Order Relations and Functions

Problem Session Tonight

7:00PM - 7:50PM 380-380X

Optional, but highly recommended!

Recap from Last Time

Relations

- A binary relation is a property that describes whether two objects are related in some way.
- Examples:
 - Less-than: x < y
 - Divisibility: *x* divides *y* evenly
 - Friendship: *x* is a friend of *y*
 - Tastiness: *x* is tastier than *y*
- Given binary relation R, we write aRb iff a is related to b by relation R.

Order Relations

"x is larger than y"

"*x* is tastier than *y*"

"x is faster than y"

"x is a subset of y"

"x divides y"

"x is a part of y"

Informally

An **order relation** is a relation that ranks elements against one another.

Do <u>not</u> use this definition in proofs! It's just an intuition!

$$x \leq y$$

$$x \leq y$$

$$1 \le 5$$
 and $5 \le 8$

$$x \leq y$$

$$1 \le 5$$
 and $5 \le 8$

$$x \leq y$$

$$42 \le 99$$
 and $99 \le 137$

$$x \leq y$$

$$42 \le 99$$
 and $99 \le 137$ $42 \le 137$

$$x \leq y$$

$$x \le y$$
 and $y \le Z$

$$x \le y$$

$$X \le y \quad \text{and} \quad y \le Z$$

$$x \le Z$$

$$x \leq y$$

$$X \le y$$
 and $y \le Z$

$$X \leq Z$$

Transitivity

$$x \leq y$$

$$x \leq y$$

$$x \leq y$$

$$x \leq y$$

$$137 \le 137$$

$$x \leq y$$

$$X \leq X$$

$$x \leq y$$

$$X \leq X$$

Reflexivity

$$x \leq y$$

$$x \leq y$$

$$19 \le 21$$

$$x \leq y$$

$$19 \le 21$$
 $21 \le 19$?

$$x \leq y$$

 $19 \le 21$

21 ≤ 19?

$$x \leq y$$

$$42 \le 137$$

$$x \leq y$$

$$42 \le 137$$
 $137 \le 42$?

$$x \leq y$$

 $42 \le 137$

137 ≤ 42?

$$x \leq y$$

$$137 \le 137$$

$$x \leq y$$

$$137 \le 137$$
 $137 \le 137$?

$$x \leq y$$

 $137 \le 137$

137 ≤ 137

Antisymmetry

A binary relation R over a set A is called antisymmetric iff

For any $x \in A$ and $y \in A$, If xRy and $y \neq x$, then $y\not Rx$.

Equivalently:

For any $x \in A$ and $y \in A$, if xRy and yRx, then x = y.

An Intuition for Antisymmetry

For any $x \in A$ and $y \in A$, If xRy and $y \neq x$, then $y\not Rx$.

Partial Orders

- A binary relation R is a partial order over a set A iff it is
 - reflexive,
 - antisymmetric, and
 - transitive.
- A pair (*A*, *R*), where *R* is a partial order over *A*, is called a **partially ordered set** or **poset**.

Partial Orders

- A binary relation R is a **partial order** over a set A iff it is
 - reflexive,
 - antisymmetric, and Why "partial"?
 - transitive.
- A pair (*A*, *R*), where *R* is a partial order over *A*, is called a **partially ordered set** or **poset**.

2012 Summer Olympics

Gold	Silver	Bronze	Total
46	29	29	104
38	27	23	88
29	17	19	65
24	26	32	82
13	8	7	28
11	19	14	44
11	11	12	34

2012 Summer Olympics

Gold	Silver	Bronze	Total
46	29	29	104
38	27	23	88
29	17	19	65
24	26	32	82
13	8	7	28
11	19	14	44
11	11	12	34

Inspired by http://tartarus.org/simon/2008-olympics-hasse/ Data from http://www.london2012.com/medals/medal-count/ Define the relationship

 $(gold_0, total_0)R(gold_1, total_1)$

to be true when

 $gold_0 \le gold_1$ and $total_0 \le total_1$

88

65

82

44

28

65

82

44

28

82

44

28

82

44

28

Partial and Total Orders

- A binary relation R over a set A is called **total** iff for any $x \in A$ and $y \in A$, that xRy or yRx.
 - It's possible for both to be true.
- A binary relation R over a set A is called a total order iff it is a partial order and it is total.
- Examples:
 - Integers ordered by \leq .
 - Strings ordered alphabetically.

Hasse Diagrams

- A Hasse diagram is a graphical representation of a partial order.
- No self-loops: by reflexivity, we can always add them back in.
- Higher elements are bigger than lower elements: by **antisymmetry**, the edges can only go in one direction.
- No redundant edges: by transitivity, we can infer the missing edges.

