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ABSTRACT 

A time series is a set of values of a particular variable that occur over a period of time in a certain pattern. The most 
common patterns are increasing or decreasing trend, cycle, seasonality, and irregular fluctuations (Bowerman, 
O’Connell, and Koehler 2005). To model a time series event as a function of its past values, analysts identify the 
pattern with the assumption that the pattern will persist in the future. Applying the Box-Jenkins methodology, this 
paper emphasizes how to identify an appropriate time series model by matching behaviors of the sample 
autocorrelation function (ACF) and partial autocorrelation function (PACF) to the theoretical autocorrelation functions. 
In addition to model identification, the paper examines the significance of the parameter estimates, checks the 
diagnostics, and validates the forecasts. 

INTRODUCTION 

This paper is an introduction to applied time series modeling for analysts who have minimum experience in model 
building, but are not very familiar with time series models. It would help to have a basic understanding of regression 
analysis such as simple linear regression or multiple regressions. The challenge of modeling is to diagnose the 
problem and decide on an appropriate model to help answer the real-world questions. It takes experience to develop 
an ability to formulate appropriate statistical models and to interpret the results, but this paper gives a head start on 
practicing these techniques.  

NON-SEASONAL BOX-JENKINS MODEL IDENTIFICATION 

Before identifying the pattern, the time series values            must be stationary where its mean and variance are 
constant through time. The constant mean and variance can be achieved by removing the pattern caused by the time 
dependent autocorrelation. Besides looking at the plot of the time series values over time to determine stationary or 
non-stationary, the sample autocorrelation function (ACF) also gives visibility to the data. If the ACF of the time series 
values either cuts off or dies down fairly quickly (Figure 1(a)), then the time series values should be considered 
stationary. On the other hand, if the ACF of the time series values either cuts off or dies down extremely slowly 
(Figure 1(b)), then it should be considered non-stationary. In general, if the original time series values are non-
stationary and non-seasonal, perform the first or second differencing transformation on the original data will usually 
produce stationary time series values.  

First Difference:                               

Second Difference:                                               

Figure 1. The ACF (PACF) cuts off fairly quickly versus dies down extremely slowly (Bowerman, O’Connell, 
and Koehler p. 413) 
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Given that either the original time series             or the transformed time series              are stationary, we 

can now look at the sample autocorrelation function (ACF) and partial autocorrelation function (PACF) for particular 
behaviors that indicate a theoretical non-seasonal Box-Jenkins model. Figure 2 shows different behaviors of the ACF 
and PACF. There are three types of non-seasonal theoretical Box-Jenkins models summarized in Table 1: moving 
average model of order q, autoregressive model of order p, and mixed autoregressive – moving average model of (p, 
q).  Please note that there is no theoretical Box-Jenkins model when the ACF cuts off quickly after lag q and the 
PACF cuts off quickly after lag p. However, we could look at which of the ACF or PACF is cutting off more abruptly to 
tentatively identify the model and look at the estimations, diagnostics, and forecasts to select the best model.   

Table 1. Non-Seasonal Theoretical Box-Jenkins Models (Bowerman, O’Connell, and Koehler p. 436) 

Model ACF PACF 

Moving average of order q 
                                     

Cuts 
off 

after 
lag q 

Dies 
down 

Autoregressive of order p 

                                    

Dies 
down 

Cuts 
off 

after 
lag p 

Mixed autoregressive-moving average of order (p, q) 

                                                               

Dies 
down 

Dies 
down 

 
Figure 2. The ACF and PACF Behaviors (Bowerman, O’Connell, and Koehler p. 412) 
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SEASONAL BOX-JENKINS MODEL IDENTIFICATION 

If the original time series values are non-stationary and seasonal, more complex differencing transformations are 
required. Before using differencing to transform seasonal non-stationary time series values into stationary time series 
values, we need to check if the data over time shows constant seasonal variance. To stabilize the variance, apply an 
appropriate predifferencing transformation – log, square root, and etc – on the original time series values. Next we 
examine the ACF of the transformed data both at non-seasonal and seasonal levels for any indication of stationary. 
The seasonal behaviors appear at the exact seasonal lags L, 2L, 3L, and 4L. For daily data (L = 7), the exact 
seasonal lags are 7, 14, 21, and 28. For monthly data (L = 12), the exact seasonal lags would be 12, 24, 36, and 48. 
For quarterly data (L = 4), the exact seasonal lags would be 4, 8, 12, and 16. Beside looking for spikes greater than 
two standard errors at the exact seasonal lags, we should also look for spikes at the near seasonal lags, which are L 

