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Recap from Last Time



  

Relations

● A binary relation is a property that 
describes whether two objects are related in 
some way.

● Examples:
● Less-than: x < y
● Divisibility: x divides y evenly
● Friendship: x is a friend of y
● Tastiness: x is tastier than y

● Given binary relation R, we write aRb iff a is 
related to b by relation R.



  

Order Relations



  

“x is larger than y”

“x is faster than y”

“x is tastier than y”

“x is a subset of y”

“x divides y”

“x is a part of y”



  

Informally

An order relation is a relation that ranks 
elements against one another.

Do not use this definition in proofs!
It's just an intuition!



  

Properties of Order Relations

x ≤ y



  

Properties of Order Relations

x ≤ y

1 ≤ 5 5 ≤ 8and



  

Properties of Order Relations

x ≤ y

1 ≤ 5 5 ≤ 8and

1 ≤ 8



  

Properties of Order Relations

x ≤ y

42 ≤ 99 99 ≤ 137and



  

Properties of Order Relations

x ≤ y

42 ≤ 99 99 ≤ 137and

42 ≤ 137



  

Properties of Order Relations

x ≤ y

x ≤ y y ≤ zand



  

Properties of Order Relations

x ≤ y

x ≤ y y ≤ zand

x ≤ z



  

Properties of Order Relations

x ≤ y

x ≤ y y ≤ zand

x ≤ z

Transitivity



  

Properties of Order Relations

x ≤ y



  

Properties of Order Relations

x ≤ y

1 ≤ 1



  

Properties of Order Relations

x ≤ y

42 ≤ 42



  

Properties of Order Relations

x ≤ y

137 ≤ 137



  

Properties of Order Relations

x ≤ y

x ≤ x



  

Properties of Order Relations

x ≤ y

x ≤ x

Reflexivity



  

Properties of Order Relations

x ≤ y



  

Properties of Order Relations

x ≤ y

19 ≤ 21



  

Properties of Order Relations

x ≤ y

19 ≤ 21
21 ≤ 19?



  

Properties of Order Relations

x ≤ y

19 ≤ 21
21 ≤ 19?



  

Properties of Order Relations

x ≤ y

42 ≤ 137



  

Properties of Order Relations

x ≤ y

42 ≤ 137
137 ≤ 42?



  

Properties of Order Relations

x ≤ y

42 ≤ 137
137 ≤ 42?



  

Properties of Order Relations

x ≤ y

137 ≤ 137



  

Properties of Order Relations

x ≤ y

137 ≤ 137
137 ≤ 137?



  

Properties of Order Relations

x ≤ y

137 ≤ 137
137 ≤ 137



  

Antisymmetry

A binary relation R over a set A is called 
antisymmetric iff

For any x ∈ A and y ∈ A,
If xRy and y ≠ x, then yRx.

Equivalently:

For any x ∈ A and y ∈ A,
if xRy and yRx, then x = y.



  

An Intuition for Antisymmetry

Self-loops 
allowed

Only one edge 
between nodes

For any x ∈ A and y ∈ A,
If xRy and y ≠ x, then yRx.



  

Partial Orders

● A binary relation R is a partial order over 
a set A iff it is

● reflexive,
● antisymmetric, and
● transitive.

● A pair (A, R), where R is a partial order 
over A, is called a partially ordered set 
or poset.



  

Partial Orders

Why “partial”?

● A binary relation R is a partial order over 
a set A iff it is

● reflexive,
● antisymmetric, and
● transitive.

● A pair (A, R), where R is a partial order 
over A, is called a partially ordered set 
or poset.



  

Gold Silver Bronze

46 29 29

38 27 23

29 17 19

24 26 32

14 15 17

Total

104

88

65

82

4613 8 7 28

2012 Summer Olympics

Inspired by http://tartarus.org/simon/2008-olympics-hasse/
Data from http://www.london2012.com/medals/medal-count/

14 15 17 4611 19 14 44

14 15 17 4611 11 12 34

http://tartarus.org/simon/2008-olympics-hasse/
http://www.london2012.com/medals/medal-count/
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Define the relationship 

(gold0, total0)R(gold1, total1) 

to be true when

 gold0 ≤ gold1 and total0 ≤ total1
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Partial and Total Orders

● A binary relation R over a set A is called 
total iff for any x ∈ A and y ∈ A, that xRy or 
yRx.
● It's possible for both to be true.

