist et al., 1996; Balke and Pearl,
1997; Brito and Pearl, 2002). More generally, the do-calculus provides a complete solution
for the task of non-parametric identification of treatment effects in causal DAGs, beyond
the simple adjustment formula (Pearl, 1995; Shpitser and Pearl, 2008; Pearl, 2009a). In
certain instances, such as the “front-door” criterion, this allows exploiting post-treatment
variables for identification (Pearl, 2009a). Further details on the do-calculus should be the
topic of a separate crash course.

Sensitivity analysis

In real world applications, it can be the case that the causal effect of X on Y cannot be
identified from the DAG structure alone. When that happens, without further assumptions,
it is usually not possible to determine whether including Z in the regression equation
will reduce or increase the absolute value of the bias, as we have seen in the example of
Figure 4. In such cases, claims about the causal effect of X on Y must rely on knowledge
beyond the constraints of the DAG, such as plausibility judgments (i) on the direct effect
of observed variables, (ii) on the strength of association of latent variables with X and
Y , or (iii) on the relative importance of unobserved confounders as compared to observed
confounders (Cinelli et al., 2018, 2019; Cinelli and Hazlett, 2020a,b; Zhang et al., 2021).
A suite of sensitivity analysis tools to examine the robustness of linear regression estimates
to omitted variable biases (OVB) can be found in the package sensemakr for R, Stata and
Python (Cinelli et al., 2020; LaPierre et al., 2022). An interactive web application is also
available.6 Generalization of OVB results to fully nonparametric models, using Debiased
Machine Learning, is developed in Chernozhukov et al. (2021).

Concluding remarks

In this note, we demonstrated through illustrative examples how simple graphical criteria
can be used to decide when a variable should (or should not) be included in a regression
equation—and thus whether it can be deemed a “good” or “bad” control. Many of these
examples act as cautionary notes against prevailing practices: for instance, Models 7 to 10

6Available online at https://carloscinelli.shinyapps.io/robustness_value/.
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reveal that one should be cautious of the general recommendation, usually derived from
propensity score logic, of conditioning on all pre-treatment predictors of the treatment
assignment7; whereas Models 14 and 15 show that not all “post-treatment” variables are
“bad-controls,” and some may even help with identification.

In all cases, structural knowledge is indispensable for deciding whether a variable is a
good or bad control, and graphical models provide a natural language for articulating such
knowledge, as well as efficient tools for examining its logical ramifications. We have found
that an example-based approach to “bad controls,” such as the one presented here, can serve
as a powerful instructional device to supplement more extended and formal discussions of
the problem. By making this “crash course” accessible to instructors and practitioners, we
hope to avail these tools to a broader community of scientists concerned with the causal
interpretation of regression models.
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Henckel, L., Perković, E., and Maathuis, M. H. (2019). Graphical criteria for effi-
cient total effect estimation via adjustment in causal linear models. arXiv preprint
arXiv:1907.02435.

Hernán, M. and Robins, J. (2020). Causal inference: What if. Boca Raton: Chapman &
Hill/CRC.

Hernández-Dı́az, S., Schisterman, E. F., and Hernán, M. A. (2006). The birth weight
“paradox” uncovered? American journal of epidemiology, 164(11):1115–1120.

Hünermund, P. and Bareinboim, E. (2019). Causal inference and data-fusion in economet-
rics. arXiv preprint arXiv:1912.09104.

Imbens, G. W. and Rubin, D. B. (2015). Causal inference in statistics, social, and biomed-
ical sciences. Cambridge University Press.
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A Appendix

This appendix provides a short introduction to the notions of causal models, causal dia-
grams and “path-blocking” for the identification of causal effects via adjustment. Readers
can find more extensive discussions in Pearl (2009a); Pearl et al. (2016) and Pearl and
Mackenzie (2018).

Structural causal models and causal diagrams

In order to decide whether there is a discrepancy between a certain regression equation
(an associational quantity), and a target “causal effect” (a causal quantity), we need to
mathematically define what this causal effect is. And to do that, we first need the concept
of a causal model. We briefly introduce structural causal models (SCM) (Pearl, 2009a) with
an example.

