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Abstract

Continuous and aggressive scaling of semiconductor technology has led to persistent and dominant

nanoscale effects on analog/mixed-signal (AMS) circuits. Design space exploration and optimization costs

using conventional techniques have increased to infeasible levels. Hence, growing research for alternative

design and metamodeling techniques with a much reduced design space exploration and optimization

cost and high level of accuracy, continues to be very active. Metamodeling techniques aim to replicate

simulation results of analog solvers without incurring expensive simulation costs. This paper presents a

geostatistical inspired metamodeling and optimization technique for fast and accurate design optimization

of nano-CMOS circuits. The design methodology proposed integrates a simple Kriging technique with

efficient and accurate prediction characteristics as the metamodel generation technique. A Gravitational

Search Algorithm (GSA) is applied on the generated metamodel (substituted for the circuit netlist) to

solve the design optimization problem. The proposed methodology is applicable to AMS circuits and

systems. Its effectiveness is illustrated with the optimization of a 45 nm CMOS thermal sensor. With

6 design parameters, the design optimization time for the thermal sensor is decreased by 90 % and

produces an improvement of 36.8 % in power consumption. To the best of the authors’ knowledge this

is the first work to use GSA for analog design optimization.
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I. INTRODUCTION

The drive towards aggressive scaling of semiconductor technologies is fueled by market trends for

smaller, more powerful and yet efficient electronic devices. However, analog/mixed-signal (AMS) circuit

designs in the deep nanometer region are susceptible to, and even dominated by various nanoscale effects

and process variation. With all of these effects, the number of design points and process parameters

required for accurate simulation has become excessive and this makes exhaustive simulation of design

models computationally intensive. Thus the research for alternative methods to alleviate this problem

continues to be very active. Current research techniques used to reduce simulation time include the use

of metamodeling functions [4, 3, 2, 1] and performance estimation through Monte Carlo (MC) simulations.

Metamodeling techniques aim to replicate the simulation results of CAD tools without incurring expen-

sive simulation costs. Metamodels are usually generated by functions which are generally approximations

of the performance objectives [1]. Some of the most common metamodeling techniques include low-order

polynomial functions and artificial neural network models. While the goal of using metamodels is to

reduce the expensive computational costs, the generated metamodels also have to be accurate enough

to ensure efficient optimizations. The accuracy and efficiency of the generated metamodels is thus an

important factor in their use for simulation and depends on the technique used in creating it [4]. For

instance, metamodeling techniques based on low-order polynomial regression functions produce accurate

descriptions, but perform inefficiently when used for global design optimizations [2]. In predicting the

objective function, regression models assume the effects of process variation are purely random and

approximate the error equally across the design space. However, in nano-CMOS and other technologies,

this is not the case. These effects are not purely random, but are strongly correlated. Kriging based

metamodels which are based on geostatistical techniques, take into account by their weighting system

the correlation between the process parameters. Prediction based on Kriging can thus provide a robust

metamodel which is process variation and yield aware. For designs with many parameters, a characteristic

of many nano-CMOS circuits, the design space is very large and increases exponentially with problem

size, making exhaustive search techniques impossible [5]. Optimization algorithms are used with the

design models to solve the design optimization problem. Common optimization algorithms utilized

for circuit design include genetic algorithms, swarm algorithms, simulated annealing, tabu search and

geometric programming [6, 7, 4].

This paper presents geostatistical inspired metamodeling and optimization techniques for the fast and

accurate design optimization of nano-CMOS circuits. The methodology proposed integrates a simple
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Kriging based technique as the metamodel generation method. A Gravitational Search Algorithm (GSA) is

applied on the metamodel to solve the design optimization problem. The proposed methods are applicable

to AMS circuits and their effectiveness is illustrated here with the optimization of a 45 nm CMOS thermal

sensor with power minimization as an objective.

The rest of this paper is organized as follows. The major contributions of this paper are outlined

in Section II. A summary of related research is presented in Section III. The proposed design flow in

presented in Section IV. In Section V, a brief overview of simple Kriging modeling is discussed. In

Section VI, the background and theory of the Gravitational Search Algorithm is described. In Section

VII, an illustration of the design flow is presented on the design optimization of a 45 nm thermal sensor.