● A binary relation R over a set A is called a 
total order iff it is a partial order and it is 
total.

● Examples:
● Integers ordered by ≤.
● Strings ordered alphabetically.



  

10446

8838

6529 8224

2813

4411

3411



  

10446

8838

6529 8224

2813

4411

3411



  

10446

8838

6529 8224

2813

4411

3411



  

10446

8838

6529 8224

2813

4411

3411



  

10446

8838

6529 8224

2813

4411

3411



  

10446

8838

6529 8224

2813

4411

3411



  

10446

8838

6529 8224

2813

4411

3411

More 
Medals

Fewer 
Medals



  

10446

8838

6529 8224

2813

4411

3411

More 
Medals

Fewer 
Medals



  

Hasse Diagrams

● A Hasse diagram is a graphical 
representation of a partial order.

● No self-loops: by reflexivity, we can 
always add them back in.

● Higher elements are bigger than lower 
elements: by antisymmetry, the edges 
can only go in one direction.

● No redundant edges: by transitivity, we 
can infer the missing edges.



  

Indian Mediterranean

Mexican

Chinese Italian

American

Tasty

Not 
Tasty

Dorm
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1
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...Larger
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Hasse Artichokes



  

Hasse Artichokes



  

Summary of Order Relations

● A partial order is a relation that is 
reflexive, antisymmetric, and transitive.

● A Hasse diagram is a drawing of a 
partial order that has no self-loops, 
arrowheads, or redundant edges.

● A total order is a partial order in which 
any pair of elements are comparable.



  

For More on the Olympics:

http://www.nytimes.com/interactive/2012/08/07/sports/olympics/the-best-and-worst-countries-in-the-medal-count.html

http://www.nytimes.com/interactive/2012/08/07/sports/olympics/the-best-and-worst-countries-in-the-medal-count.html


  

Functions



  

A function is a means of associating each 
object in one set with an object in some 

other set.



  

Dikdik
Nubian

Ibex
Sloth



  



  

Black and White



  

Terminology

● A function f is a mapping such that every value in A 
is associated with a unique value in B.
● For every a ∈ A, there exists some b ∈ B with f(a) = b.

● If f(a) = b0 and f(a) = b1, then b0 = b1.

● If f is a function from A to B, we sometimes say that 
f is a mapping from A to B.
● We call A the domain of f.
● We call B the codomain of f.

– We'll discuss “range” in a few minutes.

● We denote that f is a function from A to B by writing

f : A → B



  

Is This a Function from A to B?
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Is This a Function from A to B?

Each object in the domain 
has to be associated with 
exactly one object in the 

codomain!

Each object in the domain 
has to be associated with 
exactly one object in the 

codomain!

A B



  

Is This a Function from A to B?

California

New York

Delaware

Washington 
DC

Sacramento

Dover

Albany

A B

Each object in the domain 
has to be associated with 
exactly one object in the 

codomain!

Each object in the domain 
has to be associated with 
exactly one object in the 

codomain!



  

Is This a Function from A to B?

Love-a-Lot

Tenderheart

Wish

Funshine

Friend

It's fine that nothing is 
associated with Friend; 
functions do not need 

to use the entire 
codomain.

It's fine that nothing is 
associated with Friend; 
functions do not need 

to use the entire 
codomain.

A B



  

Defining Functions

● Typically, we specify a function by describing a 
rule that maps every element of the domain to 
some element of the codomain.

● Examples:
● f(n) = n + 1, where f : ℤ → ℤ
● f(x) = sin x, where f : ℝ → ℝ
● f(x) = ⌈x⌉, where f : ℝ → ℤ

● When defining a function it is always a good idea 
to verify that
● The function is uniquely defined for all elements in the 

domain, and
● The function's output is always in the codomain.
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Piecewise Functions

● Functions may be specified piecewise, 
with different rules applying to different 
elements.

