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Preface

A free and open-source calculus

Several fundamental ideas in calculus are more than 2000 years old. As a formal subdiscipline of
mathematics, calculus was first introduced and developed in the late 1600s, with key independent
contributions from Sir Isaac Newton and Gottfried Wilhelm Leibniz. Mathematicians agree that
the subject has been understood rigorously since the work of Augustin Louis Cauchy and Karl
Weierstrass in the mid 1800s when the field of modern analysis was developed, in part to make
sense of the infinitely small quantities on which calculus rests. Hence, as a body of knowledge
calculus has been completely understood by experts for at least 150 years. The discipline is one of
our great human intellectual achievements: among many spectacular ideas, calculus models how
objects fall under the forces of gravity and wind resistance, explains how to compute areas and
volumes of interesting shapes, enables us to work rigorously with infinitely small and infinitely
large quantities, and connects the varying rates at which quantities change to the total change in
the quantities themselves.

While each author of a calculus textbook certainly offers her own creative perspective on the
subject, it is hardly the case that many of the ideas she presents are new. Indeed, the mathematics
community broadly agrees on what the main ideas of calculus are, as well as their justification
and their importance; the core parts of nearly all calculus textbooks are very similar. As such, it is
our opinion that in the 21st century – an age where the internet permits seamless and immediate
transmission of information – no one should be required to purchase a calculus text to read, to use
for a class, or to find a coherent collection of problems to solve. Calculus belongs to humankind,
not any individual author or publishing company. Thus, the main purpose of this work is to
present a new calculus text that is free. In addition, instructors who are looking for a calculus text
should have the opportunity to download the source files and make modifications that they see
fit; thus this text is open-source.

Because the text is free, any professor or student may use the electronic version of the text
for no charge. Presently, a .pdf copy of the text may be obtained by emailing Matt Boelkins at
boelkinm@gvsu.edu or by download from http://opencalculus.wordpress.com. Be-
cause the text is open-source, any instructor may acquire the full set of source files, also by request
via email to the author. In the future, our goal is to have the text and its source files hosted by a
professional organization that vets and endorses free and open source materials.

vii
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This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
3.0 Unported License. The graphic

that appears throughout the text shows that the work is licensed with the Creative Commons, that
the work may be used for free by any party so long as attribution is given to the author(s), that the
work and its derivatives are used in the spirit of “share and share alike,” and that no party may
sell this work or any of its derivatives for profit. Full details may be found by visiting

http://creativecommons.org/licenses/by-nc-sa/3.0/

or sending a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California,
94041, USA.

Active Calculus: our goals

In Active Calculus, we endeavor to actively engage students in learning the subject through an
activity-driven approach in which the vast majority of the examples are completed by students.
Where many texts present a general theory of calculus followed by substantial collections of
worked examples, we instead pose problems or situations, consider possibilities, and then ask stu-
dents to investigate and explore. Following key activities or examples, the presentation normally
includes some overall perspective and a brief synopsis of general trends or properties, followed
by formal statements of rules or theorems. While we often offer a plausibility argument for such
results, rarely do we include formal proofs. It is not the intent of this text for the instructor or
author to demonstrate to students that the ideas of calculus are coherent and true, but rather for
students to encounter these ideas in a supportive, leading manner that enables them to begin to
understand for themselves why calculus is both coherent and true.

This approach is consistent with the following goals:

• To have students engage in an active, inquiry-driven approach, where learners strive to con-
struct solutions and approaches to ideas on their own, with appropriate support through
questions posed, hints, and guidance from the instructor and text.

• To build in students intuition for why the main ideas in calculus are natural and true. Often,
we do this through consideration of the instantaneous position and velocity of a moving
object, a scenario that is common and familiar.

• To challenge students to acquire deep, personal understanding of calculus through reading
the text and completing preview activities on their own, through working on activities in
small groups in class, and through doing substantial exercises outside of class time.

http://creativecommons.org/licenses/by-nc-sa/3.0/
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• To strengthen students’ written and oral communicating skills by having them write about
and explain aloud the key ideas of calculus.

Features of the Text

Instructors and students alike will find several consistent features in the presentation, including:

• Motivating Questions. At the start of each section, we list 2-3 motivating questions that pro-
vide motivation for why the following material is of interest to us. One goal of each section
is to answer each of the motivating questions.

• Preview Activities. Each section of the text begins with a short introduction, followed by
a preview activity. This brief reading and the preview activity are designed to foreshadow
the upcoming ideas in the remainder of the section; both the reading and preview activity
are intended to be accessible to students in advance of class, and indeed to be completed by
students before a day on which a particular section is to be considered.

• Activities. A typical section in the text has three activities. These are designed to engage stu-
dents in an inquiry-based style that encourages them to construct solutions to key examples
on their own, working either individually in small groups.

• Exercises. There are dozens of calculus texts with (collectively) tens of thousands of ex-
ercises. Rather than repeat standard and routine exercises in this text, we recommend the
use of WeBWorK with its access to the National Problem Library and around 20,000 calcu-
lus problems. In this text, there are approximately four challenging exercises per section.
Almost every such exercise has multiple parts, requires the student to connect several key
ideas, and expects that the student will do at least a modest amount of writing to answer
the questions and explain their findings. For instructors interested in a more conventional
source of exercises, consider the freely available text by Gilbert Strang of MIT, available in
.pdf format from the MIT open courseware site via http://gvsu.edu/s/bh.

• Graphics. As much as possible, we strive to demonstrate key fundamental ideas visually,
and to encourage students to do the same. Throughout the text, we use full-color graphics
to exemplify and magnify key ideas, and to use this graphical perspective alongside both
numerical and algebraic representations of calculus.

• Links to Java Applets. Many of the ideas of calculus are best understood dynamically; java
applets offer an often ideal format for investigations and demonstrations. Relying primarily
on the work of David Austin of Grand Valley State University and Marc Renault of Ship-
pensburg University, each of whom has developed a large library of applets for calculus, we
frequently point the reader (through active links in the .pdf version of the text) to applets
that are relevant for key ideas under consideration.

http://gvsu.edu/s/bh
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• Summary of Key Ideas. Each section concludes with a summary of the key ideas encoun-
tered in the preceding section; this summary normally reflects responses to the motivating
questions that began the section.

How to Use this Text

This text may be used as a stand-alone textbook for a standard first semester college calculus
course or as a supplement to a more traditional text. Chapters 1-4 address the typical topics for
differential calculus. (Four additional chapters for second semester integral calculus are forthcom-
ing.)

Electronically

Because students and instructors alike have access to the book in .pdf format, there are several
advantages to the text over a traditional print text. One is that the text may be projected on a
screen in the classroom (or even better, on a whiteboard) and the instructor may reference ideas in
the text directly, add comments or notation or features to graphs, and indeed write right on the text
itself. Students can do likewise, choosing to print only whatever portions of the text are needed
for them. In addition, the electronic version of the text includes live html links to java applets, so
student and instructor alike may follow those links to additional resources that lie outside the text
itself. Finally, students can have access to a copy of the text anywhere they have a computer, either
by downloading the .pdf to their local machine or by the instructor posting the text on a course
web site.

Activities Workbook

Each section of the text has a preview activity and at least three in-class activities embedded in the
discussion. As it is the expectation that students will complete all of these activities, it is ideal for
them to have room to work on them adjacent to the problem statements themselves. As a separate
document, we have compiled a workbook of activities that includes only the individual activity
prompts, along with space provided for students to write their responses. This workbook is the
one printing expense that students will almost certainly have to undertake.

There are also options in the source files for compiling the activities workbook with hints for
each activity, or even full solutions. These options can be engaged at the instructor’s discretion.

Community of Users

Because this text is free and open-source, we hope that as people use the text, they will con-
tribute corrections, suggestions, and new material. At this time, the best way to communicate
such feedback is by email to Matt Boelkins at boelkinm@gvsu.edu. We have also started the
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blog http://opencalculus.wordpress.com/, at which we will post feedback received by
email as well as other points of discussion, to which readers may post additional comments and
feedback.

Contributors
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Chapter 1

Understanding the Derivative

1.1 How do we measure velocity?

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How is the average velocity of a moving object connected to the values of its position func-
tion?

• How do we interpret the average velocity of an object geometrically with regard to the
graph of its position function?

• How is the notion of instantaneous velocity connected to average velocity?

Introduction

Calculus can be viewed broadly as the study of change. A natural and important question to ask
about any changing quantity is “how fast is the quantity changing?” It turns out that in order to
make the answer to this question precise, substantial mathematics is required.

We begin with a familiar problem: a ball being tossed straight up in the air from an initial
height. From this elementary scenario, we will ask questions about how the ball is moving. These
questions will lead us to begin investigating ideas that will be central throughout our study of
differential calculus and that have wide-ranging consequences. In a great deal of our thinking
about calculus, we will be well-served by remembering this first example and asking ourselves
how the various (sometimes abstract) ideas we are considering are related to the simple act of
tossing a ball straight up in the air.

Preview Activity 1.1. Suppose that the height s of a ball (in feet) at time t (in seconds) is given by
the formula s(t) = 64− 16(t− 1)2.

1



2 1.1. HOW DO WE MEASURE VELOCITY?

(a) Construct an accurate graph of y = s(t) on the time interval 0 ≤ t ≤ 3. Label at least six
distinct points on the graph, including the three points that correspond to when the ball
was released, when the ball reaches its highest point, and when the ball lands.