Hasse Artichokes

Hasse Artichokes

Summary of Order Relations

- A partial order is a relation that is reflexive, antisymmetric, and transitive.
- A Hasse diagram is a drawing of a partial order that has no self-loops, arrowheads, or redundant edges.
- A total order is a partial order in which any pair of elements are comparable.

For More on the Olympics:

http://www.nytimes.com/interactive/2012/08/07/sports/olympics/the-best-and-worst-countries-in-the-medal-count.html

Functions

A **function** is a means of associating each object in one set with an object in some other set.

Terminology

- A **function** *f* is a mapping such that every value in *A* is associated with a unique value in *B*.
 - For every $a \in A$, there exists some $b \in B$ with f(a) = b.
 - If $f(a) = b_0$ and $f(a) = b_1$, then $b_0 = b_1$.
- If f is a function from A to B, we sometimes say that f is a mapping from A to B.
 - We call *A* the **domain** of *f*.
 - We call *B* the **codomain** of *f*.
 - We'll discuss "range" in a few minutes.
- We denote that f is a function from A to B by writing

$$f: A \rightarrow B$$

Defining Functions

- Typically, we specify a function by describing a rule that maps every element of the domain to some element of the codomain.
- Examples:
 - f(n) = n + 1, where $f: \mathbb{Z} \to \mathbb{Z}$
 - $f(x) = \sin x$, where $f: \mathbb{R} \to \mathbb{R}$
 - f(x) = [x], where $f: \mathbb{R} \to \mathbb{Z}$
- When defining a function it is always a good idea to verify that
 - The function is uniquely defined for all elements in the domain, and
 - The function's output is always in the codomain.

Defining Functions

Typically, we specify a function by describing a rule that maps every element of the domain to some element of the codomain.

Examples:

$$f(n) = n + 1$$
, where $f : \mathbb{Z} \to \mathbb{Z}$
 $f(x) = \sin x$, where $f : \mathbb{R} \to \mathbb{R}$

• f(x) = [x], where $f: \mathbb{R} \to \mathbb{Z}$

This is the ceiling function – the smallest integer greater than or equal to x. For example, $\lceil 1 \rceil = 1$, $\lceil 1.37 \rceil = 2$, and $\lceil \pi \rceil = 4$.

When defining a function it is always a good idea to verify that

The function is uniquely defined for all elements in the domain, and

The function's output is always in the codomain.

Defining Functions

- Typically, we specify a function by describing a rule that maps every element of the domain to some element of the codomain.
- Examples:
 - f(n) = n + 1, where $f: \mathbb{Z} \to \mathbb{Z}$
 - $f(x) = \sin x$, where $f: \mathbb{R} \to \mathbb{R}$
 - f(x) = [x], where $f: \mathbb{R} \to \mathbb{Z}$
- When defining a function it is always a good idea to verify that
 - The function is uniquely defined for all elements in the domain, and
 - The function's output is always in the codomain.

Piecewise Functions

- Functions may be specified **piecewise**, with different rules applying to different elements.
- Example:

$$f(n) = \begin{cases} -n/2 & if \ n \ is \ even \\ (n+1)/2 & otherwise \end{cases}$$

 When defining a function piecewise, it's up to you to confirm that it defines a legal function!

学会 では でき

今年からたまや

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Injective Functions

- A function *f* : *A* → *B* is called **injective** (or **one-to-one**) if each element of the codomain has at most one element of the domain associated with it.
 - A function with this property is called an **injection**.
- Formally:

If
$$f(x_0) = f(x_1)$$
, then $x_0 = x_1$

• An intuition: injective functions label the objects from A using names from B.

Front Door

Balcony Window

Bedroom Window

Surjective Functions

- A function $f: A \rightarrow B$ is called **surjective** (or **onto**) if each element of the codomain has at least one element of the domain associated with it.
 - A function with this property is called a surjection.
- Formally:

For any $b \in B$, there exists at least one $a \in A$ such that f(a) = b.

• An intuition: surjective functions cover every element of *B* with at least one element of *A*.

Injections and Surjections

- An injective function associates **at most** one element of the domain with each element of the codomain.
- A surjective function associates **at least** one element of the domain with each element of the codomain.
- What about functions that associate
 exactly one element of the domain with each element of the codomain?

Bijections

- A function that associates each element of the codomain with a unique element of the domain is called bijective.
 - Such a function is a bijection.
- Formally, a bijection is a function that is both **injective** and **surjective**.
- A bijection is a one-to-one correspondence between two sets.