– 2, L – 1, L + 1, L + 2, 2L – 2, 2L – 1, 2L + 1, 2L + 2, 3L – 2, 3L – 1, 3L +1, 3L + 2, 4L – 2, 4L – 1, 4L +1, and 4L +2. 
In general, the transformed time series values               are considered stationary if the ACF shows both of the 

following behaviors:  

1. Cuts off or dies down fairly quickly at the non-seasonal level. 

2. Cuts off or dies down fairly quickly at the seasonal level (exact seasonal lags or near seasonal lags). 

Otherwise, these values are considered non-stationary. The four stationary transformations on the time series values 
           are shown in Table 2. Sometimes the transformation          

  does not need differencing to produce 
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stationary time series values. The transformation          
      

   is the first non-seasonal differencing that 
sometimes transforms seasonal time series values into stationary time series values. The transformations         
  

      
  and          

      
      

        
  are the first seasonal differencing and the mixed of first non-seasonal 

differencing and first seasonal differencing. These transformations frequently produce stationary time series values. 

Table 2. Four Stationarity Transformations (Bowerman, O’Connell, and Koehler p. 492) 

          
            

       
            

       
            

       
      

        
  

      
  

     
  

  

  

  

  

  

      
  

 

      
     

  

      
     

  

  

  

  

  

      
       

  

 

 

 

 

          
     

  

          
     

  

  

  

      
       

  

 

 

 

 

 

          
       

    
    

  

          
       

    
    

  

  

      
       

      
        

  

 

Given that the time series values are considered stationary and exhibit behaviors (spikes) described in Table 1 Non-
Seasonal Theoretical Box-Jenkins Models at the non-seasonal and seasonal levels, here is the three-step 

procedure for tentatively identifying a model: 

STEP 1: Look at the behaviors (spikes) of the ACF and PACF at the non-seasonal level to identify a non-

seasonal model. 
STEP 2: Look at the behaviors (spikes) of the ACF and PACF at the seasonal level to identify a seasonal 

model. 
STEP 3: Combine models from STEP 1 and STEP 2 to identify an overall tentatively model. 

Once we obtain the overall tentatively model, we need to determine whether or not to include a constant term   in a 

Box-Jenkins model. A constant term   is the mean ( ) of the stationary time series values              , which   is 

equal (or nearly equal) or not equal to zero. In general, the rule of thumb is to include a constant mean   in the model 
if the absolute value of  

  

         
           

   
 
   

     
          

          
   

         
 

   

 

is greater than 2 (Bowerman, O’Connell, and Koehler p. 427). Equivalently, if the p-value associated to a constant 
mean   is less than a significant level  , we should include a constant mean   in the model. Otherwise, we do not 

include it in the model.  

EXAMPLE 1 

Using SASHELP.USECON data set, we will apply the Box-Jenkins methodology to examine the trend and develop a 
time series model that could be used to forecast the Airline Revenue Passenger Miles Domestic (AIRRPMD) on a 
monthly basis. The historical data started on January 1971 to December 1991. We will build the model based on the 
first 19 years of historical data and forecast the monthly AIRRPMD for the 20

th
 year (1991) to validate the model. 

Output 1.1 shows that the monthly AIRRPMDs follow an increasing trend and have a seasonal pattern with one major 
peak and several minor peaks during the year. The major peaks appear to be bigger over the years indicating non-
constant seasonal variation. We need to perform a transformation on the data to stabilize the seasonal variation. The 
square roots of the AIRRPMD (Output 1.2) show that the transformation is not strong enough to equalize the 
seasonal variation. The quartic roots of the AIRRPMD (Output 1.3) and the natural logarithms of the AIRRPMD 
(Output 1.4) both seem to produce constant seasonal variation. However, the quartic root transformation best 
equalizes the seasonal variation because the major peaks’ scales are consistent over the range of time (note the 
variations of the major peaks in 1971 and 1991 appear more equalize).  
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DATA airrpmd; 

SET sashelp.usecon (WHERE=(Date < '01Jan1991'd)); 

ln_AIRRPMD=log(AIRRPMD); 

sqrt_AIRRPMD=AIRRPMD**.5; 

