A Drunk and Her Dog: An Illustration of Cointegration

Michael P. MURRAY

If there exists a stationary linear combination of nonsta-
tionary random variables, the variables combined are said
to be cointegrated. A humorous example of a drunk and
her dog illustrates cointegration much as “the drunkard’s
walk” illustrates random-walk processes. The example
makes clear why using first differences of the variables is
amistaken way to look for linear relationships between po-
tentially cointegrated variables. The example also makes
clear the link between cointegrated variables and error-
correction models.
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1. INTRODUCTION

Teachers of statistics have long used the drunkard’s walk
to introduce nonstationary processes. Here I adapt the
drunkard’s walk to clarify the more recently introduced
notion of cointegration (Granger 1981) and to concretize
the link between cointegration and error-correction models
(Engle and Granger 1987). The mathematics of cointegra-
tion and error correction are sophisticated, but the concepts
themselves are simple enough to allow their introduction
at elementary levels as a straightforward extension of the
drunkard’s walk. The link between cointegration and er-
ror correction arises naturally from the humorous tale of
the drunk and her dog.

2. THE TALE OF THE DRUNK AND HER DOG

The drunk is not the only creature whose behavior fol-
lows arandom walk. Puppies, too, wander aimlessly when
unleashed. Each new scent that crosses the puppy’s nose
dictates a direction for the pup’s next step, with the last
scent forgotten as soon as the new one arrives. Thus, the
meanderings, x, and y,, of both drunks and dogs along the
real line can be modeled by the random walk:

Xy — Xp—1 = Uy (D

and

Yt = Vi1 = Wy, 2
where u, and w, are stationary white-noise steps that the
woman and dog take each period.

One key trait of random walks is that the most recently
observed value of the variable is the best forecaster of
future values. If I come out of a bar with a friend who
asks me, “Where is that puppy we saw out here earlier?”,
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am likely to answer, “Well, he was right over there when I
wentin.” We might have the same exchange about a drunk
we saw earlier as well.

A second key trait of random walks is that the longer we
have been in the bar, the more likely it is that the puppy
or the drunk has wandered far from where we last saw
them. If my friend and I had been in the bar a long while,
I'd say about either the dog or the drunk, “But heaven
only knows where they’ve got to by now.” This growing
variance in location characterizes the “nonstationarity” of
random walks.

But what if the dog belongs to the drunk? The drunk
sets out from the bar, about to wander aimlessly in random-
walk fashion. But periodically she intones “Oliver, where
are you?”, and Oliver interrupts his aimless wandering to
bark. He hears her; she hears him. He thinks, “Oh, I can’t
let her get too far off; she’ll lock me out” She thinks,
“Oh, I can’t let him get too far off; he’ll wake me up in the
middle of the night with his barking.” Each assesses how
far away the other is and moves to partially close that gap.

Now neither drunk nor dog follows a random walk; each
has added what we formally call an error-correction mech-
anism to her or his steps. But if one were to follow either
the drunk or her dog, one would still find them wander-
ing seemingly aimlessly in the night; as time goes on, the
chance that either will have wandered far from the bar
grows. The paths of the drunk and the dog are still non-
stationary.

Significantly, despite the nonstationarity of the paths,
one might still say, “If you find her, the dog is unlikely
to be very far away.” If this is right, then the distance
between the two paths is stationary, and the walks of the
woman and her dog are said to be cointegrated of order
zero.

To understand the phrase cointegrated of order zero, we
should first define integrated series. Nonstationary series
that become stationary when differenced n times are called
integrated of order n. For a set of series to be cointegrated,
each member of the set must be integrated of the same
order, n; thus the term cointegration. A set of series, all
integrated of order n, are said to be cointegrated if and only
if some linear combination of the series—with nonzero
weights only—is integrated of order less than n. Such a
linear combination is called a cointegrating relationship
(see Engle and Granger [1987] for more details).

Notice that cointegration is a probablistic concept. The
dog is not on a leash, which would enforce a fixed distance
between the drunk and the dog. The distance between
the drunk and the dog is instead a random variable, but a
stationary one despite the nonstationarity of the two paths.

More mundanely, we can model the woman’s and dog’s
cointegrated meanderings as

X — X1 =t + oy — X—1) 3)
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Figure 1. A drunk and two dogs: How close are the dogs to her?
— Her dog. --- My dog.

and
Vi — V=1 = wp+dx_ — yi_1), €

where u, and w, are again the stationary white-noise steps
of the woman and her dog. The second terms on the right
sides are the error-correction terms by which the two wan-
derers probably stay close together; (x,_; —y,—) is a coin-
tegrating relationship between x and y.

Notice that if the error-correction terms were not sta-
tionary, then the steps of the woman and of the dog would
also not be stationary, so the two would probably grow
far apart over time, despite their efforts to get together. If
this were the case, contrary to my expectation when I left
the bar, the paths of the woman and of the dog would not
be cointegrated of order zero. Engle and Granger (1987)
proved, however, that if the drunk and dog follow paths
that are both integrated of order one and consistent with
the behavior described by Equations (3) and (4), the paths
must be cointegrated.