Conclusions and future research directions are presented in Section VIII.

II. NOVEL CONTRIBUTIONS OF THIS PAPER

Minimization of power consumption in thermal sensors is very important. Such sensors are used to

monitor the thermal level of circuits to increase reliability; undue high power consumption by the sensor

only burdens the circuits they monitor, thus leading to increased temperatures that further decrease thermal

reliability. The challenge for designers in the minimization of the power consumption is a tradeoff with

the accuracy and sensitivity of the circuit. The proposed design methodology is used for the optimization

of power consumption with thermal sensitivity as constraint.

In this paper, the use of Kriging methods is introduced in a design flow methodology for AMS design

optimization. Kriging techniques provide accurate response predictions and are effective for processes

with correlation effects; thus they can account for correlation effects. Simple Kriging is used for the

ultra fast generation of layout-aware accurate metamodels. The design metamodel is then optimized

with the gravitational search algorithm (GSA) that employs both exploitative and explorative aspects of

population based algorithms using gravity rules. The GSA algorithm, developed in [5], is presented here

for optimization of AMS circuits. The efficiency of the overall proposed methodology is illustrated using

a 45 nm thermal sensor case study circuit.

The novel contributions of this paper to the state-of-the-art are the following:

1) A novel ultra-fast but accurate layout design optimization flow for AMS components that incorpo-

rates layout-aware metamodels and fast algorithms.

2) A layout-accurate method for Kriging metamodel generation of AMS blocks. As a specific example,

the “simple Kriging method” is presented.

3) A novel Gravitational Search Algorithm (GSA) based layout optimization for AMS blocks.
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4) As a specific case study, a 45 nm CMOS based thermal sensor power minimization is performed

with thermal sensitivity as constraint.

III. RELATED PRIOR RESEARCH

Research for design exploration and simulation using metamodeling has been growing and still remains

an important research topic. With the increasing complexity of nano-CMOS designs and associated costs

for design and manufacturing technologies, the use of efficient and accurate metamodels is essential

for reducing the design computational cost. Common metamodeling techniques include polynomial re-

gression, artificial neural networks (ANN) and radial basis functions. A review of these methods is

presented in [8, 9]. The most common metamodeling technique is based on low-order polynomials

which evolved from the Design of Experiments (DOE) methodology [9]. Such metamodels provide fast

and efficient locally accurate results but do not perform well in global optimization problems [2, 10].

Another metamodeling technique is presented in [7]; the metamodels are generated from the application

of geometric programming to polynomial equations deduced from circuit designs. However, this method’s

accuracy is low due to the approximating equations and ignores parasitics.

Metamodels based on ANNs have been used in [10] for the modeling of discrete stochastic systems.

Techniques to improve the selection of ANN structures are presented in [10]. The use of Kriging for

circuit design has been researched in [11, 12]. In [1, 2], studies on Kriging metamodeling for stochastic

simulations has been presented. Recently in [14, 13] a study of different Kriging methods, simple and

ordinary, is presented. Fig. 1 shows a taxonomy of different metamodeling techniques.

Metamodeling

Polynomial

Polynomial Basis 
Functions

Non-Polynomial

KrigingMachine Learning

Support Vector 
Machines

Genetic 
Programming

Artificial 
Neural Networks

Piecewise 
polynomial 

MARS Simple
Kriging

Ordinary
Kriging

Fig. 1: A classification of metamodeling techniques.

A comparison of well known optimization algorithms including simulated annealing, genetic algorithms

(GA) and gradient algorithms is presented in [6]. In [15], orthogonal optimization techniques based on
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swarm intelligence are presented. Recent research trends steer towards improving optimization time and

efficiency, and multi-objective optimization [16, 17, 18]. Conventional algorithms include GA, swarm

intelligence, simulated annealing, tabu search, gradient algorithms, linear and geometric programming

[6, 7, 15, 17]. Evolutionary algorithms which operate heuristically are particularly suited for computational

functions and achieve near-optimal solutions. The gravitational search algorithm (GSA) was recently

proposed in [5] and its performance is comparable to particle swarm optimization.