M =


Z ← fz(Uz)

X ← fx(Z,Ux)

Y ← fy(X,Z, Uy)

U ∼ P (U)

(a) Structural causal model M

Z
Uz

X
Ux

Y
Uy

(b) Causal diagram G associated with M

Figure 14: Structural Causal Model M and its associated graph G

Consider the SCM M shown in Figure 14a. The variables V = {Z,X, Y } are called the
endogenous variables, and stand for those variables that the investigator chose to model
their cause-effect relationships; the variables U = {Uz, Ux, Uy} are called the exogenous
variables and represent everything else that the investigator chose not to explicitly model
(these are also usually called disturbances). The functions F = {fz, fx, fy} are called struc-
tural equations, and each function represents a causal process that assigns to its respective
endogenous variable a value based on the values of the other variables. We use the as-
signment symbol (←) to emphasize the asymmetry in a causal relationship, flowing from
cause to effect. Finally, the exogenous variables have an associated probability distribution
P (U) summarizing their uncertainty. In this particular example, we assume the exoge-
nous variables are mutually independent (but in general, this need not be the case). The
SCM M induces a joint distribution on the endogenous variables P (V), which we denote
by observational distribution. In observational studies, the investigator only has access to
samples of P (V) .

Every SCM has an associated graph G, usually called its causal diagram. In the types of
models we consider here, which do not exhibit cycles, the causal diagram will be a directed
acyclic graph (DAG). The causal diagram of our example is shown in Figure 14b. The
graph G contains one node for each variable in M , and a directed arrow Vi → Vj whenever
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Vi appears in the structural equation of Vj, meaning that Vi is a direct cause of Vj. Here
we explicitly show the exogenous variables, but, conventionally, these are omitted from the
graph for brevity. When the exogenous variables are omitted from the diagram, a dashed
bidirected arrow Vi ↔ Vj should be added whenever the exogenous variables entering fvi
and fvj are not independent.

Interventions and causal effects

Interventions are modeled by modifying mechanisms of the SCM. For example, the act
do(X = x) in the model of Figure 14a amounts to replacing the original mechanism X ←
fx(Z,Ux) with a new mechanism in which X is externally forced to attain the value x, i.e.,
X ← x. This results in the modified SCM Mx of Figure 15a.

Mx =


Z ← fz(Uz)

X ← x

Y ← fy(X,Z, Uy)

U ∼ P (U)

(a) Modified SCM Mx

Z

Uz

X

x

Y
Uy

(b) Modified causal diagram Gx

Figure 15: Effect of intervention do(X = x)

The model Mx induces an interventional distribution on the endogenous variables, de-
noted by P (V | do(X = x)). With the concept of an intervention in mind, we can now
define the average causal effect (i.e, the expected increase of Y in response to a unit increase
in X due to an intervention) as the average contrast of Y under two distinct interventions:

ACE(x) = E[Y | do(x+ 1)]− E[Y | do(x)]

In general the ACE varies depending on levels of x, but in linear models, as we show
below, the ACE reduces to a single number. Other causal effects can be defined with the
same model modification logic. For instance, the controlled direct effect (or CDE, i.e, the
expected increase of Y per unit of a controlled increase in X, while holding Z constant) is
defined as the difference:

CDE(x, z) = E[Y | do(x+ 1), do(z)]− E[Y | do(x), do(z)]

Potential outcomes

Potential outcomes Vx are defined as the solution of the endogenous variables V in the
modified model Mx. Thus, P (V | do(X = x)) can be equivalently written as P (Vx)
(likewise, we could have written all variables in Mx and Gx as Zx, Xx and Yx). As such,
the ACE can be equivalently written as ACE(x) = E[Yx+1]− E[Yx].
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Causal and non-causal paths: chains, forks and colliders

Concretely, let us suppose that the structural equations of our example are linear, that is,
Z ← Uz, X ← λzxZ + Ux, Y ← λxyX+λzyZ+Uy. Further assume that the disturbances
U are normally distributed, and that the random variables X,Z, Y have mean zero and
unit variance. Then the ACE evaluates to:

ACE(x) = E[Y | do(x+ 1)]− E[Y | do(x)] = λxy

To contrast, now let us compute the regression coefficient of Y on X, denoted by βyx

βyx =
Cov(Y,X)

Var(X)
= λxy + λzxλzy

Note how the regression coefficient βyx = λxy + λzxλzy differs from the ACE = λxy. This
happens because the observed association of X and Y mixes both the causal association
(the path X → Y ), and the non-causal association due to the confounder Z (the path
X ← Z → Y ). We call such confounding paths, that start with an arrow pointing to X,
“back-door paths.” Note, however, that the regression coefficient of Y on X adjusting for
Z (denoted by βyx.z) evaluates to (a derivation is provided later, in Equations 6 to 10)

βyx.z = λxy

That is, controlling for Z in this model effectively blocks the back-door path, and recovers
the ACE.

In general, how does path blocking work in a graphical model? To answer this ques-
tion, we need to understand the three main patterns of a causal diagram, which help us
characterize when paths (consisting of sequences of the following triplets) of the graph are
blocked or open.

• Chains (mediators). Chains are patterns of the form X → Z → Y , meaning that
X causally affects Y through the mediator Z. Conditioning on Z in a chain blocks
this flow of association.

• Forks (common causes). Forks are patterns of the form X ← Z → Y , meaning X
and Y share a common cause (a confounder) Z, thus inducing a non-causal association
between both variables. Conditioning on Z in a fork blocks this flow of association.

• Colliders (common effects). Colliders are patterns of the form X → Z ← Y ,
meaning that both X and Y share a common effect Z. Contrary to the other two
patterns, this path is closed by default—conditioning on Z opens the path and induces
a non-causal association between X and Y .

A final rule to keep in mind is that controlling for a descendant of a variable is equivalent to
“partially” controlling for that variable. Thus, controlling for a descendant of a mediator or
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a confounder partially blocks the flow of association, whereas controlling for a descendant
of a collider partially opens the flow of association.

We can now judge whether any path p in a graph, no matter how complicated, is blocked
by a set Z. This happens if, and only if: (i) p contains a chain or a fork, such that the
middle node is in Z; or, (ii) p contains a collider, such that neither the middle node, nor
any of its descendants, are in Z.

The back-door and the adjustment criteria

Armed with these tools, the DAG reveals which set of variables Z blocks the correct paths
for valid estimation of the ACE. We would like to find a set Z, such that,

• it blocks all spurious paths from X to Y ;

• it does not (partially) block any of the causal paths from X to Y ; and,

• it does not (partially) open other spurious paths.

The above conditions characterize the so-called back-door criterion, later generalized by
the adjustment criterion (Pearl, 1995; Shpitser et al., 2012). If we can find such a set of
controls Z = {Z1, . . . , Zk}, then the interventional expectation of Y can be computed from
the observational distribution as

E[Y | do(X = x)] = E[E[Y | X = x,Z]] (1)

Readers accustomed to potential outcomes should note that, if Z satisfies the adjustment
criterion, then conditional ignorability holds, ie., Yx ⊥⊥ X | Z.

Formal statements. For completeness, we now provide the formal statements of the
back-door and adjustment criteria.

Definition 1 (Back-door criterion (Pearl, 2009a)) A set of variables Z satisfies the
back-door criterion relative to (X, Y ) in a DAG G if:

• No node in Z is a descendant of X; and,

• Z blocks every path between X and Y that contains an arrow into X.

The adjustment criterion was later devised to explicitly handle cases in which Z may contain
descendants of X.

Definition 2 (Adjustment criterion (Shpitser et al., 2012)) A set of variables Z sat-
isfies the adjustment criterion relative to (X, Y ) in a DAG G if:

• In the dag Gx̄ (the DAG G with the arrows incoming into X removed), no element
in Z is a descendant of any W 6∈ X which lies on a proper causal path from X to Y .