(b) In everyday language, describe the behavior of the ball on the time interval 0 < t < 1 and
on time interval 1 < t < 3. What occurs at the instant t = 1?

(c) Consider the expression

AV[0.5,1] =
s(1)− s(0.5)

1− 0.5
.

Compute the value of AV[0.5,1]. What does this value measure geometrically? What does
this value measure physically? In particular, what are the units on AV[0.5,1]?

./

Position and average velocity

Any moving object has a position that can be considered a function of time. When this motion is
along a straight line, the position is given by a single variable, and we usually let this position be
denoted by s(t), which reflects the fact that position is a function of time. For example, we might
view s(t) as telling the mile marker of a car traveling on a straight highway at time t in hours;
similarly, the function s described in Preview Activity 1.1 is a position function, where position is
measured vertically relative to the ground.

Not only does such a moving object have a position associated with its motion, but on any time
interval, the object has an average velocity. Think, for example, about driving from one location to
another: the vehicle travels some number of miles over a certain time interval (measured in hours),
from which we can compute the vehicle’s average velocity. In this situation, average velocity is
the number of miles traveled divided by the time elapsed, which of course is given in miles per
hour. Similarly, the calculation of A[0.5,1] in Preview Activity 1.1 found the average velocity of the
ball on the time interval [0.5, 1], measured in feet per second.

In general, we make the following definition: for an object moving in a straight line whose
position at time t is given by the function s(t), the average velocity of the object on the interval from
t = a to t = b, denoted AV[a,b], is given by the formula

AV[a,b] =
s(b)− s(a)

b− a .

Note well: the units on AV[a,b] are “units of s per unit of t,” such as “miles per hour” or “feet per
second.”

Activity 1.1.

The following questions concern the position function given by s(t) = 64− 16(t− 1)2, which is
the same function considered in Preview Activity 1.1.
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(a) Compute the average velocity of the ball on each of the following time intervals: [0.4, 0.8],
[0.7, 0.8], [0.79, 0.8], [0.799, 0.8], [0.8, 1.2], [0.8, 0.9], [0.8, 0.81], [0.8, 0.801]. Include units
for each value.

(b) On the provided graph in Figure 1.1, sketch the line that passes through the points
A = (0.4, s(0.4)) and B = (0.8, s(0.8)). What is the meaning of the slope of this line? In
light of this meaning, what is a geometric way to interpret each of the values computed
in the preceding question?

(c) Use a graphing utility to plot the graph of s(t) = 64−16(t−1)2 on an interval containing
the value t = 0.8. Then, zoom in repeatedly on the point (0.8, s(0.8)). What do you
observe about how the graph appears as you view it more and more closely?

(d) What do you conjecture is the velocity of the ball at the instant t = 0.8? Why?

0.4 0.8 1.2

48

56

64

feet

sec

s

A

B

Figure 1.1: A partial plot of s(t) = 64− 16(t− 1)2.

C

Instantaneous Velocity

Whether driving a car, riding a bike, or throwing a ball, we have an intuitive sense that any moving
object has a velocity at any given moment – a number that measures how fast the object is moving
right now. For instance, a car’s speedometer tells the driver what appears to be the car’s velocity at
any given instant. In fact, the posted velocity on a speedometer is really an average velocity that
is computed over a very small time interval (by computing how many revolutions the tires have
undergone to compute distance traveled), since velocity fundamentally comes from considering a
change in position divided by a change in time. But if we let the time interval over which average
velocity is computed become shorter and shorter, then we can progress from average velocity to
instantaneous velocity.



4 1.1. HOW DO WE MEASURE VELOCITY?

Informally, we define the instantaneous velocity of a moving object at time t = a to be the value
that the average velocity approaches as we take smaller and smaller intervals of time containing
t = a to compute the average velocity. We will develop a more formal definition of this momentar-
ily, one that will end up being the foundation of much of our work in first semester calculus. For
now, it is fine to think of instantaneous velocity this way: take average velocities on smaller and
smaller time intervals, and if those average velocities approach a single number, then that number
will be the instantaneous velocity at that point.

Activity 1.2.

Each of the following questions concern s(t) = 64 − 16(t − 1)2, the position function from
Preview Activity 1.1.

(a) Compute the average velocity of the ball on the time interval [1.5, 2]. What is different
between this value and the average velocity on the interval [0, 0.5]?

(b) Use appropriate computing technology to estimate the instantaneous velocity of the
ball at t = 1.5. Likewise, estimate the instantaneous velocity of the ball at t = 2. Which
value is greater?

(c) How is the sign of the instantaneous velocity of the ball related to its behavior at a
given point in time? That is, what does positive instantaneous velocity tell you the ball
is doing? Negative instantaneous velocity?

(d) Without doing any computations, what do you expect to be the instantaneous velocity
of the ball at t = 1? Why?

C

At this point we have started to see a close connection between average velocity and instanta-
neous velocity, as well as how each is connected not only to the physical behavior of the moving
object but also to the geometric behavior of the graph of the position function. In order to make
the link between average and instantaneous velocity more formal, we will introduce the notion of
limit in Section 1.2. As a preview of that concept, we look at a way to consider the limiting value
of average velocity through the introduction of a parameter. Note that if we desire to know the
instantaneous velocity at t = a of a moving object with position function s, we are interested in
computing average velocities on the interval [a, b] for smaller and smaller intervals. One way to
visualize this is to think of the value b as being b = a+h, where h is a small number that is allowed
to vary. Thus, we observe that the average velocity of the object on the interval [a, a+ h] is

AV[a,a+h] =
s(a+ h)− s(a)

h
,

with the denominator being simply h because (a + h) − a = h. Initially, it is fine to think of
h being a small positive real number; but it is important to note that we allow h to be a small
negative number, too, as this enables us to investigate the average velocity of the moving object
on intervals prior to t = a, as well as following t = a. When h < 0, AV[a,a+h] measures the average
velocity on the interval [a+ h, a].
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To attempt to find the instantaneous velocity at t = a, we investigate what happens as the
value of h approaches zero. We consider this further in the following example.

Example 1.1. For a falling ball whose position function is given by s(t) = 16 − 16t2 (where s is
measured in feet and t in seconds), find an expression for the average velocity of the ball on a
time interval of the form [0.5, 0.5 + h] where −0.5 < h < 0.5 and h 6= 0. Use this expression to
compute the average velocity on [0.5, 0.75] and [0.4, 0.5], as well as to make a conjecture about the
instantaneous velocity at t = 0.5.

Solution. We make the assumptions that −0.5 < h < 0.5 and h 6= 0 because h cannot be zero
(otherwise there is no interval on which to compute average velocity) and because the function
only makes sense on the time interval 0 ≤ t ≤ 1, as this is the duration of time during which the
ball is falling. Observe that we want to compute and simplify

AV[0.5,0.5+h] =
s(0.5 + h)− s(0.5)

(0.5 + h)− 0.5
.

The most unusual part of this computation is finding s(0.5 + h). To do so, we follow the rule that
defines the function s. In particular, since s(t) = 16− 16t2, we see that

s(0.5 + h) = 16− 16(0.5 + h)2

= 16− 16(0.25 + h+ h2)

= 16− 4− 16h− 16h2

= 12− 16h− 16h2.

Now, returning to our computation of the average velocity, we find that

AV[0.5,0.5+h] =
s(0.5 + h)− s(0.5)

(0.5 + h)− 0.5

=
(12− 16h− 16h2)− (16− 16(0.5)2)

0.5 + h− 0.5

=
12− 16h− 16h2 − 12

h

=
−16h− 16h2

h
.

At this point, we note two things: first, the expression for average velocity clearly depends on h,
which it must, since as h changes the average velocity will change. Further, we note that since h
can never equal zero, we may further simplify the most recent expression. Removing the common
factor of h from the numerator and denominator, it follows that

AV[0.5,0.5+h] = −16− 16h.
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Now, for any small positive or negative value of h, we can compute the average velocity. For
instance, to obtain the average velocity on [0.5, 0.75], we let h = 0.25, and the average velocity is
−16− 16(0.25) = −20 ft/sec. To get the average velocity on [0.4, 0.5], we let h = −0.1, which tells
us the average velocity is −16 − 16(−0.1) = −14.4 ft/sec. Moreover, we can even explore what
happens to AV[0.5,0.5+h] as h gets closer and closer to zero. As h approaches zero, −16h will also
approach zero, and thus it appears that the instantaneous velocity of the ball at t = 0.5 should be
−16 ft/sec.

Activity 1.3.

For the function given by s(t) = 64 − 16(t − 1)2 from Preview Activity 1.1, find the most
simplified expression you can for the average velocity of the ball on the interval [2, 2 + h].
Use your result to compute the average velocity on [1.5, 2] and to estimate the instantaneous
velocity at t = 2. Finally, compare your earlier work in Activity 1.1.

C

Summary

In this section, we encountered the following important ideas:

• The average velocity on [a, b] can be viewed geometrically as the slope of the line between the
points (a, s(a)) and (b, s(b)) on the graph of y = s(t), as shown in Figure 1.2.

t

s

(a, s(a))

(b, s(b))

m = s(b)−s(a)
b−a

Figure 1.2: The graph of position function s together with the line through (a, s(a)) and (b, s(b)) whose
slope is m = s(b)−s(a)

b−a . The line’s slope is the average rate of change of s on the interval [a, b].

