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Hermite Polynomals

The Hermite family of functions are the analog precursars to the dig-
ital signals to be presented here. They are briefly reviewed to show
similarities between them and their discrete-time counterparts, the

Binomial sequences.

The Hermite family of functions is cbtained by successive differenti-
9

. & —i
ation of the Gaussian e™

a2 2
Un(t) = ﬁeffr = H,(t)et

H,(t) are the Hermite polynomials; these can be generated by a
two-term recursive formula

Hon(t) +tH{t) + nH,1(8) =0
with

Hy(t)=1 Hy(t)=—t




These polynomials also satisfy & second-order differential equation
Ho(8) — tHo () + nH,(t) = 0
The Hermite family is orthogonal on the interval {—oc, oo} with
2
respect to the weight function e7
oo 12
[ un(thun(t)eTdt = j ert



Time-Frequency Relation of Hermite Family:

If f(t) « F(w) then

d

1) = (jw) Fw)

2 o2
But e_'!L +— +/2me” T and



Binomial Family

The discrete counterparts to the Hermite family are generated by suc-
cessive differences of the Binomial sequence, defined on the interval
[0, V]

N
( ) =M _ 0<k<N

Xo(k) = = Nk

Q, otherwise

for N large
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The other members of the Binomial family are obtained from

X (k) = A ( ‘;’:_‘:)

= v"(Nk_T), r=0,1,...,N

where

Afin) = fin+1)— f(n) (forward difference)
vf(n) = f(n)— fin —1) (backward difference)

and

AN fln—r)=v"fn)




By taking the suceessive differences, one obtains

x® = (¥) 502 (1) 7w
- Hk) ( N )

where &) is the forward factorial function, a polynomial in k& of
degree v.

o) o [ Bk =2) . (k -y +1), v 2]
L v=10



H,(k) are the discrete Hermite polynomials.

10



Binomial Network

Z{Xg(k)} = kgﬂ ( J:;T ) z—k - (1 e z-l)N

Also
Z{7 f(k)} = (1 — 271 ) Z{f(k)}

From these properties, it is casy to verify that

Xolz) = éﬁo ( ‘:j ) k= (1 427V

Xa(z) = Z{v" ( N;T )} (e 2N e g
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It can also be expressed in the forms

X0 = (5] %o

14271
el Binomial
- (1 + z‘l) Xo(2) ( Network )
In the time domain,
Xpys(k) = —Xooslk = 1) + Xp(k) = Xelk — 1)
with X,(—=1) = 0 0<r<N Xok)= (N)

k

<k r<N
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Frequency Response of Binomial Filters

z=e"T = ¢’
# = wT{normalized frequency)

Xo(2) |,eeo= Xo(8) = (1 +7)
: g
= (26_1% cos =¥
? g
= ZNe_J'Ng((:OS 5}5”
the amplitude and phase responses respectively
&
Ay(8) = 2%(cos 5)'"‘
N6
w(d) = -y

(The Binomial filter is a good approximation to a low-pass narrow-
band Gaussian filter)
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Similarly, for = > 1

X(z) = (1= 2y L+

and z = &/
X () = A,(ﬂ')ej“i"‘{a)
where
g g
A(0) = 2¥(sin o) (cos 5)4""—’"
, rm NE@
Wl =53
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The center frequency of the band = is found to be

0, = 2cos™ (|1 — %) = ZSiH‘I(\J%)

and the corresponding maximum band value
= N _r_ E 1 s
A0 = 2V ()81 -

* Note that there is no multiplication operation in the Binomal
Network (Fiiter Bank).

T (N=r
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Binormmal QMF Structure

Question: Can we obtain a half-band filter by linearly combining
low-frequency sequences of the Binomial fannly which satisfies QMF

magnitude condition?

Find an h¢(n) function as

N1

.y _
ho(n) = Y. 6,X;(n) n=0,1,..,N ; Nodd
r=0
which satisfles the magnitude condition in frequency
| Ho(e’™) |* + | Ho{&™*™) '= C

where C 15 a constant. [n time domain, this becomes

N
S ho(n)ho(n +26) =6 i=0,...,N
i=0
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Perfect Reconstruction Requires

bt
5
|
E
X
=
=
)
+
=
T
2
5
0
]
L
]
0

T\(z) is the power spectral density function of Hg{z}. For hg(n)
causal, length M

Ti(z) = e o2 v Y
Thiz) = —’YMZM+’YM—13M_1+---+’fu—’)’1z_l+-~—’m-’__k
\ _ C
Ty(z)+Talz) = ..+ %"+ +m2 2-+-...=5
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To make T(z) = constant, it is sufficient to make

M-1
2

72?1:0; n=112!---:

Hy(z)Hy(z") = Ti(z) = R(z) & p(n) = éﬂ ho(k)ho(k + 1)