● Example:

● When defining a function piecewise, it's 
up to you to confirm that it defines a legal 
function!

f (n)={ −n /2 if n is even
(n+1)/2 otherwise
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Injective Functions

● A function f : A → B is called injective (or 
one-to-one) if each element of the codomain 
has at most one element of the domain 
associated with it.
● A function with this property is called an 

injection.

● Formally:

If f(x0) = f(x1), then x0 = x1  

● An intuition: injective functions label the 
objects from A using names from B.
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Surjective Functions

● A function f : A → B is called surjective (or 
onto) if each element of the codomain has at 
least one element of the domain associated 
with it.
● A function with this property is called a 

surjection.
● Formally:

For any b ∈ B, there exists at
least one a ∈ A such that f(a) = b.

● An intuition: surjective functions cover every 
element of B with at least one element of A.



  

Injections and Surjections

● An injective function associates at most 
one element of the domain with each 
element of the codomain.

● A surjective function associates at least 
one element of the domain with each 
element of the codomain.

● What about functions that associate 
exactly one element of the domain with 
each element of the codomain?
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Bijections

● A function that associates each element 
of the codomain with a unique element of 
the domain is called bijective.
● Such a function is a bijection.

● Formally, a bijection is a function that is 
both injective and surjective.

● A bijection is a one-to-one 
correspondence between two sets.



  

Compositions
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Function Composition

● Let f : A → B and g : B → C.
● The composition of f and g (denoted 

g ∘ f) is the function g ∘ f : A → C defined as

(g ∘ f)(x) = g(f(x))
● Note that f is applied first, but f is on the 

right side!
● Function composition is associative:

h ∘ (g ∘ f) = (h ∘ g) ∘ f



  

Function Composition

● Suppose f : A → A and g : A → A.
● Then both g ∘ f and f ∘ g are defined.
● Does g ∘ f = f ∘ g?
● In general, no:

● Let f(x) = 2x
● Let g(x) = x + 1
● (g ∘ f)(x) = g(f(x)) = g(2x) = 2x + 1
● (f ∘ g)(x) = f(g(x)) = f(x + 1) = 2x + 2



  

Cardinality Revisited



  

Cardinality

● Recall (from lecture one!) that the cardinality of a 
set is the number of elements it contains.
● Denoted |S|.

● For finite sets, cardinalities are natural numbers:
● |{1, 2, 3}| = 3
● |{100, 200, 300}| = 3

● For infinite sets, we introduce infinite cardinals 
to denote the size of sets:
● |ℕ| = ℵ0



  

Comparing Cardinalities

● The relationships between set cardinalities are 
defined in terms of functions between those 
sets.

● |S| = |T| is defined using bijections.

|S| = |T| iff there is a bijection f : S → T

, , ,

, ,,



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = t and f(r1) = t, we know (h ∘ g)(r0) = t
and (h ∘ g)(r1) = t.  By definition of composition, we have
h(g(r0)) = h(g(r1)).  Since h is a bijection, h is injective, we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, we have
that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = t and f(r1) = t, we know (h ∘ g)(r0) = t
and (h ∘ g)(r1) = t.  By definition of composition, we have
h(g(r0)) = h(g(r1)).  Since h is a bijection, h is injective, we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, we have
that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = t and f(r1) = t, we know (h ∘ g)(r0) = t
and (h ∘ g)(r1) = t.  By definition of composition, we have
h(g(r0)) = h(g(r1)).  Since h is a bijection, h is injective, we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, we have
that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = t and f(r1) = t, we know (h ∘ g)(r0) = t
and (h ∘ g)(r1) = t.  By definition of composition, we have
h(g(r0)) = h(g(r1)).  Since h is a bijection, h is injective, we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, we have
that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = t and f(r1) = t, we know (h ∘ g)(r0) = t
and (h ∘ g)(r1) = t.  By definition of composition, we have
h(g(r0)) = h(g(r1)).  Since h is a bijection, h is injective, we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, we have
that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■