• Given a moving object whose position at time t is given by a function s, the average velocity
of the object on the time interval [a, b] is given by AV[a,b] = s(b)−s(a)

b−a . Viewing the interval
[a, b] as having the form [a, a + h], we equivalently compute average velocity by the formula
AV[a,a+h] = s(a+h)−s(a)

h .
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• The instantaneous velocity of a moving object at a fixed time is estimated by considering aver-
age velocities on shorter and shorter time intervals that contain the instant of interest.

Exercises

1. A bungee jumper dives from a tower at time t = 0. Her height h (measured in feet) at time t (in
seconds) is given by the graph in Figure 1.3.

5 10 15 20

50

100

150

200
s

t

Figure 1.3: A bungee jumper’s height function.

In this problem, you may base your answers on estimates from the graph or use the fact that
the jumper’s height function is given by s(t) = 100 cos(0.75t) · e−0.2t + 100.

(a) What is the change in vertical position of the bungee jumper between t = 0 and t = 15?

(b) Estimate the jumper’s average velocity on each of the following time intervals: [0, 15],
[0, 2], [1, 6], and [8, 10]. Include units on your answers.

(c) On what time interval(s) do you think the bungee jumper achieves her greatest average
velocity? Why?

(d) Estimate the jumper’s instantaneous velocity at t = 5. Show your work and explain
your reasoning, and include units on your answer.

(e) Among the average and instantaneous velocities you computed in earlier questions,
which are positive and which are negative? What does negative velocity indicate?

2. A diver leaps from a 3 meter springboard. His feet leave the board at time t = 0, he reaches
his maximum height of 4.5 m at t = 1.1 seconds, and enters the water at t = 2.45. Once in the
water, the diver coasts to the bottom of the pool (depth 3.5 m), touches bottom at t = 7, rests
for one second, and then pushes off the bottom. From there he coasts to the surface, and takes
his first breath at t = 13.

(a) Let s(t) denote the function that gives the height of the diver’s feet (in meters) above
the water at time t. (Note that the “height” of the bottom of the pool is −3.5 meters.)
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Sketch a carefully labeled graph of s(t) on the provided axes in Figure 1.4. Include scale
and units on the vertical axis. Be as detailed as possible.

2 4 6 8 10 12

s

t

2 4 6 8 10 12

v

t

Figure 1.4: Axes for plotting s(t) in part (a) and v(t) in part (c) of the diver problem.

(b) Based on your graph in (a), what is the average velocity of the diver between t = 2.45
and t = 7? Is his average velocity the same on every time interval within [2.45, 7]?

(c) Let the function v(t) represent the instantaneous vertical velocity of the diver at time t
(i.e. the speed at which the height function s(t) is changing; note that velocity in the
upward direction is positive, while the velocity of a falling object is negative). Based
on your understanding of the diver’s behavior, as well as your graph of the position
function, sketch a carefully labeled graph of v(t) on the axes provided in Figure 1.4. In-
clude scale and units on the vertical axis. Write several sentences that explain how you
constructed your graph, discussing when you expect v(t) to be zero, positive, negative,
relatively large, and relatively small.

(d) Is there a connection between the two graphs that you can describe? What can you say
about the velocity graph when the height function is increasing? decreasing? Make as
many observations as you can.

3. According to the U.S. census, the population of the city of Grand Rapids, MI, was 181,843 in
1980; 189,126 in 1990; and 197,800 in 2000.

(a) Between 1980 and 2000, by how many people did the population of Grand Rapids
grow?

(b) In an average year between 1980 and 2000, by how many people did the population of
Grand Rapids grow?

(c) Just like we can find the average velocity of a moving body by computing change in
position over change in time, we can compute the average rate of change of any function
f . In particular, the average rate of change of a function f over an interval [a, b] is the
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quotient
f(b)− f(a)

b− a .

What does the quantity f(b)−f(a)
b−a measure on the graph of y = f(x) over the interval

[a, b]?

(d) Let P (t) represent the population of Grand Rapids at time t, where t is measured in
years from January 1, 1980. What is the average rate of change of P on the interval t = 0
to t = 20? What are the units on this quantity?

(e) If we assume the the population of Grand Rapids is growing at a rate of approximately
4% per decade, we can model the population function with the formula

P (t) = 181843(1.04)t/10.

Use this formula to compute the average rate of change of the population on the inter-
vals [5, 10], [5, 9], [5, 8], [5, 7], and [5, 6].

(f) How fast do you think the population of Grand Rapids was changing on January 1,
1985? Said differently, at what rate do you think people were being added to the popu-
lation of Grand Rapids as of January 1, 1985? How many additional people should the
city have expected in the following year? Why?
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1.2 The notion of limit

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is the mathematical notion of limit and what role do limits play in the study of func-
tions?

• What is the meaning of the notation lim
x→a

f(x) = L?

• How do we go about determining the value of the limit of a function at a point?

• How does the notion of limit allow us to move from average velocity to instantaneous
velocity?

Introduction

Functions are at the heart of mathematics: a function is a process or rule that associates each
individual input to exactly one corresponding output. Students learn in courses prior to calculus
that there are many different ways to represent functions, including through formulas, graphs,
tables, and even words. For example, the squaring function can be thought of in any of these
ways. In words, the squaring function takes any real number x and computes its square. The
formulaic and graphical representations go hand in hand, as y = f(x) = x2 is one of the simplest
curves to graph. Finally, we can also partially represent this function through a table of values,
essentially by listing some of the ordered pairs that lie on the curve, such as (−2, 4), (−1, 1), (0, 0),
(1, 1), and (2, 4).

Functions are especially important in calculus because they often model important phenomena
– the location of a moving object at a given time, the rate at which an automobile is consuming
gasoline at a certain velocity, the reaction of a patient to the size of a dose of a drug – and calculus
can be used to study how these output quantities change in response to changes in the input
variable. Moreover, thinking about concepts like average and instantaneous velocity leads us
naturally from an initial function to a related, sometimes more complicated function. As one
example of this, think about the falling ball whose position function is given by s(t) = 64 − 16t2

and the average velocity of the ball on the interval [1, x]. Observe that

AV[1,x] =
s(x)− s(1)

x− 1
=

(64− 16x2)− (64− 16)

x− 1
=

16− 16x2

x− 1
.

Now, two things are essential to note: this average velocity depends on x (indeed, AV[1,x] is a
function of x), and our most focused interest in this function occurs near x = 1, which is where the
function is not defined. Said differently, the function g(x) = 16−16x2

x−1 tells us the average velocity
of the ball on the interval from t = 1 to t = x, and if we are interested in the instantaneous velocity
of the ball when t = 1, we’d like to know what happens to g(x) as x gets closer and closer to 1. At
the same time, g(1) is not defined, because it leads to the quotient 0/0.
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This is where the idea of limits comes in. By using a limit, we’ll be able to allow x to get
arbitrarily close, but not equal, to 1 and fully understand the behavior of g(x) near this value.
We’ll develop key language, notation, and conceptual understanding in what follows, but for now
we consider a preliminary activity that uses the graphical interpretation of a function to explore
points on a graph where interesting behavior occurs.

Preview Activity 1.2. Suppose that g is the function given by the graph below. Use the graph to
answer each of the following questions.

(a) Determine the values g(−2), g(−1), g(0), g(1), and g(2), if defined. If the function value is
not defined, explain what feature of the graph tells you this.

(b) For each of the values a = −1, a = 0, and a = 2, complete the following sentence: “As x
gets closer and closer (but not equal) to a, g(x) gets as close as we want to .”

(c) What happens as x gets closer and closer (but not equal) to a = 1? Does the function g(x)
get as close as we would like to a single value?

-2 -1 1 2 3

-1

1

2

3
g

Figure 1.5: Graph of y = g(x) for Preview Activity 1.2.

./

The Notion of Limit

Limits can be thought of as a way to study the tendency or trend of a function as the input variable
approaches a fixed value, or even as the input variable increases or decreases without bound. We
put off the study of the latter idea until further along in the course when we will have some helpful
calculus tools for understanding the end behavior of functions. Here, we focus on what it means
to say that “a function f has limit L as x approaches a.” To begin, we think about a recent example.

In Preview Activity 1.2, you saw that for the given function g, as x gets closer and closer (but
not equal) to 0, g(x) gets as close as we want to the value 4. At first, this may feel counterintuitive,
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because the value of g(0) is 1, not 4. By their very definition, limits regard the behavior of a
function arbitrarily close to a fixed input, but the value of the function at the fixed input does not
matter. More formally1, we say the following.

Definition 1.1. Given a function f , a fixed input x = a, and a real number L, we say that f has
limit L as x approaches a, and write

lim
x→a

f(x) = L

provided that we can make f(x) as close to L as we like by taking x sufficiently close (but not
equal) to a. If we cannot make f(x) as close to a single value as we would like as x approaches a,
then we say that f does not have a limit as x approaches a.

For the function g pictured in Figure 1.5, we can make the following observations:

lim
x→−1

g(x) = 3, lim
x→0

g(x) = 4, and lim
x→2

g(x) = 1,

but g does not have a limit as x → 1. When working graphically, it suffices to ask if the function
approaches a single value from each side of the fixed input, while understanding that the function
value right at the fixed input is irrelevant. This reasoning explains the values of the first three
stated limits. In a situation such as the jump in the graph of g at x = 1, the issue is that if we
approach x = 1 from the left, the function values tend to get as close to 3 as we’d like, but if we
approach x = 1 from the right, the function values get as close to 2 as we’d like, and there is no
single number that all of these function values approach. This is why the limit of g does not exist
at x = 1.