• All non-causal paths in G from X to Y are blocked by Z.
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Linear versus non-linear models

The previous identification result is non-parametric, and it involves two expectations.
First we compute the conditional expectation E[Y | X = x,Z = z], then we average
this conditional expectation over P (Z). If, however, the conditional expectation function
E[Y | X = x,Z = z] is linear, the expression simplifies to

E[E[Y | X = x,Z]] = α + βyx.zx+
k∑
j=1

βyzj .xz−j
E[Zj]

Where α is a constant and Z−j denotes the set Z excluding Zj. Therefore, under the
parameteric assumption of linearity, the ACE simply equals the regression coefficient βyx.z,
and no averaging over the distribution of Z is necessary (similar result can be obtained if the
conditional expectation is linearly separable on X). If, however, the conditional expectation
is not linear, the regression coefficient βyx.z targets a different causal quantity, which may
be an incomplete summary of the ACE (see, e.g., Angrist and Pischke, 2009). In such cases,
users should resort back to the proper adjustment formula as given by Equation 1.

Virtual colliders and d-separation

Finally, we explain both d-separation and virtual colliders using the case of Model 18.
Rewrite Model 18 showing the exogenous variables explicitly, as in Figure 16a.

X

Ux

Y

Uy

Z
Uz

(a) Model 18 showing exogenous variables

X

Ux

Y
Yx

Uy

Z
Uz

(b) Model 18 showing Yx

Figure 16: Model 18 explained

We can now clearly see the colliding path X → Y ← Uy. Conditioning on Z, a descendant
of Y , thus partially opens this path, and creates a spurious association between X and Uy,
the disturbance of Y , making Z a “bad control.” Another approach to see why Z is a bad
control is to explicitly draw the potential outcome Yx in the DAG, as shown in Figure 16b.
As explained, recall that Yx is the solution of Y in the modified model Mx. This results
in Yx = fY (x, Uy), a function of the random variable Uy. Therefore, conditioning on Z, a
descendant of Y , partially opens the path X → Y ← Uy → Yx, and thus Yx 6⊥⊥ X | Z.

Now let us consider the case in which the arrow X → Y is removed (zero causal effect
of X on Y ). First recall that two nodes X and Y are d-separated conditional on Z if the
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set Z blocks every path from X to Y in the graph. If X and Y are d-separated conditional
on Z, this implies the conditional independence Y ⊥⊥ X | Z. In Model 18, when there is no
path from X to Y , conditioning on Z also does not open any other paths between these
two variables. Hence, X is still d-separated from Y even after conditioning on Z, and the
conditional independence Y ⊥⊥ X | Z holds.

Analytical expressions for linear models

Here we provide algebraic derivations for each illustrative model under the assumption of
linearity of the structural equations. Before proceeding, we remind readers that adjusting
for “bad controls” still lead to bias in non-parametric models. Furthermore, overt selection
(rather than adjustment for) bad controls will also lead to bias (although the size and sign
of the bias may differ).

Without loss of generality, we assume random variables have been standardized to have
mean zero and unit variance. We use σyx to denote the covariance of Y and X and,
like before, βyx.z to denote the partial regression coefficient of the regression of Y on X
controlling for Z. The partial regression coefficient βyx.z can be written in terms of the
covariances as (Cramér, 1946),

βyx.z =
σyx − σxzσyz

1− σ2
xz

(2)

In linear structural causal models, each edge Vi → Vj of a causal DAG can be mapped to
a single structural coefficient λvivj representing the strength of the direct effect of Vi on Vj.
We can use Wright’s path-tracing rules (Wright, 1921) to equate the covariance σvivj of any
two variables Vi and Vj, to the sum of products of structural coefficients along unblocked
paths between Vi and Vj.

For instance, in Model 1, path-tracing results in the following covariances,

σyx = λxy + λzxλzy (3)

σxz = λzx (4)

σyz = λzy + λzxλxy (5)

With the help of Wright’s rules and Equation 2, one can easily proceed with the algebraic
derivation for each model. For the sake of brevity, we provide the full derivation for Model 1,
and for the remaining models (except Model 15) only the final result is presented (since
the derivations would be very similar).