R S T



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = t and f(r1) = t, we know (h ∘ g)(r0) = t
and (h ∘ g)(r1) = t.  By definition of composition, we have
h(g(r0)) = h(g(r1)).  Since h is a bijection, h is injective, we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, we have
that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■

R S T

g

g

g



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = t and f(r1) = t, we know (h ∘ g)(r0) = t
and (h ∘ g)(r1) = t.  By definition of composition, we have
h(g(r0)) = h(g(r1)).  Since h is a bijection, h is injective, we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, we have
that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■

R S T

g

g

g

h

h

h



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = t and f(r1) = t, we know (h ∘ g)(r0) = t
and (h ∘ g)(r1) = t.  By definition of composition, we have
h(g(r0)) = h(g(r1)).  Since h is a bijection, h is injective, we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, we have
that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■

R S T

g

g

g

h

h

h

h ∘ g

h ∘ g

h ∘ g



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = t and f(r1) = t, we know (h ∘ g)(r0) = t
and (h ∘ g)(r1) = t.  By definition of composition, we have
h(g(r0)) = h(g(r1)).  Since h is a bijection, h is injective, we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, we have
that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = t and f(r1) = t, we know (h ∘ g)(r0) = t
and (h ∘ g)(r1) = t.  By definition of composition, we have
h(g(r0)) = h(g(r1)).  Since h is a bijection, h is injective, we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, we have
that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Theorem: If |R| = |S| and |S| = |T|, then |R| = |T|.
 

Proof: We will exhibit a bijection f : R → T.  Since |R| = |S|, there is a
bijection g : R → S.  Since |S| = |T|, there is a bijection h : S → T. 

Let f = h ∘ g; this means that f : R → T.  We prove that f is a
bijection by showing that it is injective and surjective.

 

To see that f is injective, suppose that f(r0) = f(r1).  We will show
that r0 = r1.  Since f(r0) = f(r1), we know (h ∘ g)(r0) = (h ∘ g)(r1).
By definition of composition, we have h(g(r0)) = h(g(r1)).  Since h
is a bijection, h is injective.  Thus since h(g(r0)) = h(g(r1)), we have
that g(r0) = g(r1).  Since g is a bijection, g is injective, so because
g(r0) = g(r1) we have that r0 = r1.  Therefore, f is injective.

 

To see that f is surjective, consider any t ∈ T.  We will show that
there is some r ∈ R such that f(r) = t.  Since h is a bijection from
S to T, h is surjective, so there is some s ∈ S such that h(s) = t.
Since g is a bijection from R to S, g is surjective, so there is some
r ∈ R such that g(r) = s.  Thus f(r) = (h ∘ g)(r) = h(g(r)) = h(s) = t
as required, so f is surjective.

 

Since f is injective and surjective, it is bijective.  Thus there is a
bijection from R to T, so |R| = |T|. ■



  

Properties of Cardinality

● Equality of cardinality is an equivalence 
relation.  For any sets R, S, and T:
● |S| = |S|. (reflexivity)
● If |S| = |T|, then |T| = |S|. (symmetry)
● If |R| = |S| and |S| = |T|, then |R| = |T|. 

(transitivity)



  

Comparing Cardinalities

● We define |S| ≤ |T| as follows:

|S| ≤ |T| iff there is an injection f : S → T

The ≤ relation over set cardinalities is a total order.  For any 
sets R, S, and T:

|S| ≤ |S|. (reflexivity)

If |R| ≤ |S| and |S| ≤ |T|, then |R| ≤ |T|. (transitivity)

If |S| ≤ |T| and |T| ≤ |S|, then |S| = |T|. (antisymmetry)

Either |S| ≤ |T| or |T| ≤ |S|. (totality)

These last two proofs are extremely hard.

The antisymmetry result is the Cantor-Bernstein-Schroeder 
Theorem; a fascinating read, but beyond the scope of this course.

Totality requires the axiom of choice.  Take Math 161 for more 
details.
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