For any function f , there are typically three ways to answer the question “does f have a limit
at x = a, and if so, what is the limit?” The first is to reason graphically as we have just done with
the example from Preview Activity 1.2. If we have a formula for f(x), there are two additional
possibilities: (1) evaluate the function at a sequence of inputs that approach a on either side,
typically using some sort of computing technology, and ask if the sequence of outputs seems to
approach a single value; (2) use the algebraic form of the function to understand the trend in its
output as the input values approach a. The first approach only produces an approximation of the
value of the limit, while the latter can often be used to determine the limit exactly. The following
example demonstrates both of these approaches, while also using the graphs of the respective
functions to help confirm our conclusions.

Example 1.2. For each of the following functions, we’d like to know whether or not the function
has a limit at the stated a-values. Use both numerical and algebraic approaches to investigate and,
if possible, estimate or determine the value of the limit. Compare the results with a careful graph
of the function on an interval containing the points of interest.

1What follows here is not what mathematicians consider the formal definition of a limit. To be completely precise,
it is necessary to quantify both what it means to say “as close to L as we like” and “sufficiently close to a.” That can be
accomplished through what is traditionally called the epsilon-delta definition of limits. The definition presented here
is sufficient for the purposes of this text.
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(a) f(x) =
4− x2

x+ 2
; a = −1, a = −2

(b) g(x) = sin
(π
x

)
; a = 3, a = 0

Solution. We first construct a graph of f along with tables of values near a = −1 and a = −2.

x f(x)

-0.9 2.9
-0.99 2.99

-0.999 2.999
-0.9999 2.9999

-1.1 3.1
-1.01 3.01

-1.001 3.001
-1.0001 3.0001

x f(x)

-1.9 3.9
-1.99 3.99

-1.999 3.999
-1.9999 3.9999

-2.1 4.1
-2.01 4.01

-2.001 4.001
-2.0001 4.0001

-3 -1 1

1

3

5
f

Figure 1.6: Tables and graph for f(x) =
4− x2
x+ 2

.

From the left table, it appears that we can make f as close as we want to 3 by taking x suf-
ficiently close to −1, which suggests that lim

x→−1
f(x) = 3. This is also consistent with the graph

of f . To see this a bit more rigorously and from an algebraic point of view, consider the formula
for f : f(x) = 4−x2

x+2 . The numerator and denominator are each polynomial functions, which are
among the most well-behaved functions that exist. Formally, such functions are continuous2, which
means that the limit of the function at any point is equal to its function value. Here, it follows that
as x→ −1, (4− x2)→ (4− (−1)2) = 3, and (x+ 2)→ (−1 + 2) = 1, so as x→ −1, the numerator

of f tends to 3 and the denominator tends to 1, hence lim
x→−1

f(x) =
3

1
= 3.

The situation is more complicated when x → −2, due in part to the fact that f(−2) is not
defined. If we attempt to use a similar algebraic argument regarding the numerator and denomi-
nator, we observe that as x → −2, (4 − x2) → (4 − (−2)2) = 0, and (x + 2) → (−2 + 2) = 0, so as
x→ −2, the numerator of f tends to 0 and the denominator tends to 0. We call 0/0 an indeterminate
form and will revisit several important issues surrounding such quantities later in the course. For
now, we simply observe that this tells us there is somehow more work to do. From the table and
the graph, it appears that f should have a limit of 4 at x = −2. To see algebraically why this is the

2See Section 1.7 for more on the notion of continuity.
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case, let’s work directly with the form of f(x). Observe that

lim
x→−2

f(x) = lim
x→−2

4− x2

x+ 2

= lim
x→−2

(2− x)(2 + x)

x+ 2
.

At this point, it is important to observe that since we are taking the limit as x → −2, we are
considering x values that are close, but not equal, to −2. Since we never actually allow x to equal
−2, the quotient 2+x

x+2 has value 1 for every possible value of x. Thus, we can simplify the most
recent expression above, and now find that

lim
x→−2

f(x) = lim
x→−2

2− x.

Because 2− x is simply a linear function, this limit is now easy to determine, and its value clearly
is 4. Thus, from several points of view we’ve seen that lim

x→−2
f(x) = 4.

Next we turn to the function g, and construct two tables and a graph.

x g(x)

2.9 0.84864
2.99 0.86428

2.999 0.86585
2.9999 0.86601

3.1 0.88351
3.01 0.86777

3.001 0.86620
3.0001 0.86604

x g(x)

-0.1 0
-0.01 0

-0.001 0
-0.0001 0

0.1 0
0.01 0

0.001 0
0.0001 0

-3 -1 1 3

-2

2
g

Figure 1.7: Tables and graph for g(x) = sin
(π
x

)
.

First, as x → 3, it appears from the data (and the graph) that the function is approaching
approximately 0.866025. To be precise, we have to use the fact that π

x → π
3 , and thus we find

that g(x) = sin(πx ) → sin(π3 ) as x → 3. The exact value of sin(π3 ) is
√

3
2 , which is approximately

0.8660254038. Thus, we see that

lim
x→3

g(x) =

√
3

2
.

As x → 0, we observe that π
x does not behave in an elementary way. When x is positive and

approaching zero, we are dividing by smaller and smaller positive values, and π
x increases without

bound. When x is negative and approaching zero, πx decreases without bound. In this sense, as
we get close to x = 0, the inputs to the sine function are growing rapidly, and this leads to wild
oscillations in the graph of g. It is an instructive exercise to plot the function g(x) = sin

(
π
x

)
with a
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graphing utility and then zoom in on x = 0. Doing so shows that the function never settles down
to a single value near the origin and suggests that g does not have a limit at x = 0.

How do we reconcile this with the righthand table above, which seems to suggest that the
limit of g as x approaches 0 may in fact be 0? Here we need to recognize that the data misleads
us because of the special nature of the sequence {0.1, 0.01, 0.001, . . .}: when we evaluate g(10−k),
we get g(10−k) = sin

(
π

10−k

)
= sin(10kπ) = 0 for each positive integer value of k. But if we take a

different sequence of values approaching zero, say {0.3, 0.03, 0.003, . . .}, then we find that

g(3 · 10−k) = sin
( π

3 · 10−k

)
= sin

(
10kπ

3

)
=

√
3

2
≈ 0.866025.

That sequence of data would suggest that the value of the limit is
√

3
2 . Clearly the function cannot

have two different values for the limit, and this shows that g has no limit as x→ 0.

An important lesson to take from Example 1.2 is that tables can be misleading when determin-
ing the value of a limit. While a table of values is useful for investigating the possible value of a
limit, we should also use other tools to confirm the value, if we think the table suggests the limit
exists.

Activity 1.4.

Estimate the value of each of the following limits by constructing appropriate tables of values.
Then determine the exact value of the limit by using algebra to simplify the function. Finally,
plot each function on an appropriate interval to check your result visually.

(a) lim
x→1

x2 − 1

x− 1

(b) lim
x→0

(2 + x)3 − 8

x

(c) lim
x→0

√
x+ 1− 1

x

C

This concludes a rather lengthy introduction to the notion of limits. It is important to remem-
ber that our primary motivation for considering limits of functions comes from our interest in
studying the rate of change of a function. To that end, we close this section by revisiting our
previous work with average and instantaneous velocity and highlighting the role that limits play.

Instantaneous Velocity

Suppose that we have a moving object whose position at time t is given by a function s. We know
that the average velocity of the object on the time interval [a, b] is AV[a,b] = s(b)−s(a)

b−a . We define the
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instantaneous velocity at a to be the limit of average velocity as b approaches a. Note particularly
that as b → a, the length of the time interval gets shorter and shorter (while always including a).
In Section 1.3, we will introduce a helpful shorthand notation to represent the instantaneous rate
of change. For now, we will write IVt=a for the instantaneous velocity at t = a, and thus

IVt=a = lim
b→a

AV[a,b] = lim
b→a

s(b)− s(a)

b− a .

Equivalently, if we think of the changing value b as being of the form b = a + h, where h is some
small number, then we may instead write

IVt=a = lim
h→0

AV[a,a+h] = lim
h→0

s(a+ h)− s(a)

h
.

Again, the most important idea here is that to compute instantaneous velocity, we take a limit of
average velocities as the time interval shrinks. Two different activities offer the opportunity to
investigate these ideas and the role of limits further.

Activity 1.5.

Consider a moving object whose position function is given by s(t) = t2, where s is measured
in meters and t is measured in minutes.

(a) Determine a simplified expression for the average velocity of the object on the interval
[3, 3 + h].

(b) Determine the average velocity of the object on the interval [3, 3.2]. Include units on
your answer.

(c) Determine the instantaneous velocity of the object when t = 3. Include units on your
answer.

C

The closing activity of this section asks you to make some connections among average velocity,
instantaneous velocity, and slopes of certain lines.

Activity 1.6.

For the moving object whose position s at time t is given by the graph below, answer each of
the following questions. Assume that s is measured in feet and t is measured in seconds.

(a) Use the graph to estimate the average velocity of the object on each of the following
intervals: [0.5, 1], [1.5, 2.5], [0, 5]. Draw each line whose slope represents the average
velocity you seek.

(b) How could you use average velocities and slopes of lines to estimate the instantaneous
velocity of the object at a fixed time?

