
A New Method for Fast Frequency 
Measurement for Protection Applications 

B. Kasztenny  
Schweitzer Engineering Laboratories, Inc. 

Presented at the 
13th International Conference on Developments in Power System Protection 

Edinburgh, United Kingdom 
March 7–10, 2016 



1 

A new method for fast frequency measurement for protection 
applications 

B. Kasztenny 

Schweitzer Engineering Laboratories, Inc., 2350 NE Hopkins Court, Pullman, WA 99163 USA,  
bogdan_kasztenny@selinc.com 

Keywords: power system frequency, frequency measurement, 
frequency protection, frequency tracking, synchrophasor. 

Abstract 

This paper presents a novel approach to frequency estimation 
for power system applications: frequency tracking, frequency 
protection, and synchrophasors. We based our algorithm on 
autocorrelation of the waveform or correlation of the waveform 
and its derivative using a freely chosen window length. 
Because of the averaging inherent in correlation, the method 
has exceptional immunity to noise. We derive, explain, and 
illustrate the new method with simulation results. We review 
advantages and attributes of the new method compared with 
two commonly used approaches to frequency measurement: 
timing between the waveform zero crossings and measuring 
the rate of rotation of a phasor. 

1 Introduction 

Frequency is a key power system measurement used for 
frequency control and frequency protection, including load 
shedding and overexcitation protection. Frequency is also used 
in synchrophasor measurements and in protective relays and 
meters for frequency tracking in order to keep ac measure-
ments, especially phasors, accurate.  

One understands and unambiguously defines frequency only 
for a truly periodic signal. Signal x has a period T1 if for any 
point in time t, the following is true: 

 𝑥𝑥(𝑡𝑡 − 𝑇𝑇1) ≡ 𝑥𝑥(𝑡𝑡) (1) 

In other words, the lowest value of T1 satisfying (1) is the 
fundamental frequency period of the signal x. 

By definition, periodic signals are stationary, occurring only in 
steady states. Therefore, frequency is a steady-state term. 
Power systems, however, are in a state of constant fluctuation 
as generators oscillate around their equilibrium points in a 
stable power system. Major system events can cause 
pronounced oscillations as generators speed up and slow down 
with respect to the rest of the power system. Some network 
configurations may lead to resonant conditions causing 
subsynchronous oscillations. As a result, power system 
voltages and currents are never in a perfect steady state and, 
therefore, are not precisely periodic.  

How do we define frequency for such practical conditions? 
Reference [1] is an in-depth study of the subject of dynamic 

frequency, but its findings are not widely applied and the paper 
does not relate specifically to power system frequency.  

In electric power systems, a generator rotor spins at a certain 
rate. The rate-of-change of the rotor angular position (angular 
velocity) is an excellent proxy for a generator’s frequency. 
Because of the mechanical inertia, the angular velocity is a 
very clean signal with a very high signal-to-noise ratio 
(assuming an adequate shaft speed or position sensor is 
applied). However, once we shift away from the mechanical 
definition and start looking at voltages and currents, this link 
to physical interpretation of generator frequency becomes 
weaker, especially as we move a few buses away from any 
given generator. Moreover, if we factor in torsional 
oscillations, even the mechanical interpretation of power 
system frequency becomes less obvious. A long generator and 
turbine shaft oscillating in a torsional fashion will have slightly 
different rates of rotation at different points along the shaft.  

Switching events complicate our understanding of frequency 
in power systems even more. During switching events, currents 
and voltages are not periodic. Strictly speaking, we cannot 
measure the period or frequency at all during switching events.  

Practical frequency measurement methods used today in power 
systems assume slow frequency changes compared with the 
rated system frequency, i.e., they assume near-stationary 
signals. These methods incorporate the means to “ride 
through” switching events using a number of heuristic 
approaches. The industry does not have any common definition 
of dynamic frequency, despite some standardization efforts [2]. 
Therefore, each measurement method becomes its own 
definition of frequency. In the absence of a dynamic frequency 
definition, the industry relies on tests. Common dynamic tests 
include frequency ramps and oscillations. Below is a brief 
summary of the two commonly used methods for frequency 
measurement and the IEEE C37.118 approach to frequency. 