Qtroot_AIRRPMD=AIRRPMD**.25; 

RUN; 

 

ODS GRAPHICS ON; 

PROC TIMESERIES data=airrpmd plot=series; 

    ID date interval=month; 

    VAR AIRRPMD ln_AIRRPMD sqrt_AIRRPMD Qtroot_AIRRPMD; 

  RUN; 

 

Output 1.1 AIRRPMDs 

 

Output 1.2 SQUARE ROOT AIRRPMDs 

 

Output 1.3 QUARTIC ROOT AIRRPMDs 
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Output 1.4 NATURAL LOGARITHMS AIRRPMDs 

 

Let’s examine the following sample autocorrelation functions (ACF) of quartic roots time series values and determine 
which one of the four stationary transformations in Table 2 produces stationary time series values. The time series 

values               are considered stationary if the ACF cuts off fairly quickly both at the non-seasonal and 

seasonal levels. When we examine the time series values at the seasonal level, make sure to look at the exact 
seasonal lags (L=12, 24, 36, and etc.) and near seasonal lags (L=10, 11, 13, 14, 22, 23, 25, 26, and etc.) that are 
greater than two standard errors. Since the ACF in Output 1.5 dies down extremely slowly both at the non-seasonal 
and seasonal levels, the quartic roots time series values are considered non-stationary. In Output 1.6, the ACF dies 
down fairly quicker at the non-seasonal level than at the seasonal level. The transformed values are still non-
stationary. The ACF in Output 1.7 shows similar behaviors as Output 1.5 indicating non-stationary time series values. 
In Output 1.8, the ACF cuts off quickly after lag 1 at the non-seasonal level and dies down fairly quickly after lag 12 at 
the seasonal level. We can conclude that the quartic roots time series values transformed by the first difference and 
first seasonal difference are stationary. Please note that the values can be over-differenced. If that is the case, the 
sample inverse autocorrelation functions (IACF) will die down extremely slowly.  

ODS GRAPHICS ON; 

PROC ARIMA DATA=airrpmd; 

/* QUARTIC ROOT TRANSFORMATIONS */ 

    IDENTIFY VAR=Qtroot_AIRRPMD         NLAG=24 ;   

/* FIRST DIFFERENCE */ 

    IDENTIFY VAR=Qtroot_AIRRPMD(1)      NLAG=24 ;   

/* FIRST SEASONAL DIFFERENCE */ 

    IDENTIFY VAR=Qtroot_AIRRPMD(12)     NLAG=24 ; 

/* FIRST DIFFERENCE AND FIRST SEASONAL DIFFERENCE */ 

    IDENTIFY VAR=Qtroot_AIRRPMD(1,12)   NLAG=24 ; 

RUN; 

Output 1.5 QUARTIC ROOT TRANSFORMATIONS:        
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Output 1.6 FIRST DIFFERENCE:         
       

  

 
 

Output 1.7 FIRST SEASONAL DIFFERENCE:        
       

 

 

Output 1.8 FIRST DIFFERENCE AND FIRST SEASONAL DIFFERENCE:        
       

      
        

  

     

                              Autocorrelation Check for White Noise 

    To        Chi-             Pr > 

   Lag      Square     DF     ChiSq    --------------------Autocorrelations-------------------- 

 

     6       29.66      6    <.0001    -0.337    -0.027    -0.037    -0.023     0.071    -0.087 

    12       85.07     12    <.0001     0.090    -0.004     0.077    -0.184     0.305    -0.299 

    18       90.41     18    <.0001    -0.050     0.061     0.032     0.023    -0.078     0.088 

    24      113.81     24    <.0001    -0.136     0.094    -0.063     0.118    -0.057    -0.209 

 In addition to the autocorrelation plots, the white noise output is provided to test the null hypothesis: the 
autocorrelations of the time series values are equal to zero. If    is rejected, the autocorrelations of the time series 

values are nonzero. In this case, the white noise output shows that the null hypotheses for lags up to 6, 12, 18, and 
24 are strongly rejected indicating that a time series model is needed. 
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Looking at the ACF and PACF of the stationary time series in Output 1.8, we can identify an appropriate time series 
model by following the three-step procedure discussed in Seasonal Box-Jenkins Model Identification. 