The optimization of thermal sensor design is also a well researched topic. The need for low power

designs without degrading the accuracy of temperature estimation poses a problem. A popular topology

for thermal sensors is that of the ring oscillator [19, 20]. A design based on differential ring oscillators

(DRO) was proposed in [19]. In [21], a methodology which incorporates statistical techniques into the

design process aids the estimation of temperature effects on the circuit. In [22], a design which uses a

reference transistor independent of ambient temperature is proposed. The effects of noise and process

variation are modeled into the temperature reading increasing accuracy.

IV. THE PROPOSED DESIGN OPTIMIZATION FLOW

An overview of the proposed design optimization methodology is given in Fig. 2. The design process

integrates a geostatistics-inspired (simple Kriging) parasitic-aware metamodel which is optimized with

the gravitational search algorithm. The first step is the circuit schematic to meet design specifications. A

common specification for most thermal sensors is a sensitivity of 0.05 ∼ 1 °C [23]. Once the schematic

design is complete, the physical layout design is performed. A full blown parasitic netlist (R-resistance,

L-self inductance, C-capacitance, and K-mutual inductance) is extracted from the layout and used for

further simulations to ensure silicon-aware accuracy. The parasitic netlist is parameterized with the design

variables. The parameterization of the netlist enables the easy generation of sample point locations from

the physical layout used in the metamodel generation. The thermal sensor design netlist is parameterized

for 6 variables. The next major step is the creation of the metamodel. Sample points are generated using

Latin Hypercube Sampling (LHS) and are used as an input to the metamodel generator. Details of the

metamodel generation are presented in Section V. To optimize the design, the optimization algorithm is

used on the created metamodel for intelligently solving the design objective problem. The input to the

optimization algorithm is the metamodel and the output is the optimized design parameter points that

yield an optimal solution. A background for the GSA algorithm used and detailed flow of the optimization

algorithm are given in Section VI. The final step is to resize the physical design using the optimal design

parameters. The use of parameterized netlists limits the number of manual physical design iterations to
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one and ensures an optimal design which is parasitic aware as well as optimal.

START

Circuit Schematic

Physical Design

DRC/LVS Netlist 

Extraction

Simple Kriging 

Metamodel Generation

GSA 

Optimization

DONE

No

Yes

Optimal Design

Parameters

Parameterized 

Netlist

Design 

Specification

Functional 

Verification

Yes

No

Specifications

met?

Specifications

met?

Fig. 2: The proposed design optimization flow.

V. METHOD FOR SIMPLE KRIGING METAMODEL GENERATION

The proposed method for the simple kriging metamodel generation is summarized in Fig. 3. This

process takes in as input the parameterized parasitic netlist and the design parameters. The first step

involves obtaining sample points from the multidimensional design space from which the simple Kriging

metamodel is generated. Sample performance points are produced from SPICE simulations using the LHS

generated points. These points are fed into the Kriging metamodel generator along with the design points

to be estimated. After the metamodel function points are generated, the model’s accuracy is analyzed

by using random functional objective points for statistical analysis. To test the validity of the generated

metamodel, random test points are also simulated with SPICE and used for accuracy analysis using

the Mean Square Error (MSE), the Root Mean Square Error (RMSE) and Correlation Coefficient (R2)

metrics. The statistically accurate metamodel is obtained as the output, in this case a simple Kriging

model.
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LHS Design

Parameterized 

Parasitic Netlist
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LHS Generated

Sample Points
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Model Estimator

Estimated Function

Output

Random Objective 

Points

Accuracy 

Analysis

Simple Kriging

Metamodel

Fig. 3: The proposed simple Kriging metamodel generation flow.

The sample points are generated using the LHS method which was chosen because it covers all input

dimensions simultaneously and thus improves the variance over completely random techniques. In [4],

a comparison of sampling techniques shows that LHS generates more accurate models over random

sampling (Monte Carlo). Specifically, the variance in the response f(x) at n LHS sample points is given

by the following [24]:

Var(yLHS) =

(
1

n

)
Var(f(x))−

(
k

n

)
+ o

(
1

n

)
, (1)

where k is a positive constant and is shown to be smaller than the variance of random sampling techniques.