(c) Use the graph to estimate the instantaneous velocity of the object when t = 2. Should
this instantaneous velocity at t = 2 be greater or less than the average velocity on
[1.5, 2.5] that you computed in (a)? Why?
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1 3 5

1

3

5

t

s

Figure 1.8: Plot of the position function y = s(t) in Activity 1.6.

C

Summary

In this section, we encountered the following important ideas:

• Limits enable us to examine trends in function behavior near a specific point. In particular,
taking a limit at a given point asks if the function values nearby tend to approach a particular
fixed value.

• When we write lim
x→a

f(x) = L, we read this as saying “the limit of f as x approaches a is L,” and

this means that we can make the value of f(x) as close to L as we want by taking x sufficiently
close (but not equal) to a.

• If we desire to know lim
x→a

f(x) for a given value of a and a known function f , we can estimate
this value from the graph of f or by generating a table of function values that result from a
sequence of x-values that are closer and closer to a. If we want the exact value of the limit,
we need to work with the function algebraically and see if we can use familiar properties of
known, basic functions to understand how different parts of the formula for f change as x→ a.

• The instantaneous velocity of a moving object at a fixed time is found by taking the limit of
average velocities of the object over shorter and shorter time intervals that all contain the time
of interest.

Exercises

1. Consider the function whose formula is f(x) =
16− x4

x2 − 4
.

(a) What is the domain of f?
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(b) Use a sequence of values of x near a = 2 to estimate the value of lim
x→2

f(x), if you think

the limit exists. If you think the limit doesn’t exist, explain why.

(c) Use algebra to simplify the expression 16−x4
x2−4

and hence work to evaluate limx→2 f(x)
exactly, if it exists, or to explain how your work shows the limit fails to exist. Discuss
how your findings compare to your results in (b).

(d) True or false: f(2) = −8. Why?

(e) True or false: 16−x4
x2−4

= −4 − x2. Why? How is this equality connected to your work
above with the function f?

(f) Based on all of your work above, construct an accurate, labeled graph of y = f(x)
on the interval [1, 3], and write a sentence that explains what you now know about

lim
x→2

16− x4

x2 − 4
.

2. Let g(x) = −|x+ 3|
x+ 3

.

(a) What is the domain of g?

(b) Use a sequence of values near a = −3 to estimate the value of limx→−3 g(x), if you think
the limit exists. If you think the limit doesn’t exist, explain why.

(c) Use algebra to simplify the expression |x+3|
x+3 and hence work to evaluate limx→−3 g(x)

exactly, if it exists, or to explain how your work shows the limit fails to exist. Discuss
how your findings compare to your results in (b). (Hint: |a| = a whenever a ≥ 0, but
|a| = −a whenever a < 0.)

(d) True or false: g(−3) = −1. Why?

(e) True or false: − |x+3|
x+3 = −1. Why? How is this equality connected to your work above

with the function g?

(f) Based on all of your work above, construct an accurate, labeled graph of y = g(x) on
the interval [−4,−2], and write a sentence that explains what you now know about
lim
x→−3

g(x).

3. For each of the following prompts, sketch a graph on the provided axes of a function that has
the stated properties.

(a) y = f(x) such that

• f(−2) = 2 and lim
x→−2

f(x) = 1

• f(−1) = 3 and lim
x→−1

f(x) = 3

• f(1) is not defined and lim
x→1

f(x) = 0

• f(2) = 1 and lim
x→2

f(x) does not exist.
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(b) y = g(x) such that

• g(−2) = 3, g(−1) = −1, g(1) = −2, and g(2) = 3

• At x = −2,−1, 1 and 2, g has a limit, and its limit equals the value of the function
at that point.
• g(0) is not defined and lim

x→0
g(x) does not exist.

-3 3

-3

3

-3 3

-3

3

Figure 1.9: Axes for plotting y = f(x) in (a) and y = g(x) in (b).

4. A bungee jumper dives from a tower at time t = 0. Her height s in feet at time t in seconds is
given by s(t) = 100 cos(0.75t) · e−0.2t + 100.

(a) Write an expression for the average velocity of the bungee jumper on the interval
[1, 1 + h].

(b) Use computing technology to estimate the value of the limit as h → 0 of the quantity
you found in (a).

(c) What is the meaning of the value of the limit in (b)? What are its units?
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1.3 The derivative of a function at a point

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How is the average rate of change of a function on a given interval defined, and what does
this quantity measure?

• How is the instantaneous rate of change of a function at a particular point defined? How is
the instantaneous rate of change linked to average rate of change?

• What is the derivative of a function at a given point? What does this derivative value
measure? How do we interpret the derivative value graphically?

• How are limits used formally in the computation of derivatives?

Introduction

An idea that sits at the foundations of calculus is the instantaneous rate of change of a function.
This rate of change is always considered with respect to change in the input variable, often at a
particular fixed input value. This is a generalization of the notion of instantaneous velocity and
essentially allows us to consider the question “how do we measure how fast a particular function
is changing at a given point?” When the original function represents the position of a moving
object, this instantaneous rate of change is precisely velocity, and might be measured in units such
as feet per second. But in other contexts, instantaneous rate of change could measure the number
of cells added to a bacteria culture per day, the number of additional gallons of gasoline consumed
by going one mile per additional mile per hour in a car’s velocity, or the number of dollars added
to a mortgage payment for each percentage increase in interest rate. Regardless of the presence
of a physical or practical interpretation of a function, the instantaneous rate of change may also
be interpreted geometrically in connection to the function’s graph, and this connection is also
foundational to many of the main ideas in calculus.

In what follows, we will introduce terminology and notation that makes it easier to talk about
the instantaneous rate of change of a function at a point. In addition, just as instantaneous velocity
is defined in terms of average velocity, the more general instantaneous rate of change will be
connected to the more general average rate of change. Recall that for a moving object with position
function s, its average velocity on the time interval t = a to t = a+ h is given by the quotient

AV[a,a+h] =
s(a+ h)− s(a)

h
.

In a similar way, we make the following definition for an arbitrary function y = f(x).

Definition 1.2. For a function f , the average rate of change of f on the interval [a, a+ h] is given by
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the value

AV[a,a+h] =
f(a+ h)− f(a)

h
.

Equivalently, if we want to consider the average rate of change of f on [a, b], we compute

AV[a,b] =
f(b)− f(a)

b− a .

It is essential to understand how the average rate of change of f on an interval is connected to its
graph.

Preview Activity 1.3. Suppose that f is the function given by the graph below and that a and a+h
are the input values as labeled on the x-axis. Use the graph in Figure 1.10 to answer the following
questions.

x

y
f

a a+ h

Figure 1.10: Plot of y = f(x) for Preview Activity 1.3.

(a) Locate and label the points (a, f(a)) and (a+ h, f(a+ h)) on the graph.

(b) Construct a right triangle whose hypotenuse is the line segment from (a, f(a)) to
(a+ h, f(a+ h)). What are the lengths of the respective legs of this triangle?

(c) What is the slope of the line that connects the points (a, f(a)) and (a+ h, f(a+ h))?

(d) Write a meaningful sentence that explains how the average rate of change of the function
on a given interval and the slope of a related line are connected.

./

The Derivative of a Function at a Point

Just as we defined instantaneous velocity in terms of average velocity, we now define the instanta-
neous rate of change of a function at a point in terms of the average rate of change of the function



22 1.3. THE DERIVATIVE OF A FUNCTION AT A POINT

f over related intervals. In addition, we give a special name to “the instantaneous rate of change
of f at a,” calling this quantity “the derivative of f at a,” with this value being represented by the
shorthand notation f ′(a). Specifically, we make the following definition.

Definition 1.3. Let f be a function and x = a a value in the function’s domain. We define the
derivative of f with respect to x evaluated at x = a, denoted f ′(a), by the formula

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

provided this limit exists.

Aloud, we read the symbol f ′(a) as either “f -prime at a” or “the derivative of f evaluated at
x = a.” Much of the next several chapters will be devoted to understanding, computing, applying,
and interpreting derivatives. For now, we make the following important notes.

• The derivative of f at the value x = a is defined as the limit of the average rate of change
of f on the interval [a, a + h] as h → 0. It is possible for this limit not to exist, so not every
function has a derivative at every point.

• We say that a function that has a derivative at x = a is differentiable at x = a.

• The derivative is a generalization of the instantaneous velocity of a position function: when
y = s(t) is a position function of a moving body, s′(a) tells us the instantaneous velocity of
the body at time t = a.

• Because the units on f(a+h)−f(a)
h are “units of f per unit of x,” the derivative has these very

same units. For instance, if s measures position in feet and t measures time in seconds, the
units on s′(a) are feet per second.

• Because the quantity f(a+h)−f(a)
h represents the slope of the line through (a, f(a)) and

(a + h, f(a + h)), when we compute the derivative we are taking the limit of a collection of
slopes of lines, and thus the derivative itself represents the slope of a particularly important
line.

While all of the above ideas are important and we will add depth and perspective to them through
additional time and study, for now it is most essential to recognize how the derivative of a function
at a given value represents the slope of a certain line. Thus, we expand upon the last bullet item
above.

As we move from an average rate of change to an instantaneous one, we can think of one point
as “sliding towards” another. In particular, provided the function has a derivative at (a, f(a)), the
point (a + h, f(a + h)) will approach (a, f(a)) as h → 0. Because this process of taking a limit
is a dynamic one, it can be helpful to use computing technology to visualize what the limit is



1.3. THE DERIVATIVE OF A FUNCTION AT A POINT 23

accomplishing. While there are many different options3, one of the best is a java applet in which
the user is able to control the point that is moving. See the examples referenced in the footnote
here, or consider building your own, perhaps using the fantastic free program Geogebra4.