Compositions

www.apple.com

www.apple.com

www.microsoft.com www.apple.com www.google.com

Microsoft

COOgle

COOgle

www.apple.com

www.apple.com

www.apple.com

www.apple.com

Function Composition

- Let $f: A \to B$ and $g: B \to C$.
- The **composition of** f **and** g (denoted $g \circ f$) is the function $g \circ f : A \to C$ defined as

$$(g \circ f)(x) = g(f(x))$$

- Note that f is applied first, but f is on the right side!
- Function composition is associative:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Function Composition

- Suppose $f: A \to A$ and $g: A \to A$.
- Then both $g \circ f$ and $f \circ g$ are defined.
- Does $g \circ f = f \circ g$?
- In general, no:
 - Let f(x) = 2x
 - Let g(x) = x + 1
 - $(g \circ f)(x) = g(f(x)) = g(2x) = 2x + 1$
 - $(f \circ g)(x) = f(g(x)) = f(x+1) = 2x+2$

Cardinality Revisited

Cardinality

- Recall (from *lecture one!*) that the **cardinality** of a set is the number of elements it contains.
 - Denoted |S|.
- For finite sets, cardinalities are natural numbers:
 - $|\{1, 2, 3\}| = 3$
 - $|\{100, 200, 300\}| = 3$
- For infinite sets, we introduce infinite cardinals to denote the size of sets:
 - $|\mathbb{N}| = \aleph_0$

- The relationships between set cardinalities are defined in terms of functions between those sets.
- |S| = |T| is defined using bijections.

|S| = |T| iff there is a bijection $f: S \to T$

Proof: We will exhibit a bijection $f: R \to T$.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$. Since h is a bijection, h is injective.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$. Since h is a bijection, h is injective. Thus since $h(g(r_0)) = h(g(r_1))$, we have that $g(r_0) = g(r_1)$.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$. Since h is a bijection, h is injective. Thus since $h(g(r_0)) = h(g(r_1))$, we have that $g(r_0) = g(r_1)$. Since g is a bijection, g is injective, so because $g(r_0) = g(r_1)$ we have that $r_0 = r_1$.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$. Since h is a bijection, h is injective. Thus since $h(g(r_0)) = h(g(r_1))$, we have that $g(r_0) = g(r_1)$. Since g is a bijection, g is injective, so because $g(r_0) = g(r_1)$ we have that $r_0 = r_1$. Therefore, f is injective.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$. Since h is a bijection, h is injective. Thus since $h(g(r_0)) = h(g(r_1))$, we have that $g(r_0) = g(r_1)$. Since g is a bijection, g is injective, so because $g(r_0) = g(r_1)$ we have that $r_0 = r_1$. Therefore, f is injective.

To see that f is surjective, consider any $t \in T$.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$. Since h is a bijection, h is injective. Thus since $h(g(r_0)) = h(g(r_1))$, we have that $g(r_0) = g(r_1)$. Since g is a bijection, g is injective, so because $g(r_0) = g(r_1)$ we have that $r_0 = r_1$. Therefore, f is injective.

To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that f(r) = t.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$. Since h is a bijection, h is injective. Thus since $h(g(r_0)) = h(g(r_1))$, we have that $g(r_0) = g(r_1)$. Since g is a bijection, g is injective, so because $g(r_0) = g(r_1)$ we have that $r_0 = r_1$. Therefore, f is injective.

To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that f(r) = t. Since h is a bijection from S to T, h is surjective, so there is some $s \in S$ such that h(s) = t.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$. Since h is a bijection, h is injective. Thus since $h(g(r_0)) = h(g(r_1))$, we have that $g(r_0) = g(r_1)$. Since g is a bijection, g is injective, so because $g(r_0) = g(r_1)$ we have that $r_0 = r_1$. Therefore, f is injective.

To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that f(r) = t. Since h is a bijection from S to T, h is surjective, so there is some $s \in S$ such that h(s) = t. Since g is a bijection from R to S, g is surjective, so there is some $r \in R$ such that g(r) = s.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$. Since h is a bijection, h is injective. Thus since $h(g(r_0)) = h(g(r_1))$, we have that $g(r_0) = g(r_1)$. Since g is a bijection, g is injective, so because $g(r_0) = g(r_1)$ we have that $r_0 = r_1$. Therefore, f is injective.