The general expression of a Kriging model has the following form:

y(x0) =

L∑
j=1

λjBj(x) + z(x), (2)

where y(x0) is a stochastic function which predicts the response at the design point (x0). {Bj(x), j =

1, · · · , L} is a specific set of L basis functions over the design domain DN , λj are fitting coefficients

to be determined and z(x) is a stochastic process with zero mean and is based on a spatial correlation

function called the variogram:

r(s, t) = Corr(z(s), z(t)). (3)

The variogram is used to derive the weights, λj . The autocorrelation of the design points is characterized

by the covariance function [25]. The weights are chosen so that the Kriging variance is minimized

[27, 26].

Common variations of Kriging include simple, ordinary and universal Kriging. In this paper, we use

the simple Kriging method. It assumes a constant and known mean over the global domain. Assuming
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that there are n sample points of the input variable x, to predict a new point (response) y(x0), the weights

λ are estimated by the following: 
λ1
...

λn

 = Γ−1


γ(x1, x0)

...

γ(xn, x0)

 . (4)

Γ is the covariance matrix:

Γ =


γ(x1, x1) · · · γ(x1, xn)

...
. . .

...

γ(xn, x1) · · · γ(xn, xn)

 , (5)

where the covariance is calculated by:

γ(x1, x2) = E
(
|z(x1)− z(x2)|2

)
. (6)

The most common variogram model used is the spherical and is expressed by the following expressions:

γ(h) = C0 + C

(
3h

2a
− 1

2

(
h

a

)3
)

for 0 < h ≤ a, (7)

where C0, C and a are shape parameters.

The Kriging prediction function is generated with the use of the MATLAB toolbox mGstat [28]. The

input is the set of design variables, the points to be estimated and Kriging parameters to select the Kriging

method. The generated metamodels must be validated before use for design exploration or optimization.

Validation tests ensure the accuracy of the metamodel and are usually done with additional random points

through statistical analysis. The metrics Mean Square Error (MSE), Root Mean Square Error (RMSE)

and the Correlation Coefficient R2 are used. A lower value for both MSE and RMSE and an R2 value

close to unity imply a more accurate model.

VI. PROPOSED GRAVITATIONAL SEARCH ALGORITHM

The gravitational search algorithm (GSA) was introduced in 2009 [5] as a new heuristic optimization

algorithm based on the Newtonian laws of gravity. The algorithm models the search agents as mass

objects. Search agents who perform better by finding more quality solutions (agents in locations of design

points with superior performance) are designated heavier masses while those with poor solutions have

lighter masses. The interactions of the search agents with each other are developed using the principle of

Newtonian laws; the heavier mass agents exert a much greater force and attract other agents with smaller

masses (smaller attractive forces), hence pulling search agents with previous poor solutions towards areas
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with likely optimal solutions. With this technique agents with heavier masses move slower and explore

more of the optimal solution area, while lesser mass agents move faster without concentrating on design

space areas with poor solutions. This principle implies two useful features: design space exploration and

exploitation. The exploration feature is the capability of the algorithm to actively stratify the design space

while exploitation is the efficiency of locating optimal solutions in a likely optimal area.

A high-level overview of the GSA algorithm is shown in Fig. 4. The search agents, for example a set

of design parameters, are denoted by their locations and masses as Mw, Mx, My, and Mz in a design

space. The location of each agent at any particular time is shown and the quality of solution is denoted

by the mass size of the agent. Mz , currently has the best quality while Mw has the worst. The underlying

principle of the algorithm is shown using the forces acting on search agent My as an example.

My

Mx

Mw

Mz

Fwy

Fxy

Fyz

Fxz

ay

My

Best solution 

so far

New My

Design Space

Fig. 4: GSA: Search agents are attracted towards locations with possible quality solutions

Assume a system with N denoting the number of masses (search agents/nodes). The location (design

point) of the ith mass can be expressed in functional form as follows:

Xi = (x1i , x
2
i , . . . , x

d
i , . . . , x

n
i ) for i = 1, 2, . . . , N, (8)

where xdi , presents the position of the ith agent in the dth dimension, and n is the number of dimensions.