Model 1. In Model 1, the average causal effect of X on Y equals ACE = λxy. The
unadjusted regression coefficient equals βyx = σyx = λxy+λzxλzy, and the partial regression
coefficient equals,
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βyx.z =
σyx − σxzσyz

1− σ2
xz

(6)

=
λxy + λzxλzy − λzx(λzy + λzxλxy)

1− λ2
zx

(7)

=
λxy + λzxλzy − λzxλzy − λ2

zxλxy
1− λ2

zx

(8)

=
(1− λ2

zx)λxy
1− λ2

zx

(9)

= λxy (10)

Model 2. Path-tracing leads to the following covariances,

σyx = λxy + λzxλuzλuy (11)

σxz = λzx (12)

σyz = λzxλxy + λuzλuy (13)

We have: ACE = λxy, βyx = λxy + λzxλuzλuy, and βyx.z = λxy.

Model 3. Path-tracing leads to the following covariances,

σyx = λxy + λuxλuzλzy (14)

σxz = λuxλuz (15)

σyz = λzy + λuzλuxλuy (16)

We have: ACE = λxy, βyx = λxy + λuxλuzλzy, and βyx.z = λxy.

Model 4. Path-tracing leads to the following covariances,

σyx = λxmλmy + λzxλzmλmy (17)

σxz = λzx (18)

σyz = λzmλmy + λzxλxmλmy (19)

We have: ACE = λxmλmy, βyx = λxmλmy + λzxλzmλmy, and βyx.z = λxmλmy.

Model 5. Path-tracing leads to the following covariances,

σyx = λxmλmy + λzxλuzλumλmy (20)

σxz = λzx (21)

σyz = λuzλumλmy + λzxλxmλmy (22)

We have: ACE = λxmλmy, βyx = λxmλmy + λzxλuzλumλmy, and βyx.z = λxmλmy.
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Model 6. Path-tracing leads to the following covariances,

σyx = λxmλmy + λuxλuzλzmλmy (23)

σxz = λuxλuz (24)

σyz = λzmλmy + λuzλuxλxmλmy (25)

We have: ACE = λxmλmy, βyx = λxmλmy + λuxλuzλzmλmy, and βyx.z = λxmλmy.

Model 7. Path-tracing leads to the following covariances,

σyx = λxy (26)

σxz = λu1xλu1z (27)

σyz = λu2zλu2y + λu1zλu1xλxy (28)

We have: ACE = λxy, βyx = λxy, and βyx.z = λxy −
λu1xλu1zλu2zλu2y

1−(λu1xλu1z)2
.

Variation of Model 7. Path-tracing leads to the following covariances,

σyx = λxy + λu1xλu1zλzy (29)

σxz = λu1xλu1z (30)

σyz = λzy + λu2zλu2y + λu1zλu1xλxy (31)

We have: ACE = λxy, βyx = λxy + λu1xλu1zλzy, and βyx.z = λxy −
λu1xλu1zλu2zλu2y

1−(λu1xλu1z)2
. Thus,

depending on the parameterization of the model, the absolute value of the bias of βyx.z can
be greater than that of βyx.

Model 8. Path-tracing leads to the following covariances,

σyx = λxy (32)

σxz = 0 (33)

σyz = λzy (34)

We have: ACE = λxy, βyx = λxy, and βyx.z = λxy.

Model 9. Path-tracing leads to the following covariances,

σyx = λxy (35)

σxz = λzx (36)

σyz = λzxλxy (37)

We have: ACE = λxy, βyx = λxy, and βyx.z = λxy.
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Model 10. Path-tracing leads to the following covariances,

σyx = λxy + λuxλuy (38)

σxz = λzx (39)

σyz = λzxλxy (40)

We have: ACE = λxy, βyx = λxy + λuxλuy, and βyx.z = λxy + λuxλuy
1−λ2zx

. Since 0 < 1− λ2
zx < 1,

the absolute value of the bias of βyx.z is always greater than that of βyx.

Model 11. Path-tracing leads to the following covariances,

σyx = λxzλzy (41)

σxz = λxz (42)

σyz = λzy (43)

We have: ACE = λxzλzy, CDE = 0, βyx = λxzλzy, βyx.z = 0.