Even with small values of (¢ + d), the error-correction
mechanism has powerful effects on the distance between
the drunk and her dog. To illustrate this, Figure 1 shows for
a draw of 2000 steps u and w from a standard normal dis-
tribution the distances between the drunk and her dog and
the drunk and my dog if she and her dog follow Equations
(3) and (4) while my dog follows Equation (2); the as-
sumed values of ¢ and d sum to .01. The distance between
the drunk and her dog looks quite stationary, whereas the
distance between the drunk and my dog looks much more
like a random walk. This particular draw of steps is not
exceptional in appearance.

In the case of the drunk and her dog, the difference in
their locations is stationary. In general, cointegration does
not require the difference between the variables to be sta-
tionary. Were the drunk and puppy circus performers try-
ing, despite her stupor and his impetuousness, to balance a
teeter-totter while otherwise wobbling along the real line,
their error-correction device would press them to move in
opposite directions as they sought to reestablish balance
on the teeter-totter given one another’s movements. In
this case, the sum of their positions would be a stationary
variable with a mean of zero.

Indeed, if the woman and dog were not of the same
weight, balancing the teeter-totter would require that the
lighter actor be farther away from the fulcrum point. In
this case, the stationary variable would be a weighted av-
erage of the woman’s and dog’s positions, not the simple
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sum of the two. This complexity reflects the fact that two
nonstationary variables are cointegrated if there exists any
linear combination of the variables that is stationary.

Nonstationary variables pose two threats to conven-
tional regression analysis. The first threat arises with
unrelated nonstationary variables that are random walks.
Regressing two unrelated random walks against one an-
other results in regression coefficients that are small in
relation to their standard errors much less often than the
theory of stationary regressors predicts. Consequently,
the use of standard distributions when the variables are
unrelated and nonstationary will lead to too-frequent re-
jections of the null hypothesis that there is no relationship
between the variables. To guard against such spurious
regressions, Granger and Newbold (1974) recommended
that regressions among nonstationary variables be con-
ducted as regressions among changes in the variables. In
contrast, cointegration analysis avoids such errors by es-
chewing standard distributions and instead applying the
correct distributions.

The second threat arises with truly related nonstationary
variables that are integrated of order one. Taking Granger
and Newbold’s (1974) counsel in this case results in a
misspecified regression model. As the story of the drunk
and her dog makes clear, if one specifies such a regression
model in terms of changes in the variables only, one misses
the error-correction mechanism that connects cointegrated
variables. Regressions involving the changes of cointe-
grated variables should also involve the lagged levels of
those variables, but with the constraints of the cointegrat-
ing relationship imposed. This is a central point of Engle
and Granger’s (1987) work. (If the data are generated
by (3) and (4), then once the cointegrating relationship
is accounted for, changes in x and changes in y have no
further effect on one another, and lagged changes in x and
y have no further effect on current changes. If one omits
the cointegrating relationship, however, spurious effects
of both these sorts may be observed.)

In addition to illustrating cointegration and error cor-
rection, the tale of the drunk and her dog offers a re-
minder to applied econometricians that the cointegrat-
ing relationship is not merely a statistical convenience
with no behavioral content. If you estimated by regres-
sion that the cointegrating relationship for the drunk and
dog were (x; — 13y,), I should object that the estimates
make no good sense. (Unless, of course, you can tell a
different behavioral story than mine, a story that makes
the 13 in the cointegrating relationship plausible.) Sims
(1980) and others have argued that economic theory tells
us too little about the dynamics of economic relationships
to impose many useful restrictions on dynamic equations
like those describing the steps of the woman or her dog.
Arguably, however, economic theory does tell us more
about the long-run relationships that hold among eco-
nomic variables and hence may tell us quite a bit about
what we should find in cointegrating relationships. (Hall,
Anderson, and Granger (1992), Johansen and Juselius
(1990), and Murray (1993) all test such long-run hypothe-
ses about the coefficients in particular cointegating rela-
tionships.)

No discussion of regressions involving nonstationary
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variables would be complete without reminding readers
about what I call the bad companions rule. When thought-
ful parents of a teenager bring their child to the mall for a
movie, they are wont to order the child not to leave the mall
until the parents return after the movie. The parents’ mo-
tive is to keep their child from associating with the unruly
kids who may go who knows where and do who knows
what. Kids who stay close to the mall avoid associat-
ing with these bad companions. In econometric analysis,
the bad companions rule reappears; stationary variables,
like stationary kids, tend not to be associated with those
that are nonstationary. Thus, as Stock and Watson (1988)
noted, if one regresses a stationary variable against a non-
stationary variable, the observed association will in large
samples tend to zero as the variation in the stationary vari-
able grows ever smaller in relation to the variation in the
nonstationary variable.

[Received October 1992. Revised March 1993.]
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