In Figure 1.11, we provide a sequence of figures with several different lines through the points
(a, f(a)) and (a + h, f(a + h)) that are generated by different values of h. These lines (shown in
the first three figures in magenta), are often called secant lines to the curve y = f(x). A secant line
to a curve is simply a line that passes through two points that lie on the curve. For each such line,
the slope of the secant line is m = f(a+h)−f(a)

h , where the value of h depends on the location of the
point we choose. We can see in the diagram how, as h → 0, the secant lines start to approach a
single line that passes through the point (a, f(a)). In the situation where the limit of the slopes of
the secant lines exists, we say that the resulting value is the slope of the tangent line to the curve.
This tangent line (shown in the right-most figure in green) to the graph of y = f(x) at the point
(a, f(a)) is the line through (a, f(a)) whose slope is m = f ′(a).

x

y
f

a

x

y
f

a

x

y
f

a

x

y
f

a

Figure 1.11: A sequence of secant lines approaching the tangent line to f at (a, f(a)).

As we will see in subsequent study, the existence of the tangent line at x = a is connected to
whether or not the function f looks like a straight line when viewed up close at (a, f(a)), which
can also be seen in Figure 1.12, where we combine the four graphs in Figure 1.11 into the single
one on the left, and then we zoom in on the box centered at (a, f(a)), with that view expanded on
the right (with two of the secant lines omitted). Note how the tangent line sits relative to the curve
y = f(x) at (a, f(a)) and how closely it resembles the curve near x = a.

At this time, it is most important to note that f ′(a), the instantaneous rate of change of f with
respect to x at x = a, also measures the slope of the tangent line to the curve y = f(x) at (a, f(a)).
The following example demonstrates several key ideas involving the derivative of a function.

3For a helpful collection of java applets, consider the work of David Austin of Grand Valley State Univer-
sity at http://gvsu.edu/s/5r, and the particularly relevant example at http://gvsu.edu/s/5s. For ap-
plets that have been built in Geogebra, a nice example is the work of Marc Renault of Shippensburg University at
http://gvsu.edu/s/5p, with the example at http://gvsu.edu/s/5q being especially fitting for our work in
this section. There are scores of other examples posted by other authors on the internet.

4Available for free download from http://geogebra.org.

http://gvsu.edu/s/5r
http://gvsu.edu/s/5s
http://gvsu.edu/s/5p
http://gvsu.edu/s/5q
http://geogebra.org
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x

y
f

a

Figure 1.12: A sequence of secant lines approaching the tangent line to f at (a, f(a)). At right, we zoom in
on the point (a, f(a)). The slope of the tangent line (in green) to f at (a, f(a)) is given by f ′(a).

Example 1.3. For the function given by f(x) = x − x2, use the limit definition of the derivative
to compute f ′(2). In addition, discuss the meaning of this value and draw a labeled graph that
supports your explanation.

Solution. From the limit definition, we know that

f ′(2) = lim
h→0

f(2 + h)− f(2)

h
.

Now we use the rule for f , and observe that f(2) = 2− 22 = −2 and f(2 + h) = (2 + h)− (2 + h)2.
Substituting these values into the limit definition, we have that

f ′(2) = lim
h→0

(2 + h)− (2 + h)2 − (−2)

h
.

Observe that with h in the denominator and our desire to let h → 0, we have to wait to take the
limit (that is, we wait to actually let h approach 0). Thus, we do additional algebra. Expanding
and distributing in the numerator,

f ′(2) = lim
h→0

2 + h− 4− 4h− h2 + 2

h
.

Combining like terms, we have

f ′(2) = lim
h→0

−3h− h2

h
.

Next, we observe that there is a common factor of h in both the numerator and denominator,
which allows us to simplify and find that

f ′(2) = lim
h→0

(−3− h).
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1 2

-4

-2

y = x− x2

m = f ′(2)

Figure 1.13: The tangent line to y = x− x2 at the point (2,−2).

Finally, we are able to take the limit as h→ 0, and thus conclude that f ′(2) = −3.

Now, we know that f ′(2) represents the slope of the tangent line to the curve y = x − x2 at
the point (2,−2); f ′(2) is also the instantaneous rate of change of f at the point (2,−2). Graphing
both the function and the line through (2,−2) with slope m = f ′(2) = −3, we indeed see that by
calculating the derivative, we have found the slope of the tangent line at this point, as shown in
Figure 1.3.

The following activities will help you explore a variety of key ideas related to derivatives.

Activity 1.7.

Consider the function f whose formula is f(x) = 3− 2x.

(a) What familiar type of function is f? What can you say about the slope of f at every
value of x?

(b) Compute the average rate of change of f on the intervals [1, 4], [3, 7], and [5, 5 + h];
simplify each result as much as possible. What do you notice about these quantities?

(c) Use the limit definition of the derivative to compute the exact instantaneous rate of
change of f with respect to x at the value a = 1. That is, compute f ′(1) using the limit
definition. Show your work. Is your result surprising?

(d) Without doing any additional computations, what are the values of f ′(2), f ′(π), and
f ′(−

√
2)? Why?
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C

Activity 1.8.

A water balloon is tossed vertically in the air from a window. The balloon’s height in feet at
time t in seconds after being launched is given by s(t) = −16t2 + 16t+ 32. Use this function to
respond to each of the following questions.

(a) Sketch an accurate, labeled graph of s on the axes provided in Figure 1.14. You should
be able to do this without using computing technology.

1 2

16

32

t

y

Figure 1.14: Axes for plotting y = s(t) in Activity 1.8.

(b) Compute the average rate of change of s on the time interval [1, 2]. Include units on
your answer and write one sentence to explain the meaning of the value you found.

(c) Use the limit definition to compute the instantaneous rate of change of s with respect
to time, t, at the instant a = 1. Show your work using proper notation, include units on
your answer, and write one sentence to explain the meaning of the value you found.

(d) On your graph in (a), sketch two lines: one whose slope represents the average rate of
change of s on [1, 2], the other whose slope represents the instantaneous rate of change
of s at the instant a = 1. Label each line clearly.

(e) For what values of a do you expect s′(a) to be positive? Why? Answer the same ques-
tions when “positive” is replaced by “negative” and “zero.”

C

Activity 1.9.

A rapidly growing city in Arizona has its population P at time t, where t is the number of
decades after the year 2010, modeled by the formula P (t) = 25000et/5. Use this function to
respond to the following questions.

(a) Sketch an accurate graph of P for t = 0 to t = 5 on the axes provided in Figure 1.15.
Label the scale on the axes carefully.
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t

y

Figure 1.15: Axes for plotting y = P (t) in Activity 1.9.

(b) Compute the average rate of change of P between 2030 and 2050. Include units on your
answer and write one sentence to explain the meaning (in everyday language) of the
value you found.

(c) Use the limit definition to write an expression for the instantaneous rate of change of P
with respect to time, t, at the instant a = 2. Explain why this limit is difficult to evaluate
exactly.

(d) Estimate the limit in (c) for the instantaneous rate of change of P at the instant a = 2
by using several small h values. Once you have determined an accurate estimate of
P ′(2), include units on your answer, and write one sentence (using everyday language)
to explain the meaning of the value you found.

(e) On your graph above, sketch two lines: one whose slope represents the average rate of
change of P on [2, 4], the other whose slope represents the instantaneous rate of change
of P at the instant a = 2.

(f) In a carefully-worded sentence, describe the behavior of P ′(a) as a increases in value.
What does this reflect about the behavior of the given function P ?

C

Summary

In this section, we encountered the following important ideas:

• The average rate of change of a function f on the interval [a, b] is
f(b)− f(a)

b− a . The units on the

average rate of change are units of f per unit of x, and the numerical value of the average rate
of change represents the slope of the secant line between the points (a, f(a)) and (b, f(b)) on
the graph of y = f(x). If we view the interval as being [a, a+ h] instead of [a, b], the meaning is

still the same, but the average rate of change is now computed by
f(a+ h)− f(a)

h
.



28 1.3. THE DERIVATIVE OF A FUNCTION AT A POINT

• The instantaneous rate of change with respect to x of a function f at a value x = a is denoted
f ′(a) (read “the derivative of f evaluated at a” or “f -prime at a”) and is defined by the formula

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

provided the limit exists. Note particularly that the instantaneous rate of change at x = a is the
limit of the average rate of change on [a, a+ h] as h→ 0.

• Provided the derivative f ′(a) exists, its value tells us the instantaneous rate of change of f with
respect to x at x = a, which geometrically is the slope of the tangent line to the curve y = f(x) at
the point (a, f(a)). We even say that f ′(a) is the slope of the curve y = f(x) at the point (a, f(a)).

• Limits are the link between average rate of change and instantaneous rate of change: they allow
us to move from the rate of change over an interval to the rate of change at a single point.

Exercises

1. Consider the graph of y = f(x) provided in Figure 1.16.

(a) On the graph of y = f(x), sketch and label the following quantities:

• the secant line to y = f(x) on the interval [−3,−1] and the secant line to y = f(x)
on the interval [0, 2].
• the tangent line to y = f(x) at x = −3 and the tangent line to y = f(x) at x = 0.

-4 4

-4

4
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Figure 1.16: Plot of y = f(x).