1.1 Frequency measurement based on zero crossings 

This method times the interval between zero crossings of a 
waveform (Fig. 1a). Some implementations time full cycles 
looking at the zero crossings in the same direction (negative-
to-positive and positive-to-negative), while some methods time 
half cycles between zero crossings in any direction. Using 
information from only the zero-crossing area of the waveform 
makes this method immune to harmonics as long as the 
waveform is truly periodic and does not exhibit extra zero 
crossings due to heavy distortions (see Fig. 1a). Often, low-
pass prefiltering improves accuracy of zero-crossing detection. 
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This filtering introduces side effects as the filter responds to 
magnitude changes and causes the zero crossings to shift 
slightly as the magnitude changes. Interpolation often provides 
a more precise zero-crossing time estimation, especially if the 
sampling rate is relatively low.  
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Fig. 1. Frequency measurement methods: zero crossings (a) 
and rate-of-change of phasor rotation (b). 

Switching events cause the zero crossings to shift instantly, 
creating very large frequency measurement errors when using 
this method. These errors must be filtered out by rejecting 
wrong measurements rather than by averaging, hence the use 
of various heuristic approaches to validating or rejecting such 
raw measurements.  

Many applications average validated raw frequency 
measurements to improve accuracy of the final reported 
frequency. Averaging filters receive frozen last valid 
measurements if the method rejects the raw measurement for 
the present time.  

This method, does not run the key calculations, such as raw 
frequency or averaged frequency, at a constant rate. It runs the 
calculations only when it detects a zero crossing. These event-
driven calculations constitute variable sampling for the raw 
frequency stream of data, even with some data points 
temporarily missing when the validation checks mark a 
corresponding zero crossing as invalid for a nonperiodic 
waveform.  

All these factors make the zero-crossing methods very 
convoluted. They are widely used, but are proprietary, and 
exhibit a strong nonlinear behavior. As a result, various 
implementations of this method may yield different results for 
any given dynamic system event. 

1.2 Frequency measurement based on phasor rate of 
rotation 

This method mimics the mechanical analogy of generator 
frequency by measuring an input phasor and calculating the 
rate of angular rotation of the phasor (Fig. 1b). This rate is 
proportional to frequency.  

One can run this method at a fixed rate, such as each time a 
new input waveform sample becomes available. This makes 
any raw frequency postfiltering more straightforward. As with 
any frequency measuring method, the method behaves poorly 
for nonperiodic waveforms. During switching events, the 
phasor angle shifts abruptly. This phase shift causes very large 
errors and calls for validation/rejection logic for the raw 
frequency. Alternatively, one may fit a straight line to a series 
of angle positions and report frequency as the slope of such a 
line. In yet another approach, one may fit a second order 

function and report frequency and rate-of-change of frequency 
from the parameters of such a best-fit function.  

The major problem with this method is that measuring the 
phasor correctly and properly rejecting harmonics requires 
knowing the waveform frequency. We can resolve this 
feedback loop (to measure frequency from the phasor we need 
to know the frequency) by using iterations or by quickly 
adjusting the frequency tracking. This method is used in 
practice, but it does not show any significant improvements 
over the zero-crossing method.  

1.3 C37.118 approach to frequency 

The IEEE C37.118.1-2011 synchrophasor standard attempted 
to define frequency by including a reference measurement 
method (informative annex) and specifying performance 
requirements for the measurement (normative part). This 
attempt to define frequency indirectly via test conditions 
proved difficult as shown by the fact that the 2011 
requirements were relaxed with an amendment issued in 2014 
[2]. While the original requirements were impossible to meet, 
the newly relaxed requirements open the possibility of 
compliant implementations yielding different frequency 
measurements for the same test conditions. 