In calculating the force of attraction, a random value has been added to provide a stochastic element

to the algorithm and to reduce the likelihood of optimization being stuck in local minima. The attractive
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force on a mass object ‘i’ from a mass object ‘j’ is given by:

F dij(t) = G(t)

(
Mpi(t)×Maj(t)

Rij(t) + ε

)(
xdj (t)− xdi (t)

)
, (9)

where Maj and Mpi are the active and passive gravitational masses of objects ‘j’ and ‘i’ respectively,

G(t) is a gravitational constant at time t, and Rij is the Euclidean distance between the two objects. The

mass of each agent is updated with the following expressions:

Mi(t) =

(
mi(t)∑N
j=1mj(t)

)
, (10)

mi(t) =

(
fiti(t)− worst(t)
best(t)− worst(t)

)
, (11)

where fiti(t) represents the best solution found in each iteration. Thus, the total force acting on an object

is expressed as:

F di (t) =

N∑
j=1.j 6=i

randjF
d
ij(t), (12)

where randj is a random number between 0 and 1.

The velocity update is calculated by the following expression:

vdi (t+ 1) = randi × vdi (t) + adi (t), (13)

where randi is also a random number between 0 and 1 and adi (t) is the total force in Eqn. 9 divided by

the mass of the object in Eqn. 10. The new agent location update is given by:

xdi (t+ 1) = xdi (t) + vdi (t+ 1). (14)

A convergence of the masses by the heaviest mass presents an optimal solution. One appealing feature

of the GSA is that it is memoryless, as it does not need to remember previous best solutions but still

guarantees a near-optimal solution by virtue of mass acquisition. These qualities of the GSA naturally

lend themselves to design optimization problems of AMS circuits.

GSA implemented for the thermal sensor design is shown as pseudocode in Algorithm 1. The algorithm

takes as input the design objective and design parameters along with the validated simple Kriging

metamodel. Its outputs are the optimal design parameters points (converged search locations). In the

pseudocode, steps 1 – 3 initialize the optimization flow by setting up the maximum number of iterations

and the number of mass agents to use. Step 4 sets up the location of each of the search nodes with generic

masses. Steps 7 – 14 consist of the main section which analyzes each search node per iteration and updates

the mass, velocity and location, reiteratively until an optimal solution is found or the termination criterion

is met.
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Algorithm 1: GRAVITATIONAL SEARCH ALGORITHM FOR OPTIMIZATION OVER METAMODELS.
Input: Optimization design objective and design variables with parameterized netlist

Output: Optimal design parameters for design objective

1 Initialize iteration counter: counter ← 0;

2 Initialize maximum number of iterations Maxiter;

3 Initialize number of search agents η, gravity constant G, and velocity ν;

4 Consider the objective of interest PowerTSi ;

5 i← 2;

6 while (counter < Maxiter) do

7 Evaluate objective of interest (PowerTSi) for each search node.;

8 Update best and worst solution per function objective.;

9 Update the gravity constant G.;

10 Calculate M and a for each search node.;

11 Update ν for each search node.;

12 Update search nodes by applying velocity on M .;

13 counter ← counter + 1.;

14 end

15 return location;

VII. EXPERIMENTAL RESULTS

The tools used for the design are the schematic and layout editors of the Cadence Virtuouso platform on

a 45 nm process design kit. MATLAB was used to implement the metamodel generation and optimization

algorithm using the toolboxes, mGstat [28], and GSA [5].

A. Case Study Circuit: a 45 nm Thermal Sensor

The design proposed in [20] serves as the basis for the thermal sensor used as a case study in this

work. The design presented here is implemented with the conventional ring oscillator topology and is

not operated in the subthreshold region. The system-level block diagram, which consists of three 3 major

components, is shown in Fig. 5a [20].

The 10-bit binary counter consists of JK flip-flops. The 10-bit register stores the value from the counter

and is also implemented with JK flip-flops. The ring oscillator consists of a cascade of 15 inverters
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(a) Block diagram.
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(b) Physical design.