(b) What is the approximate value of the average rate of change of f on [−3,−1]? On [0, 2]?
How are these values related to your work in (a)?

(c) What is the approximate value of the instantaneous rate of change of f at x = −3? At
x = 0? How are these values related to your work in (a) and (b)?
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2. For each of the following prompts, sketch a graph on the provided axes in Figure 1.17 of a
function that has the stated properties.

(a) y = f(x) such that

• the average rate of change of f on [−3, 0] is −2 and the average rate of change of f
on [1, 3] is 0.5, and
• the instantaneous rate of change of f at x = −1 is −1 and the instantaneous rate of

change of f at x = 2 is 1.

(b) y = g(x) such that

• g(3)−g(−2)
5 = 0 and g(1)−g(−1)

2 = −1, and
• g′(2) = 1 and g′(−1) = 0
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3
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3

Figure 1.17: Axes for plotting y = f(x) in (a) and y = g(x) in (b).

3. Suppose that the population, P , of China (in billions) can be approximated by the function
P (t) = 1.15(1.014)t where t is the number of years since the start of 1993.

(a) According to the model, what was the total change in the population of China between
January 1, 1993 and January 1, 2000? What will be the average rate of change of the
population over this time period? Is this average rate of change greater or less than the
instantaneous rate of change of the population on January 1, 2000? Explain and justify,
being sure to include proper units on all your answers.

(b) According to the model, what is the average rate of change of the population of China
in the ten-year period starting on January 1, 2012?

(c) Write an expression involving limits that, if evaluated, would give the exact instanta-
neous rate of change of the population on today’s date. Then estimate the value of this
limit (discuss how you chose to do so) and explain the meaning (including units) of the
value you have found.
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(d) Find an equation for the tangent line to the function y = P (t) at the point where the
t-value is given by today’s date.

4. The goal of this problem is to compute the value of the derivative at a point for several different
functions, where for each one we do so in three different ways, and then to compare the results
to see that each produces the same value.

For each of the following functions, use the limit definition of the derivative to compute the
value of f ′(a) using three different approaches: strive to use the algebraic approach first (to
compute the limit exactly), then test your result using numerical evidence (with small values
of h), and finally plot the graph of y = f(x) near (a, f(a)) along with the appropriate tangent
line to estimate the value of f ′(a) visually. Compare your findings among all three approaches.

(a) f(x) = x2 − 3x, a = 2

(b) f(x) = 1
x , a = 1

(c) f(x) = sin(x), a = π
2

(d) f(x) =
√
x, a = 1

(e) f(x) = 2− |x− 1|, a = 1
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1.4 The derivative function

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How does the limit definition of the derivative of a function f lead to an entirely new (but
related) function f ′?

• What is the difference between writing f ′(a) and f ′(x)?

• How is the graph of the derivative function f ′(x) connected to the graph of f(x)?

• What are some examples of functions f for which f ′ is not defined at one or more points?

Introduction

Given a function y = f(x), we now know that if we are interested in the instantaneous rate of
change of the function at x = a, or equivalently the slope of the tangent line to y = f(x) at x = a,
we can compute the value f ′(a). In all of our examples to date, we have arbitrarily identified a
particular value of a as our point of interest: a = 1, a = 3, etc. But it is not hard to imagine that
we will often be interested in the derivative value for more than just one a-value, and possibly for
many of them. In this section, we explore how we can move from computing simply f ′(1) or f ′(3)
to working more generally with f ′(a), and indeed f ′(x). Said differently, we will work toward
understanding how the so-called process of “taking the derivative” generates a new function that
is derived from the original function y = f(x). The following preview activity starts us down this
path.

Preview Activity 1.4. Consider the function f(x) = 4x− x2.

(a) Use the limit definition to compute the following derivative values: f ′(0), f ′(1), f ′(2), and
f ′(3).

(b) Observe that the work to find f ′(a) is the same, regardless of the value of a. Based on your
work in (a), what do you conjecture is the value of f ′(4)? How about f ′(5)? (Note: you
should not use the limit definition of the derivative to find either value.)

(c) Conjecture a formula for f ′(a) that depends only on the value a. That is, in the same way
that we have a formula for f(x) (recall f(x) = 4x−x2), see if you can use your work above
to guess a formula for f ′(a) in terms of a.

./
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How the derivative is itself a function

In your work in Preview Activity 1.4 with f(x) = 4x − x2, you may have found several patterns.
One comes from observing that f ′(0) = 4, f ′(1) = 2, f ′(2) = 0, and f ′(3) = −2. That sequence
of values leads us naturally to conjecture that f ′(4) = −4 and f ′(5) = −6. Even more than these
individual numbers, if we consider the role of 0, 1, 2, and 3 in the process of computing the value
of the derivative through the limit definition, we observe that the particular number has very little
effect on our work. To see this more clearly, we compute f ′(a), where a represents a number to be
named later. Following the now standard process of using the limit definition of the derivative,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

4(a+ h)− (a+ h)2 − (4a− a2)

h

= lim
h→0

4a+ 4h− a2 − 2ha− h2 − 4a+ a2

h

= lim
h→0

4h− 2ha− h2

h

= lim
h→0

h(4− 2a− h)

h
= lim

h→0
(4− 2a− h).

Here we observe that neither 4 nor 2a depend on the value of h, so as h→ 0, (4−2a−h)→ (4−2a).
Thus, f ′(a) = 4− 2a.

This observation is consistent with the specific values we found above: e.g., f ′(3) = 4− 2(3) =
−2. And indeed, our work with a confirms that while the particular value of a at which we
evaluate the derivative affects the value of the derivative, that value has almost no bearing on
the process of computing the derivative. We note further that the letter being used is immaterial:
whether we call it a, x, or anything else, the derivative at a given value is simply given by “4
minus 2 times the value.” We choose to use x for consistency with the original function given by
y = f(x), as well as for the purpose of graphing the derivative function, and thus we have found
that for the function f(x) = 4x− x2, it follows that f ′(x) = 4− 2x.

Because the value of the derivative function is so closely linked to the graphical behavior of
the original function, it makes sense to look at both of these functions plotted on the same domain.
In Figure 1.18, on the left we show a plot of f(x) = 4x − x2 together with a selection of tangent
lines at the points we’ve considered above. On the right, we show a plot of f ′(x) = 4 − 2x
with emphasis on the heights of the derivative graph at the same selection of points. Notice the
connection between colors in the left and right graph: the green tangent line on the original graph
is tied to the green point on the right graph in the following way: the slope of the tangent line at a
point on the lefthand graph is the same as the height at the corresponding point on the righthand
graph. That is, at each respective value of x, the slope of the tangent line to the original function at
that x-value is the same as the height of the derivative function at that x-value. Do note, however,
that the units on the vertical axes are different: in the left graph, the vertical units are simply the
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Figure 1.18: The graphs of f(x) = 4x − x2 (at left) and f ′(x) = 4 − 2x (at right). Slopes on the graph of f
correspond to heights on the graph of f ′.

output units of f . On the righthand graph of y = f ′(x), the units on the vertical axis are units of f
per unit of x.

Of course, this relationship between the graph of a function y = f(x) and its derivative is
a dynamic one. An excellent way to explore how the graph of f(x) generates the graph of
f ′(x) is through a java applet. See, for instance, the applets at http://gvsu.edu/s/5C or
http://gvsu.edu/s/5D, via the sites of Austin and Renault5.

In Section 1.3 when we first defined the derivative, we wrote the definition in terms of a value
a to find f ′(a). As we have seen above, the letter a is merely a placeholder, and it often makes
more sense to use x instead. For the record, here we restate the definition of the derivative.

Definition 1.4. Let f be a function and x a value in the function’s domain. We define the derivative

of f with respect to x at the value x, denoted f ′(x), by the formula f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

provided this limit exists.

We now may take two different perspectives on thinking about the derivative function: given a
graph of y = f(x), how does this graph lead to the graph of the derivative function y = f ′(x)? and
given a formula for y = f(x), how does the limit definition of the derivative generate a formula
for y = f ′(x)? Both of these issues are explored in the following activities.

5David Austin, http://gvsu.edu/s/5r; Marc Renault, http://gvsu.edu/s/5p.

http://gvsu.edu/s/5C
http://gvsu.edu/s/5D
http://gvsu.edu/s/5r
http://gvsu.edu/s/5p
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Activity 1.10.

For each given graph of y = f(x), sketch an approximate graph of its derivative function,
y = f ′(x), on the axes immediately below. The scale of the grid for the graph of f is 1 × 1;
assume the horizontal scale of the grid for the graph of f ′ is identical to that for f . If necessary,
adjust and label the vertical scale on the axes for the graph of f ′.
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Write several sentences that describe your overall process for sketching the graph of the deriva-
tive function, given the graph the original function. What are the values of the derivative func-
tion that you tend to identify first? What do you do thereafter? How do key traits of the graph
of the derivative function exemplify properties of the graph of the original function?

C
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For a dynamic investigation that allows you to experiment with graphing f ′ when given the
graph of f , see http://gvsu.edu/s/8y.6

Now, recall the opening example of this section: we began with the function y = f(x) = 4x−x2

and used the limit definition of the derivative to show that f ′(a) = 4 − 2a, or equivalently that
f ′(x) = 4−2x. We subsequently graphed the functions f and f ′ as shown in Figure 1.18. Following
Activity 1.10, we now understand that we could have constructed a fairly accurate graph of f ′(x)
without knowing a formula for either f or f ′. At the same time, it is ideal to know a formula for
the derivative function whenever it is possible to find one.