2 Desired attributes for a frequency 
measurement method 

A good frequency measurement method: 

• Meets application requirements for accuracy and 
response time under realistic system conditions. 
Accuracy in the order of a few mHz or better may be 
required. Typical system conditions include frequency 
excursions of ±5 Hz and frequency ramps of up to 
±15 Hz/s. Inertia-free inverter-based power sources pose 
higher requirements than the traditional requirements 
listed above.  

• Can be calculated at will and tied to internal device 
processes such as the waveform sampling process, rather 
than in response to an external event (e.g., zero crossing).  

• Does not require any prior knowledge (approximation) of 
frequency and does not need to use an iterative process to 
obtain the accurate value of frequency.  

• Quickly recovers from switching events.  

• Incorporates a quality-of-measurement index signifying 
if the input waveform is periodic. This index allows 
invalid measurements to be easily identified.  

• Allows straightforward balance between accuracy and 
speed of response, e.g., by adjusting a low-pass filter 
included in the method.  

• Does not require any waveform prefiltering and thus 
avoids any artifacts of such prefiltering.  

• Is accurate for periodic signals, even if heavily distorted 
by harmonics, including cases of multiple zero crossings 
within each fundamental frequency period.  

• Allows natural usage of all three phase signals. 
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This paper presents a new frequency measurement method that 
meets the above requirements.  

3 Defining power system frequency 

Because frequency is a reciprocal of period, we refer to 
frequency measurement and period measurement interchange-
ably to describe the same measurement task.  

3.1 Common sense approach to power system frequency 

A period of a repeating waveform is the time shift that needs 
to be applied to the waveform in order for it to “become itself” 
(see (1)). In other words, the period is a shift that maximizes 
signal autocorrelation. This definition works as long as the 
signal is periodic, even if it includes harmonics and/or a dc 
component.  

In practice, we need to decide on the length of the auto-
correlation window. The exact waveform period is the logical 
choice. We cannot use half a period because the input 
waveform in general does not have to be antisymmetrical, i.e., 
x(t–T/2) does not have to equal –x(t). Using multiple periods 
adds delay and theoretically does not provide any extra data.  

3.2 Formalized approach to power system frequency  

A period of a repeating waveform is the time shift T1 for which 
an integral over a time period T1 of the product of the waveform 
and the waveform delayed by T1 is at its maximum. In other 
words: 

 𝐴𝐴(𝑡𝑡,𝑇𝑇) = � 𝑥𝑥(𝑡𝑡) ∙ 𝑥𝑥(𝑡𝑡 − 𝑇𝑇)𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡−𝑇𝑇

 (2a) 

 T1(t) = T for which A(t,T) is at its maximum (2b) 

However, as we shift the waveform by T and integrate over T 
in (2a), we increase the integral when we increase T, not 
because the correlation is better, but because we integrate over 
a longer time interval. Therefore, it is imperative to normalize 
the integral as follows. 

3.3 Proposed definition of power system frequency 

A period of a repeating waveform is the time shift T1 for which 
an integral over a time period T1 of the product of the waveform 
and the waveform delayed by T1, normalized with the wave 
magnitude, is at its maximum. In other words: 

 𝐴𝐴(𝑡𝑡,𝑇𝑇) =
∫ 𝑥𝑥(𝑡𝑡) ∙ 𝑥𝑥(𝑡𝑡 − 𝑇𝑇)𝑑𝑑𝑑𝑑𝑡𝑡
𝑡𝑡−𝑇𝑇

0.5 ∫ 𝑥𝑥2(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡
𝑡𝑡−2𝑇𝑇

 (3) 

A truly periodic waveform A(t,T1) per (3) is exactly 1. For a 
near-periodic waveform, such as during a frequency ramp 
and/or a magnitude ramp or oscillation, A(t,T1) per (3) is below 
but close to 1. For a nonperiodic waveform, such as for a phase 
or magnitude jump, A(t,T1) per (3) is considerably below 1. 
Therefore, the value of A(t,T1) is a good measurement quality 
indicator. We may consider a waveform periodic, and thus 
mark the measured period T1 as valid, if A(t,T1) > 0.95 for 

example. The exact threshold depends on the frequency and 
magnitude rates of change we want to follow.  