Fig. 5: Design of the 45 nm CMOS thermal sensor.

connected in a loop. The oscillation frequency is expressed as:

fosc =
1

n(tpLH + tpHL)
, (15)

where n is the number of stages used in the oscillator and tpLH and tpHL are the low-to-high and

high-to-low propagation delays, respectively. Ideally, the propagation delays can be expressed as [22]:

tpLH =

(
−2CLVtp

κp(Vdd+Vtp)2
+

CL
κp(Vdd+Vtp)

ln
1.5Vdd+2Vtp

0.5Vdd

)
, (16)

tpHL =

(
2CLVtn

κn(Vdd−Vtn)2
+

CL
κn(Vdd−Vtn)

ln
1.5Vdd−2Vtn

0.5Vdd

)
, (17)

where CL is the capacitive load and κn and κp are the transconductance values given by:

κn/p = µnCox

(
W

L

)
n/p

. (18)

In Eqn. 15 - Eqn. 17, the threshold voltage Vt and mobility µ are most sensitive to temperature and are

April 18, 2013 DRAFT



13

given by [23]:

Vt(T ) = Vt(T0) + αVt(T − T0), (19)

µ(T ) = µ0

(
T

T0

)αµ
, (20)

where, αVt = −0.5− 3.0mV/◦K and αµ = −1.2− 2.0. An increase in temperature leads to an increase

in the propagation delay which results in a decrease of the oscillating frequency.

The technology library used for the implementation of this thermal sensor is a 45 nm process design

kit provided by Cadence. The thermal sensor design is characterized to sense temperatures between 0°C

and 100°C. The Sys clk signal is used to enable the thermal sensor. When the Sys clk turns to logic

zero, the ring oscillator is disabled, the counter is also reset and the register also stops saving the count,

storing the last count value it had before the Sys clk was set to logic “0”. The binary counter is used

to count the frequency difference between the ring oscillator output and the system clock. The count is

stored in the 10-bit register and calibrated to measure the temperature change. The physical design of

the thermal sensor is shown in Fig. 5b.

The performance and accuracy of the physical design of the thermal sensor is degraded when compared

to the schematic design. A comparison is presented in Table I. The power consumption is increased by

29%. This circuit exhibits a linear dependence of oscillation frequency on junction temperature as shown

in Fig. 6.

TABLE I: Thermal sensor characteristic for the baseline design.

Design Average Power (PTS) Sensitivity, (TTS) Area (µm2)

Schematic 293.1 µW 16.88 MHz/°C -

Layout 379.4 µW 9.42 MHz/°C 1221.37

% Change 29.44% 44.2% -

The frequency response of the schematic design is 5.924 GHz (at 0°C) to 4.236 GHz (at 100°C).

Assuming a 6 GHz maximum clock rate for the ring oscillator, and a 10 bit counter (1024 maximum count)

the effective resolution is 0.097°C/bit resolution. The range of frequency output is severely degraded by

parasitics, as seen in Fig. 6. The range drops to 3.867 GHz (0°C) and 2.986 GHz (100°C). There is a

47.8% change in frequency/temperature resolution by comparing the schematic design to the physical

design. The area of the physical design is 1221.37 µm2.
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Fig. 6: Frequency response versus temperature for the thermal sensor.

B. Results Analysis

For this case study, six design parameters were chosen, based on the 3 components of the thermal

sensor. The widths of the NMOS and PMOS transistors in the RO are parameterized to WNosc and WPosc,

respectively. The widths of the transistors for the 10-bit counter and 10-bit registers are parameterized

to WNctr, WPctr, WNreg and WPreg, respectively. In generating the Kriging metamodels, 100 sample

points were obtained from LHS. To evaluate the accuracy of the generated metamodel, the metrics

discussed in Section V are used as shown in Table II.

TABLE II: Accuracy analysis of the simple Kriging metamodels.

Metric Value

Mean Square Error (MSE) 4.36× 10−18

Root Mean Square Error (RMSE) 2.09× 10−09

Coefficient of Determination (R2) 0.9934

From the results in Table II, the Kriging metamodels are sufficiently accurate with very low MSE and

RMSE values. The correlation coefficient R2 is very close to unity. The total time taken for the metamodel

generation was approximately 30 hours, the bulk of this time being the simulation time required for the

sample points. The time however is a factor of 10 lower than the approximately 300 hours required for

an exhaustive simulation of the design across the entire design space.

In optimizing the thermal sensor, the GSA optimization is applied to the generated metamodel with
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an initial number of 50 search agents and a maximum iteration of 1000 runs. The design objective is

the minimization of power consumption. The optimization flow is shown in Fig. 7a and the results are

shown in Fig. 7b. From the optimization graph, it is seen that the algorithm is able to reach an optimized

solution of 184.7 µW in about 900 iterations. The gravitational search being a heuristic algorithms its

convergence is usually near optimal. We chose 1000 iterations based on results from previous experiments.