To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that f(r) = t. Since h is a bijection from S to T, h is surjective, so there is some $s \in S$ such that h(s) = t. Since g is a bijection from R to S, g is surjective, so there is some $r \in R$ such that g(r) = s. Thus $f(r) = (h \circ g)(r) = h(g(r)) = h(s) = t$ as required, so f is surjective.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$. Since h is a bijection, h is injective. Thus since $h(g(r_0)) = h(g(r_1))$, we have that $g(r_0) = g(r_1)$. Since g is a bijection, g is injective, so because $g(r_0) = g(r_1)$ we have that $r_0 = r_1$. Therefore, f is injective.

To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that f(r) = t. Since h is a bijection from S to T, h is surjective, so there is some $s \in S$ such that h(s) = t. Since g is a bijection from R to S, g is surjective, so there is some $r \in R$ such that g(r) = s. Thus $f(r) = (h \circ g)(r) = h(g(r)) = h(s) = t$ as required, so f is surjective.

Since *f* is injective and surjective, it is bijective.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$. Since h is a bijection, h is injective. Thus since $h(g(r_0)) = h(g(r_1))$, we have that $g(r_0) = g(r_1)$. Since g is a bijection, g is injective, so because $g(r_0) = g(r_1)$ we have that $r_0 = r_1$. Therefore, f is injective.

To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that f(r) = t. Since h is a bijection from S to T, h is surjective, so there is some $s \in S$ such that h(s) = t. Since g is a bijection from R to S, g is surjective, so there is some $r \in R$ such that g(r) = s. Thus $f(r) = (h \circ g)(r) = h(g(r)) = h(s) = t$ as required, so f is surjective.

Since f is injective and surjective, it is bijective. Thus there is a bijection from R to T, so |R| = |T|.

Proof: We will exhibit a bijection $f: R \to T$. Since |R| = |S|, there is a bijection $g: R \to S$. Since |S| = |T|, there is a bijection $h: S \to T$.

Let $f = h \circ g$; this means that $f : R \to T$. We prove that f is a bijection by showing that it is injective and surjective.

To see that f is injective, suppose that $f(r_0) = f(r_1)$. We will show that $r_0 = r_1$. Since $f(r_0) = f(r_1)$, we know $(h \circ g)(r_0) = (h \circ g)(r_1)$. By definition of composition, we have $h(g(r_0)) = h(g(r_1))$. Since h is a bijection, h is injective. Thus since $h(g(r_0)) = h(g(r_1))$, we have that $g(r_0) = g(r_1)$. Since g is a bijection, g is injective, so because $g(r_0) = g(r_1)$ we have that $r_0 = r_1$. Therefore, f is injective.

To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that f(r) = t. Since h is a bijection from S to T, h is surjective, so there is some $s \in S$ such that h(s) = t. Since g is a bijection from R to S, g is surjective, so there is some $r \in R$ such that g(r) = s. Thus $f(r) = (h \circ g)(r) = h(g(r)) = h(s) = t$ as required, so f is surjective.

Since f is injective and surjective, it is bijective. Thus there is a bijection from R to T, so |R| = |T|.

Properties of Cardinality

- Equality of cardinality is an equivalence relation. For any sets R, S, and T:
 - |S| = |S|. (reflexivity)
 - If |S| = |T|, then |T| = |S|. (symmetry)
 - If |R| = |S| and |S| = |T|, then |R| = |T|. (transitivity)

• We define $|S| \le |T|$ as follows:

 $|S| \leq |T|$ iff there is an injection $f: S \rightarrow T$

• We define $|S| \le |T|$ as follows:

 $|S| \le |T|$ iff there is an injection $f: S \to T$

• We define $|S| \le |T|$ as follows:

 $|S| \leq |T|$ iff there is an injection $f: S \rightarrow T$

• We define $|S| \le |T|$ as follows:

 $|S| \le |T|$ iff there is an injection $f: S \to T$

• We define $|S| \le |T|$ as follows:

```
|S| \leq |T| iff there is an injection f: S \to T
```

- The \leq relation over set cardinalities is a total order. For any sets R, S, and T:
 - $|S| \leq |S|$. (reflexivity)
 - If $|R| \le |S|$ and $|S| \le |T|$, then $|R| \le |T|$. (transitivity)
 - If $|S| \le |T|$ and $|T| \le |S|$, then |S| = |T|. (antisymmetry)
 - Either $|S| \le |T|$ or $|T| \le |S|$. (totality)
- These last two proofs are extremely hard.
 - The antisymmetry result is the **Cantor-Bernstein-Schroeder Theorem**; a fascinating read, but beyond the scope of this course.
 - Totality requires the axiom of choice. Take Math 161 for more details.