Blz) = v + a2+ At e ™

need to force even-indexed coefficients in B{z) =0, n £ 0

M-1
p(Z'n)=0, n=1,2,...,—-2~—

normalized withp(0) = 1
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JH
plr) = 3 holk)Halk +7
-1 M-l -
= ¥ 3663 XKX,(k+n)
=0 s={i k=0
M
Prs(n) = kg{] Xr(k}Xa(k +ﬂ)
p(n) = TE{] .sé:{) 8.85p.s(n)

Find {6,} satisfles p(2n) =0; n=1,2,..., % with pp = 1
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e There are a set of coefficients which satisfy the squared magni-
tude condition for any N, N is odd.

o One set of coefficients provides a minimumn-phase solution.
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G.|set 1]|set2
Byl 1 1
0, V3 |—v3
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N=5

8.1 setl set 2

8y 1 1

) J2m+5 —\/2\/54-5 4
8] V10 | V10

L- :
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N="7

L

| set | | set 2

set

set 4

bo

v l

1

I e

4.9892 | -4.9892

1.0290

-1.0290

8.8461 | 8.0461

-2.9705

-2.5703

I
5.9760 | -5.9160

-5.9160 | 5.9160
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Remarks on Phase Response

e Note that no phase constraint is imposed in the problem!

e h(n) does not have a linear phase response for real f.. For-
tunately, h{n) has almost-lincar phase response. (Practically

linear)

e Non-minimum phase coefficient sets provide cven more almost-
linear phase responses.

¢ Phase response of hy(n) for N = 3,7; (minimum phase solu-
tions)
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Caonnections to Wavelet Transform

¢ Additional to Perfect Reconstruction Conditions, {Conventional
QMF), the Wavelct approach provides regularity condition.

e This condition provides maximally flat pass band and stopbands.

o The regularity condition requires the low-pass filter has a sufhi-
cient number of zeros at z = —1.

¢ Binomial QMF satisfies the regularity and wavelet conditions.
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e Binormial QMF filters are identical with the filters of orthonormal
wavelets derived in

I. Daubechies, “Orthonormal Bases of Compactly Supported
Wavelets”, Commun. on Pure and Applied Mathematics, Vol.
KLI 909-996, 1988.
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Performance Comparisons

¢ Binomial QMF-Wavelet vs Discrete Cosine Transform
a. Souree Models (1-D)

b. Real Images (Lena, Building, Cameraman, Brain)

a Auto-regressive, order 1, AR(1) source models are crude approx-
imations to the natural speech and image sources. 1-D AR(1)
source 1s defined as

X(n) = pX(n - 1) + &(n)

where p is the correlation coefficient and &{n) is white noise with
known power.
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The performance measure used here is the gain of transform coding
over PCM, Gr¢ 18 defined as

N

1 2
PO

Gre¢=—"-1
N 9 N
;=1

where o7 is the variance of the i** coefficient, and
s 1 N, : : i
0r = S o} (variance preserving decomposition)
=1
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Similarly, gain of subband coding over PCM;

]

=1

where o} is the variance of the I** band and

N

2 1 & 5
oi= =30
tTNS!

*Gro and Gspe assume that all the bands have the same type of

pdfs.
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4 x 4 Trans.
or

4-hand QMF
(2 levels)

8 = 8 Trans.
or

& band QMF
(3 level)

(s

0.95
0.85
0.75
0.65
0.5

0.95
0.85
0.75
0.65
0.5

5.71
2.59
1.84
1.49
1.23

7.63
3.03
2.03
1.59
1:27

4-tap 6-tap 8-tap 16-tap
643 677 691  T.08
2.82 285 301 3.07
1.95 202 205 209
1.56 160 1.62 1.64
126 128 129 1.30
1096 12.76 13.99 16.97
418 482 327 6.36
273 310 337 405
210 236 255 3.04
1.66 1.84 197 232
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b. Performance results for real 2-D sources
e Separable transform and QMF structure.

4 x 4 2-D "Irans.

or
16-Band Regular
Tree

8 x 8 2-D Trans.

or
G4-Band Regular
Tree

LENA
BUILDING
CAMERAMAN
BRAIN

LENA
BUILDING
CAMERAMAN
BRAIN

Gre

16.002
14.107
14.232
3.295

21.988
20.083
19.099
3.788

4-tap

Gzre
B-tap

3-tap

16.70
15.37
15.45
3.25

19.38
18.82
18.43
3.73

18.99
16.94
16.91
3.32

22.12
21.09
20.34
3.82

20.37
18.17
17.98

349

24.03
2.7
2145
2,43
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o An efficient QMF-Wavelet structure is proposed. (Same filters
derived by Daubechies)

o Most serious competitor to DCT for coding applications

— Very simple to implement on VLSI
— Qutperforms DCT

¢ Almost-linear (practically linear) phase response

e Linear vs Almost-linear phase response for future work! (sym-
metric vs. almost symmetric or symetric-like unit sample re-
sponse)

o We also derived multi-band perfect reconstruction filter banks
and blorthogonal wavelets similarly
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