We can run method (3) at any arbitrary point in time, t, which 
is convenient for synchrophasor applications. It returns the 
period and its validity, i.e., the information, if the waveform is 
actually periodic at the time t.  

The method uses a sliding data window of two actual periods. 
We use this data window length as it takes not less than two 
full periods to verify if the waveform is truly periodic.  

Method (3) is well suited for off-line applications, but it may 
be computationally too demanding in real time because of the 
need to find the function maximum in (3). The next section 
proposes yet another method that yields equally good results 
but is numerically simpler. This alternative method searches 
for the zero of a function rather than the maximum.  

3.4 Definition of power system frequency suitable for 
efficient implementation 

A periodic signal contains the fundamental frequency 
component and a number (potentially infinite) of harmonics 
(signals of frequencies being integer multiples of the 
fundamental). Each harmonic is a sinewave. Note that for a 
sinewave signal, the signal and its time derivative are shifted 
by 90 electrical degrees at the frequency of the said signal. Due 
to this relationship, the integral of the product of the signal and 
its derivative taken over the period of the said signal is zero 
(see the Appendix for the mathematical proof).  

The above observation allows us to define the period as 
follows. A period of a repeating waveform T1 is the length of 
the integration window for which the integral of the product of 
the signal (x) delayed by T1 and its time derivative (x’) is zero. 
In other words: 

 𝐵𝐵(𝑡𝑡,𝑇𝑇) = � 𝑥𝑥′(𝑡𝑡) ∙ 𝑥𝑥(𝑡𝑡 − 𝑇𝑇)𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡−𝑇𝑇

 (4a) 

 T1(t) = T for which B(t,T) is at zero (4b) 

We can apply the delay to the signal derivative instead of the 
signal and obtain an equally good method as follows: 

 𝐵𝐵(𝑡𝑡,𝑇𝑇) = � 𝑥𝑥(𝑡𝑡) ∙ 𝑥𝑥′(𝑡𝑡 − 𝑇𝑇)𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡−𝑇𝑇

 (4c) 

Methods (3) and (4) are similar. Method (4), however, is 
numerically simpler because it requires finding a zero of the B-
function (4a) instead of finding the maximum of the A-function 
(3).  

Method (3) provides a quality-of-measurement index where 
the A(t,T1) value signifies if the signal is truly periodic. In that 
sense, (4) can be applied to find T1 and (3) can be applied to 
check if T1 is valid. 

4 New power system frequency algorithm 

The B-function (4a) has a peculiar property: when calculated 
for a period T, shorter than the actual period T1, the function is 
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positive, and when calculated for a period T, longer than the 
actual period T1, the function is negative (see the Appendix for 
the mathematical proof). This observation holds true for 
practical frequency measurement ranges when T and T1 do not 
differ much. This key observation allows a very simple 
implementation: if the B-function is positive, the present 
period estimate shall be increased, and when the B-function is 
negative, the present period estimate shall be decreased.  

Further, the B-function does not change much when calculated 
for two consecutive samples (see the Appendix for the 
analytical expression of the B-function). As a result, instead of 
performing iterations for a given data set at a given point in 
time, we iterate using new data sets. In other words, we 
calculate the B-function once for any given point in time and 
decide to increase or decrease the period estimate for the 
calculation of the B-function for the next data set. If the 
sampling frequency is sufficiently high (such as 4 kHz or 
higher), the process is stable even for extremely high rates-of-
change of frequency. 