In the implementation of the algorithm, there is also a termination criterion where the algorithm could

also terminate before the maximum iteration.

Generate initial search 

agent(Wn, Wp)

Evaluate objective of 

interest (power)

Rank quality of 

solution 

Update mass of each 

location

Update gravity constant 

and calculate attraction

Calculate velocity and 

update agent location 

(new Wn, Wp)

Optimization or 

Termination criteria 

met?

Best Solution

Start End

(a) GSA optimization flow.
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(b) GSA performance on Kriging metamodel for the 45 nm thermal sensor.

Fig. 7: GSA optimization.
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The final design parameters are shown in Table III and the optimized responses of the thermal sensor

are provided in Table IV. Compared to the schematic baseline design, there is a 36.9% reduction in

power dissipation with an area penalty of about 45%.

TABLE III: Final Design Parameters obtained from the Kriging metamodel optimization.

Design Parameter Final Size Values

WNosc 215 nm

WPosc 140 nm

WNctr 313 nm

WPctr 121 nm

WNreg 224 nm

WPreg 378 nm

TABLE IV: Thermal Sensor Output Comparison

Design Average Power, (PTS) Sensitivity, (TTS) Area (µm2)

Schematic 293.1 µW 16.88 MHz/°C -

Layout 379.4 µW 9.42 MHz/°C 1221.37

Final 184.7 µW 9.42 MHz/°C 1770.98*

% Change 36.9% 44.2% 45%*

C. Comparative Perspective with Related Research

The scope of this paper is fast analog design optimization using geostatistical based methods. While a

thermal sensor has been used as a case study circuit the proposed methodology is very much applicable

for optimization of any other analog design. Many thermal sensor designs have been presented in the

literature including [20, 19, 23]. However, the technology node, operating voltage, topology, and design

objective are quite different and hence a fair comparison is not possible. The proposed thermal sensor

design has an improved sensitivity of 0.097°Cwhich is higher than the other selected designs. The overall

power consumption is 184.7 µW which is higher than the design presented in [20]. The design in [20],

however has an operating voltage of 0.3 V compared to an operating voltage of 1 V for our design.

Our design also has a smaller area overhead cost of 0.001 mm2 compared to the related designs. The

45 nm technology is similar to the thermal sensor presented in [19] which also had a low area of 0.04
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mm2. A perspective comparison of the performance of existing techniques is shown in Table V. The

ring oscillator design in [29] implements Tabu Search (TSA) and Simulated Annealing (SAA), and the

performance results are compared with the thermal sensor in this paper. The RO has 6 transistors and 2

design parameters with the TSA and SSA running for 12 and 15 iterations, while the thermal sensor has

896 transistors and 6 parameter designs and optimizing in about 900 iterations. The computational time

in Table V has been normalized to compare with the thermal sensor design. The proposed method has

improved simulation and optimization times of 17.46 sec. as compared to 241.25 sec. and 31.04 sec. for

the TSA and SAA, respectively.

TABLE V: Comparative Analysis of Metamodel and Optimization

Metric On Netlist With Metamodel

TSA SSA GSA
TSA SSA GSA

Polynomial Polynomial Simple Kriging

Computational Time 4.72 x 10 6 s 4.73 x 10 6 s 1.08 x 106 s 241.25 s 31.04 s 17.46 s

VIII. CONCLUSIONS

In this paper, a new design optimization flow incorporating a geostatistical inspired metamodeling

technique (simple Kriging) and a gravitational search algorithm for analog/mixed signal circuit and system

design optimization has been presented. The proposed methodology has been illustrated with the design

optimization of a 45 nm CMOS based thermal sensor. Simple Kriging based metamodeling produces

very accurate metamodels while reducing the time for exhaustive exploration of the design space by

approximately 90%. A total of six design parameters were considered for metamodeling and optimization.

The gravitational search algorithm also optimizes the design by reducing the power consumption by

36.9%. In future research, the metamodeling technique will be extended for process variation effects and

statistical optimization. The proposed methodology will also be extended for multi-objective optimization

schemes.
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