STEP 1: The ACF cuts off after lag 1 and the PACF dies down at the non-seasonal level indicate a first-order moving 

average model. Therefore the tentatively non-seasonal model is  
                  

STEP 2: The ACF cuts off after lag 12 and the PACF dies down at the seasonal level indicate a seasonal moving 

average model with lag 12. Therefore the tentatively seasonal model is  
                      

STEP 3: Combining models from STEP 1 and 2, the tentatively overall model is 

                              

ESTIMATIONS 

Not only does the Box-Jenkins model have to be stationary, it also has to be invertible. Invertible means recent 

observations are more heavily weighted than more remote observations; the parameters                         

used in the model decline from the most recent observations down to the further past observations. By default, PROC 
ARIMA in SAS® requires that the preliminary and final parameter estimates for the autoregressive and moving-
average models satisfy the stationarity and invertibility conditions. If analysts use other software packages, make 
sure that the parameter estimates meet the stationarity and invertibility conditions (Bowerman, O’Connell, and 
Koehler p. 450). 
 
The t-values and approximate p-values test the following hypothesis (Bowerman, O’Connell, and Koehler pp. 455 – 
456). Let   be any particular parameter in a Box-Jenkins model.  

                       

We can reject the null hypothesis    if and only if either of the following conditions holds: 

       
   

      
                                                    

             

Please note that if the null hypothesis is rejected at the smaller significant level  , the stronger the evidence indicates 

that the parameter is important in the model. We also look at the estimated correlation between parameters in the 
correlation matrix. The parameters are always correlated, but very highly correlations greater than 0.9 suggests poor 
parameter estimates. If that is the case, drop one of the parameters. Lastly, when we are comparing models, the 
best model has smaller standard error, Akaike’s Information Criterion (AIC), and Schwarz’s Bayesian Criterion (SBC) 
values.  

EXAMPLE 1 CONTINUED 

To determine where or not   should be included in the combined model, here is the calculation: 
   

  

         
  

        

                  
                           

We conclude that   should not be included in the combined model. Equivalently,  the p-value (0.6980) associated 

with   is greater than the significant level   = 0.05 indicating that   is insignificant. The p-values associated with 

             are greater than 0.05 indicating that these parameters are significant in the model. The correlation matrix 

 shows that the parameters,              , are not highly correlated.  

PROC ARIMA DATA=airrpmd; 

/* NONSEASONAL FIRST DIFFERENCE AND SEASONAL DIFFERENCE*/ 

    IDENTIFY VAR=Qtroot_AIRRPMD(1,12)   NLAG=24 ; 

/*   FIRST-ORDER MOVING AVERAGE AND SEASONAL MOVING AVERAGE AT LAG 12*/ 

   ESTIMATE Q=(1)(12) ; 

RUN;  

                                Name of Variable = Qtroot_AIRRPMD 

                      Period(s) of Differencing                        1,12 

                      Mean of Working Series                       -0.00017 

                      Standard Deviation                           0.020485 

                      Number of Observations                            227 

                      Observation(s) eliminated by differencing          13 
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Autocorrelation Check for White Noise 

 

    To        Chi-             Pr > 

   Lag      Square     DF     ChiSq    --------------------Autocorrelations-------------------- 

 

     6       29.66      6    <.0001    -0.337    -0.027    -0.037    -0.023     0.071    -0.087 

    12       85.07     12    <.0001     0.090    -0.004     0.077    -0.184     0.305    -0.299 

    18       90.41     18    <.0001    -0.050     0.061     0.032     0.023    -0.078     0.088 

    24      113.81     24    <.0001    -0.136     0.094    -0.063     0.118    -0.057    -0.209 

 

                               Conditional Least Squares Estimation 

 

                                            Standard                 Approx 

               Parameter      Estimate         Error    t Value    Pr > |t|     Lag 

 

               MU           -0.0001057     0.0002720      -0.39      0.6980       0 

               MA1,1           0.43886       0.06022       7.29      <.0001       1 

               MA2,1           0.60252       0.05499      10.96      <.0001      12 

 

                               Constant Estimate      -0.00011 

                                 Variance Estimate      0.000291 

                                 Std Error Estimate     0.017072 

                                AIC                    -1200.74 

                                 SBC                    -1190.46 

                                 Number of Residuals         227 

                          * AIC and SBC do not include log determinant. 