Ideally, the value of the period (i.e., the shift in the signal) in 
the new method should not be limited to integer multiples of 
samples. For example, if the signal frequency is 60 Hz and the 
sampling frequency is 10 kHz, the period is 166.6(6) samples. 
Calculating the B-function for T = 166 samples gives a positive 
value, e.g., 100 (positive value means 166 is below the actual 
period). Following our algorithm, if we increase the period 
estimate and calculate the B-function for T = 167 samples, we 
obtain a negative value, e.g., –49.25 (negative value means 167 
is above the actual period). A simple algorithm limited to the 
period estimate in integer sample counts would oscillate the 
estimated period between 166 and 167 samples. Note that the 
straight average between 166 and 167 (166.5) does not reflect 
the true period of 166.6(6). Resampling would allow us to 
apply fractional shifts, but resampling is computationally 
expensive. To solve this, we use periods expressed in integer 
sample counts and apply interpolation if the B-function 
changes sign between two consecutive samples. In this 
example, we interpolate between the two points (166 samples, 
100) and (167 samples, –49.25) and obtain the period of 166.67 
samples. This way the algorithm constantly tracks the zero of 
the B-function by probing it to the left and right of the actual 
zero. The interpolation allows for better accuracy. If the B-
function does not change signs between two consecutive 
samples, the algorithm uses the newest value of the period.  

Finally, to increase accuracy, we apply a low-pass filter (LPF) 
to the period values obtained from interpolation. The LPF can 
be set at about 15 Hz in order to allow frequency changes as 
fast at 15 Hz/s. The lower the cut-off frequency, the better the 
accuracy and the slower the response time of the algorithm (the 
lag between the true and measured frequency). Low-pass 
filtering is a simple and effective way to control accuracy-
versus-speed performance requirements. In particular, two 
filters can be used: one for metering purposes and the other for 
frequency protection or frequency tracking purposes. Fig. 2 
presents the algorithm implementation.  

The presented algorithm requires relatively high sampling 
rates, in the order of 4 to 10 kHz. We can implement it, 
however, with lower sampling rates using up-sampling.  

The LPF in Fig. 2 can be of a finite impulse response, i.e., have 
a constant group delay, for which we can easily compensate. 
This makes the new algorithm a very good candidate for 
frequency measurement in synchrophasor or other time-tagged 
applications.  

BUFFER

d/dt

* B-FUNCTION
B > 0 → T = T + 1
B < 0 → T = T – 1

MIN

MAX

T

A-FUNCTION QUALITY

INTERPOLATION LPF FREQUENCYfSAMPL/T1

T1

x

LPF*  

Fig. 2. Block diagram of the new frequency algorithm 
(T and T1 are in samples of sampling frequency fSAMPL). 

5 Performance and sample results  

In order to illustrate performance of this new algorithm, 
consider a heavily distorted waveform with frequency and 
magnitude changing over time (Fig. 3). In this example, the 
frequency declines at 20 Hz/s, exhibits a step change by 5 Hz, 
and later increases at 2.5 Hz/s.  
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Fig. 3. Input signal used for testing: waveform (top), 
frequency (middle), and magnitude of fundamental frequency 
component (bottom). 

Fig. 4a shows the actual period, the raw period in integer 
samples, the raw period interpolated between samples, and the 
final period estimate after low-pass filtering, for a fraction of 
the test time. Fig. 4a shows how the raw period tracks the 
actual period. Fig. 4b presents the actual and measured 
frequencies. The measurement error in the steady state is very 
small, on the order of 0.6 mHz.  

Fig. 5 shows the actual and measured frequencies and 
illustrates how well the new algorithm tracks frequency despite 
magnitude changes and very significant harmonic distortions 
in the input signal.  
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Fig. 4. New algorithm operation illustration: period (top) 
and frequency (bottom) for a –20 Hz/s ramp.  
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Fig. 5. Response of the new algorithm to the test of Fig. 3. 

Fig. 6 illustrates frequency measurement for a switching event 
(phase jump by 90 degrees at t = 0.3 s).  
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Fig. 6. Response of the new algorithm to a switching event: 
input waveform (top), frequency (middle), and quality-of-
measurement index (bottom). 

As expected for any frequency measurement method, the 
frequency measurement is affected during the phase jump. The 

new method, however, calculated a low quality-of-
measurement index during the interval for which the 
measurement was not accurate. This low index value may 
engage a selected fall-back logic, such as freezing the last valid 
measurement until the quality-of-measurement index returns to 
an acceptable value. In this case, the measurement is marked 
as invalid for about 40 ms (time needed to flush the phase jump 
from the algorithm’s memory). 