Model 12. Path-tracing leads to the following covariances,

σyx = λxmλmy (44)

σxz = λxmλmz (45)

σyz = λmzλmy (46)

We have: ACE = λxmλmy, CDE = 0, βyx = λxmλmy, and βyx.z = λxmλmy ×
(

1−λ2mz

1−λ2xmλ2mz

)
.

Variation of Model 11. Path-tracing leads to the following covariances,

σyx = λxzλzy (47)

σxz = λxz (48)

σyz = λzy + λuzλuy (49)

We have: ACE = λxzλzy, CDE = 0, βyx = λxzλzy, and βyx.z = −λxzλuzλuy
1−λ2xz

.

Model 13. Path-tracing leads to the following covariances,

σyx = λxmλmy (50)

σxz = 0 (51)

σyz = λzmλmy (52)

We have: ACE = λxmλmy, βyx = λxmλmy, and βyx.z = λxmλmy.
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Model 14. Path-tracing leads to the following covariances,

σyx = λxy (53)

σxz = λxz (54)

σyz = λxzλxy (55)

We have: ACE = λxy, βyx = λxy, and βyx.z = λxy.

Model 15. Model 15 requires a more elaborate derivation since we need to consider four
variables. Here we only have samples with W = w recorded. In linear models, this is
equivalent to having adjusted for W in a regression model. Thus, this means the researcher
does not have access to the regression coefficients βyx nor βyx.z, but rather βyx.w and βyx.wz
(that is, W is always conditioned on, due to sample selection). Path-tracing leads to the
following covariances (there is no need to compute all of them to solve this problem, but
we show them here for completeness),

σyx = λxy (56)

σxz = λxz (57)

σxw = λxzλzw (58)

σyz = λxzλxy (59)

σyw = λuyλuw + λxyλxzλzw (60)

σzw = λzw (61)

The average causal effect is ACE = λxy. By Equation 2, the regression coefficient without
adjusting for Z, βyx.w, equals

βyx.w = λxy −
λxzλzwλuwλuy
1− (λxzλzw)2

(62)

Now we must compute the regression coefficient adjusting for Z, βyx.wz. Following
Cramér (1946) βyx.wz can be written as

βyx.wz =
ρyx.z − ρxw.zρyw.z

(1− ρ2
xw.z)

1/2
× σy.z
σx.z

(63)

Where

ρyx.z =
σyx − σxzσyz

(1− σ2
xz)

1/2(1− σ2
yz)

1/2
(64)

denotes the partial correlation of Y with X after adjusting for Z and

σy.z = (1− σ2
yz)

1/2
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denotes the partial standard deviation of Y after adjusting for Z. Since X is d-separated
from W given Z, we know that ρxw.z = 0 (we can also verify this by checking that βxw.z = 0).
Also note that σyz = λxzλxy = σxzσyx. We thus obtain

βyx.wz = ρyx.z ×
(1− σ2

yz)
1/2

(1− σ2
xz)

1/2
(65)

=
σyx − σxzσyz

(1− σ2
xz)

1/2(1− σ2
yz)

1/2
×

1− σ2
yz

1− σ2
xz

(66)

=
σyx − σ2

xzσyx
1− σ2

xz

(67)

= σyx
1− σ2

xz

1− σ2
xz

= σyx = λxy (68)

Model 16. Path-tracing leads to the following covariances,

σyx = λxy (69)

σxz = λxz (70)

σyz = λxzλxy + λuzλuy (71)

We have: ACE = λxy, βyx = λxy, and βyx.z = λxy − λxzλuzλuy
1−λ2xz

.

Model 17. Path-tracing leads to the following covariances,

σyx = λxy (72)

σxz = λxz + λxyλyz (73)

σyz = λyz + λxzλxy (74)

We have: ACE = λxy, βyx = λxy, and βyx.z = λxy × (1−λxzσxz)
1−σ2

xz
− σxzλyz

1−σ2
xz

.

Model 18. Path-tracing leads to the following covariances,

σyx = λxy (75)

σxz = λxyλyz (76)

σyz = λyz (77)

We have: ACE = λxy, βyx = λxy, and βyx.z = λxy ×
1−λ2yz

1−λ2xyλ2yz
.
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