 

                               Correlations of Parameter Estimates 

 

                             Parameter        MU     MA1,1     MA2,1 

 

                             MU            1.000     0.005     0.020 

                             MA1,1         0.005     1.000    -0.051 

                             MA2,1         0.020    -0.051     1.000 

                        

DIAGNOSTICS CHECKING 

To test the adequacy of an overall model, the null and alternative hypotheses are   : Model is adequate versus   : 

Model is inadequate. We perform the test by using the Ljung-Box statistic      given below:  

                                                
     

 

   

 

Please note that    is the number of parameters in the model excluded the constant mean   and        where n 
is the number of observations and d is the degree of non-seasonal differencing used to transform the original time 

series values into stationary. Also   
      is the square of the autocorrelation of the residuals at lag   (Bowerman, 

O’Connell, and Koehler p. 459). 

If the p-value is greater than significant level   or equivalently    is less than chi-square distribution with      

degree of freedom, the null hypothesis cannot be rejected concluding that the model is adequate. The greater the p-
value is, the stronger the evidence indicates that the model is adequate. Furthermore, we can improve the model by 
examining the autocorrelations and partial autocorrelation of the residuals. If there are spikes exceeding two standard 
errors, it is possibly an indication of a more adequate model.  

EXAMPLE 1 CONTINUED 

 The p-values associated with    are greater than 0.05 indicating that the model is adequate. Looking at the 

autocorrelation function and partial autocorrelation function of the residuals, there is only one spike at lag 11 that is 
slightly over two standard errors. Since the standard error, Akaike’s Information Criteria (AIC), and Schwarz Bayesian 
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Criteria (SBC) values do not significantly improved from a revised model that accounts for lag 11 (output omitted), the 
original overall model is considered adequate.   

                                Autocorrelation Check of Residuals 

 

    To        Chi-             Pr > 

   Lag      Square     DF     ChiSq    --------------------Autocorrelations-------------------- 

 

     6        4.00      4    0.4061     0.035    -0.075    -0.019     0.000     0.050    -0.086 

    12       17.81     10    0.0582     0.073     0.055     0.047    -0.120     0.152     0.097 

    18       22.87     16    0.1172    -0.114     0.038     0.041     0.006    -0.054    -0.039 

    24       32.65     22    0.0670    -0.080     0.016     0.007     0.013    -0.016    -0.177 

    30       37.37     28    0.1109     0.008     0.115     0.012    -0.021    -0.046    -0.047 

    36       42.25     34    0.1566    -0.033    -0.114     0.005     0.010     0.042    -0.047 

    42       51.49     40    0.1053    -0.031    -0.089    -0.088     0.031     0.065     0.107 

 

                                Model for variable Qtroot_AIRRPMD 

 

                              Estimated Mean               -0.00011 

                              Period(s) of Differencing        1,12 

 

                                      Moving Average Factors 

 

                                  Factor 1:  1 - 0.43886 B**(1) 

                                  Factor 2:  1 - 0.60252 B**(12) 

 

 

FORECASTING 

We validate the forecast by splitting the data in two parts: one part of the data is used for modeling and the other part 
of the data is used for forecasting. We look at the residuals to determine how accurate the model predicts. The 
desired accuracy of the forecasts depends on the analyst’s goal. 

EXAMPLE 1 CONTINUED 

The first 19 years of the monthly AIRRPMD values are used to build the model forecasting the 20
th
 year. Note that the 

forecast values for the 20
th

 year are still in quartic roots transformation. To get the forecast values in the original 
scales, do the reverse transformation; simply calculate each value to the fourth power. 
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 ODS GRAPHICS ON; 

PROC ARIMA DATA=airrpmd PLOTS = ALL; 

/* NONSEASONAL 1ST DIFFERENCE AND SEASONAL DIFFERENCE*/ 

    IDENTIFY VAR=Qtroot_AIRRPMD(1,12)   NLAG=24 ; 

/*   FIRST-ORDER MOVING AVERAGE AND SEASONAL MOVING AVERAGE AT LAG 12*/ 

    ESTIMATE Q=(1)(12) ; 

    FORECAST ID=date LEAD=12 INTERVAL=month PRINTALL OUT=predictions; 

RUN; 

 

CONCLUSION 

The Box-Jenkins methodology has four steps: model identification, estimation, diagnostics checking, and forecasting. 
Of all the four steps, model identification is the most complex step that analysts usually struggle with. The best way to 
learn is to understand the methodology and apply it to real-world problems. Practices help gain the experience you 
need to become efficient in model building.  
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