Fig. 7 presents a sample result for an EMTP-simulated system. 
The network includes series compensation and a low-inertia 
generator. The former caused subsynchronous oscillations and 
the latter caused a fast-frequency ramp after the generator 
became islanded after clearing a fault. The new method 
performs very well compared with the zero-crossing approach 
(modeled with no prefiltering). The quality-of-measurement 
index correctly identifies frequency measurements that are less 
accurate.  

1 1.2 1.4 1.6 1.8 2 2.2

-100

0

100

In
p
u
t 
(V

)

1 1.2 1.4 1.6 1.8 2 2.2
56

60

64

68

F
re

q
u
e
n
cy

 (
H

z)

1 1.2 1.4 1.6 1.8 2 2.2
50

100

Q
u
a
lit

y 
(%

)

Zero crossing

New method

Time (s)  

Fig. 7. Transient simulation example including 
subsynchronous oscillations and a low-inertia generator. 

6 Conclusions 

This paper proposes a definition of dynamic frequency for 
power system applications and derives a simple and robust 
implementation of frequency measurement for off-line or real-
time applications. The new frequency measurement algorithm 
has numerous advantages and features differentiating it from 
other commonly used methods.  

The new method is accurate and fast. It allows for a convenient 
ride-though for switching events by providing a numerical 
quality-of-measurement index. The new method has constant 
and low latency, making it a good candidate for synchrophasor 
or other time-tagged applications.  
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Appendix 

The presented period estimation method relies on the key 
observation that the B-function (4a) is negative if calculated 
for a period longer than the actual period, and it is positive if 
calculated for a period shorter than the actual period. This 
appendix provides a mathematical proof of this key idea.  

Assume a period waveform in a steady state composed of a 
number of harmonics. We first look at a single harmonic. Our 
input signal is therefore a single frequency component as 
follows: 

 𝑥𝑥(𝑡𝑡) = 𝐴𝐴ℎ𝑠𝑠𝑠𝑠𝑠𝑠 �
2𝜋𝜋ℎ
𝑇𝑇1

𝑡𝑡 + 𝛼𝛼� (A-1) 

where: 

h is the harmonic order (h = 1, 2, 3, …). 
Ah is the peak magnitude.  
α is an arbitrary initial phase angle.  
T1 is the true period (fundamental frequency).  

The input derivative of (A-1) is as follows: 

 𝑥𝑥′(𝑡𝑡) =
2𝜋𝜋ℎ
𝑇𝑇1

𝐴𝐴ℎ𝑐𝑐𝑐𝑐𝑐𝑐 �
2𝜋𝜋ℎ
𝑇𝑇1

𝑡𝑡 + 𝛼𝛼� (A-2) 

Substituting (A-1) and (A-2) into (4b) we obtain: 

𝐵𝐵(𝑡𝑡,𝑇𝑇) =
2𝜋𝜋ℎ
𝑇𝑇1

(𝐴𝐴ℎ)2 

� � 𝑠𝑠𝑠𝑠𝑠𝑠 �
2𝜋𝜋ℎ
𝑇𝑇1

(2𝑡𝑡 − 𝑇𝑇) + 2𝛼𝛼�𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡−𝑇𝑇

− 𝑠𝑠𝑠𝑠𝑠𝑠 �
2𝜋𝜋ℎ
𝑇𝑇1

𝑇𝑇�� 
(A-3) 

Solving for the integral we obtain: 

𝐵𝐵(𝑡𝑡,𝑇𝑇) = −
𝜋𝜋ℎ
𝑇𝑇1

(𝐴𝐴ℎ)2 ∙ �𝑠𝑠𝑠𝑠𝑠𝑠 �
2𝜋𝜋ℎ
𝑇𝑇1

𝑇𝑇� + 

+
𝑇𝑇1

4𝜋𝜋ℎ
𝑐𝑐𝑐𝑐𝑐𝑐 �

2𝜋𝜋ℎ
𝑇𝑇1

(2𝑡𝑡 − 𝑇𝑇) + 2𝛼𝛼��
𝑡𝑡−𝑇𝑇

𝑡𝑡

 

(A-4) 

Finally, inserting the limits of integration we obtain: 

𝐵𝐵(𝑡𝑡,𝑇𝑇) =
𝜋𝜋ℎ
𝑇𝑇1

(𝐴𝐴ℎ)2𝑠𝑠𝑠𝑠𝑠𝑠 �
2𝜋𝜋ℎ
𝑇𝑇1

𝑇𝑇� ∙ 

�−𝑇𝑇 +
𝑇𝑇1
𝜋𝜋ℎ

𝑠𝑠𝑠𝑠𝑠𝑠 �
4𝜋𝜋ℎ
𝑇𝑇1

(𝑡𝑡 − 𝑇𝑇) + 2𝛼𝛼�� 
(A-5) 

Next, we analyze the sign of (A-5) depending on the ratio of T 
and T1, i.e., depending on whether the estimated period (T) is 
shorter or longer than the actual period of the waveform (T1).  

Note that the expression (A-6), 

𝑠𝑠𝑠𝑠𝑠𝑠 �
4𝜋𝜋ℎ
𝑇𝑇1

(𝑡𝑡 − 𝑇𝑇) + 2𝛼𝛼� (A-6) 

is a variable between –1 and +1 depending on the initial angle 
α and a specific point in time t. However, when multiplied by 
T1/(πh) this factor is lower than one third of T1.The higher the 
harmonic order, the lower the value of this factor. Even for the 
fundamental frequency component (h = 1), assuming T1 and T 

are relatively close, the expression in brackets in (A-5) is 
between: 

−𝑇𝑇1 −
𝑇𝑇1
3

   and   −𝑇𝑇1 +
𝑇𝑇1
3

  (A-7) 

More importantly, the expression in brackets in (A-5) is always 
negative, regardless of the harmonic order, h; initial angle, α; 
and time of calculating the B-function, t.  

Now let us turn our attention to the expression in (A-8). 

𝑠𝑠𝑠𝑠𝑠𝑠 �
2𝜋𝜋ℎ
𝑇𝑇1

𝑇𝑇� (A-8) 

Assume T and T1 are close. Therefore, factor (A-8) is negative 
if T < T1 and positive if T > T1. This is irrespective of the time 
and initial angle. For higher harmonics, the relationship can be 
reversed if T differs enough from T1 (we will discuss this later 
in this appendix). Of course if T = T1, (A-8) is exactly zero.  

Knowing that the factor (A-7) is always negative, while the 
factor (A-8) is positive, zero, or negative depending on the 
relation between T and T1, we conclude the following: 

 if T < T1 then B(t,T) is positive  

 if T = T1 then B(t,T) is zero (A-9) 

 if T > T1 then B(t,T) is negative  

As the input signal is the sum of all its harmonics, the B-
function is the sum of the expressions in (A-5) for each of the 
harmonics. Each harmonic (A-1) follows the relationship in 
(A-9), and, therefore, the B-function for the input signal 
follows the relationship in (A-9).  

The relationship in (A-9) is true for the fundamental frequency 
component and lower harmonics. Higher harmonics may have 
this relationship inverted. However, the magnitudes of higher 
harmonics are small compared with the fundamental in 
practical conditions. Observe, that the squared magnitudes 
appear in (A-5), making the harmonics with small magnitudes 
inconsequential in terms of (A-5). For example, assume 
10 percent of the 7th harmonic. The contribution of this 
harmonic to the B-function for the input signal is 7· (0.1)2 = 
0.07 pu, i.e., only 7 percent of the contribution of the 
fundamental frequency component. Even if the 7th harmonic 
violates (A-9), the B-function for the input signal with the 
fundamental will still follow (A-9) allowing the implementa-
tion of Section 4. 

We can show that when using (4c) instead of (4a), the 
relationship in (A-9) is inverted. 
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