In the next activity, we further explore the more algebraic approach to finding f ′(x): given a
formula for y = f(x), the limit definition of the derivative will be used to develop a formula for
f ′(x).

Activity 1.11.

For each of the listed functions, determine a formula for the derivative function. For the first
two, determine the formula for the derivative by thinking about the nature of the given function
and its slope at various points; do not use the limit definition. For the latter four, use the
limit definition. Pay careful attention to the function names and independent variables. It
is important to be comfortable with using letters other than f and x. For example, given a
function p(z), we call its derivative p′(z).

(a) f(x) = 1

(b) g(t) = t

(c) p(z) = z2

(d) q(s) = s3

(e) F (t) = 1
t

(f) G(y) =
√
y

C

Summary

In this section, we encountered the following important ideas:

• The limit definition of the derivative, f ′(x) = limh→0
f(x+h)−f(x)

h , produces a value for each x
at which the derivative is defined, and this leads to a new function whose formula is y = f ′(x).
Hence we talk both about a given function f and its derivative f ′. It is especially important to
note that taking the derivative is a process that starts with a given function (f ) and produces a
new, related function (f ′).

• There is essentially no difference between writing f ′(a) (as we did regularly in Section 1.3) and
writing f ′(x). In either case, the variable is just a placeholder that is used to define the rule for
the derivative function.
6Marc Renault, Calculus Applets Using Geogebra.

http://gvsu.edu/s/8y
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• Given the graph of a function y = f(x), we can sketch an approximate graph of its derivative
y = f ′(x) by observing that heights on the derivative’s graph correspond to slopes on the original
function’s graph.

• In Activity 1.10, we encountered some functions that had sharp corners on their graphs, such
as the shifted absolute value function. At such points, the derivative fails to exist, and we say
that f is not differentiable there. For now, it suffices to understand this as a consequence of the
jump that must occur in the derivative function at a sharp corner on the graph of the original
function.

Exercises

1. Let f be a function with the following properties: f is differentiable at every value of x (that
is, f has a derivative at every point), f(−2) = 1, and f ′(−2) = −2, f ′(−1) = −1, f ′(0) = 0,
f ′(1) = 1, and f ′(2) = 2.

(a) On the axes provided at left in Figure 1.19, sketch a possible graph of y = f(x). Explain
why your graph meets the stated criteria.

(b) On the axes at right in Figure 1.19, sketch a possible graph of y = f ′(x). What type of
curve does the provided data suggest for the graph of y = f ′(x)?

(c) Conjecture a formula for the function y = f(x). Use the limit definition of the derivative
to determine the corresponding formula for y = f ′(x). Discuss both graphical and
algebraic evidence for whether or not your conjecture is correct.

-3 3

-3

3

-3 3

-3

3

Figure 1.19: Axes for plotting y = f(x) in (a) and y = f ′(x) in (b).

2. Consider the function g(x) = x2 − x+ 3.

(a) Use the limit definition of the derivative to determine a formula for g′(x).

(b) Use a graphing utility to plot both y = g(x) and your result for y = g′(x); does your
formula for g′(x) generate the graph you expected?
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(c) Use the limit definition of the derivative to find a formula for h′(x) where h(x) = 5x2 −
4x+ 12.

(d) Compare and contrast the formulas for g′(x) and h′(x) you have found. How do the
constants 5, 4, 12, and 3 affect the results?

3. For each graph that provides an original function y = f(x) in Figure 1.20, your task is to sketch
an approximate graph of its derivative function, y = f ′(x), on the axes immediately below.
View the scale of the grid for the graph of f as being 1 × 1, and assume the horizontal scale of
the grid for the graph of f ′ is identical to that for f . If you need to adjust the vertical scale on
the axes for the graph of f ′, you should label that accordingly.

f

x

f ′

x

f

x

f ′

x

f

x

f ′

x

f

x

f ′

x

Figure 1.20: Graphs of y = f(x) and grids for plotting the corresponding graph of y = f ′(x).
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4. Let g be a continuous function (that is, one with no jumps or holes in the graph) and suppose
that a graph of y = g′(x) is given by the graph on the right in Figure 1.21.

-2 2

-2

2

-2 2

-2

2

Figure 1.21: Axes for plotting y = g(x) and, at right, the graph of y = g′(x).

(a) Observe that for every value of x that satisfies 0 < x < 2, the value of g′(x) is constant.
What does this tell you about the behavior of the graph of y = g(x) on this interval?

(b) On what intervals other than 0 < x < 2 do you expect y = g(x) to be a linear function?
Why?

(c) At which values of x is g′(x) not defined? What behavior does this lead you to expect
to see in the graph of y = g(x)?

(d) Suppose that g(0) = 1. On the axes provided at left in Figure 1.21, sketch an accurate
graph of y = g(x).



40 1.5. INTERPRETING, ESTIMATING, AND USING THE DERIVATIVE

1.5 Interpreting, estimating, and using the derivative

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• In contexts other than the position of a moving object, what does the derivative of a function
measure?

• What are the units on the derivative function f ′, and how are they related to the units of the
original function f?

• What is a central difference, and how can one be used to estimate the value of the derivative
at a point from given function data?

• Given the value of the derivative of a function at a point, what can we infer about how the
value of the function changes nearby?

Introduction

An interesting and powerful feature of mathematics is that it can often be thought of both in
abstract terms and in applied ones. For instance, calculus can be developed almost entirely as
an abstract collection of ideas that focus on properties of arbitrary functions. At the same time,
calculus can also be very directly connected to our experience of physical reality by considering
functions that represent meaningful processes. We have already seen that for a position function
y = s(t), say for a ball being tossed straight up in the air, the ball’s velocity at time t is given by
v(t) = s′(t), the derivative of the position function. Further, recall that if s(t) is measured in feet at
time t, the units on v(t) = s′(t) are feet per second.

In what follows in this section, we investigate several different functions, each with specific
physical meaning, and think about how the units on the independent variable, dependent vari-
able, and the derivative function add to our understanding. To start, we consider the familiar
problem of a position function of a moving object.

Preview Activity 1.5. One of the longest stretches of straight (and flat) road in North America
can be found on the Great Plains in the state of North Dakota on state highway 46, which lies just
south of the interstate highway I-94 and runs through the town of Gackle. A car leaves town (at
time t = 0) and heads east on highway 46; its position in miles from Gackle at time t in minutes is
given by the graph of the function in Figure 1.22. Three important points are labeled on the graph;
where the curve looks linear, assume that it is indeed a straight line.

(a) In everyday language, describe the behavior of the car over the provided time interval. In
particular, discuss what is happening on the time intervals [57, 68] and [68, 104].

(b) Find the slope of the line between the points (57, 63.8) and (104, 106.8). What are the units
on this slope? What does the slope represent?
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Figure 1.22: The graph of y = s(t), the position of the car along highway 46, which tells its distance in miles
from Gackle, ND, at time t in minutes.

(c) Find the average rate of change of the car’s position on the interval [68, 104]. Include units
on your answer.

(d) Estimate the instantaneous rate of change of the car’s position at the moment t = 80. Write
a sentence to explain your reasoning and the meaning of this value.

./

Units of the derivative function

As we now know, the derivative of the function f at a fixed value x is given by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

and this value has several different interpretations. If we set x = a, one meaning of f ′(a) is the
slope of the tangent line at the point (a, f(a)).

In alternate notation, we also sometimes equivalently write df
dx or dy

dx instead of f ′(x), and these
notations helps us to further see the units (and thus the meaning) of the derivative as it is viewed
as the instantaneous rate of change of f with respect to x. Note that the units on the slope of the secant
line, f(x+h)−f(x)

h , are “units of f per unit of x.” Thus, when we take the limit to get f ′(x), we get
these same units on the derivative f ′(x): units of f per unit of x. Regardless of the function f
under consideration (and regardless of the variables being used), it is helpful to remember that
the units on the derivative function are “units of output per unit of input,” in terms of the input
and output of the original function.

For example, say that we have a function y = P (t), where P measures the population of a city
(in thousands) at the start of year t (where t = 0 corresponds to 2010 AD), and we are told that
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P ′(2) = 21.37. What is the meaning of this value? Well, since P is measured in thousands and t is
measured in years, we can say that the instantaneous rate of change of the city’s population with
respect to time at the start of 2012 is 21.37 thousand people per year. We therefore expect that in
the coming year, about 21,370 people will be added to the city’s population.

Toward more accurate derivative estimates

It is also helpful to recall, as we first experienced in Section 1.3, that when we want to estimate
the value of f ′(x) at a given x, we can use the difference quotient f(x+h)−f(x)

h with a relatively small
value of h. In doing so, we should use both positive and negative values of h in order to make
sure we account for the behavior of the function on both sides of the point of interest. To that end,
we consider the following brief example to demonstrate the notion of a central difference and its
role in estimating derivatives.

Example 1.4. Suppose that y = f(x) is a function for which three values are known: f(1) = 2.5,
f(2) = 3.25, and f(3) = 3.625. Estimate f ′(2).

Solution. We know that f ′(2) = limh→0
f(2+h)−f(2)

h . But since we don’t have a graph for y = f(x)
nor a formula for the function, we can neither sketch a tangent line nor evaluate the limit exactly.
We can’t even use smaller and smaller values of h to estimate the limit. Instead, we have just two
choices: using h = −1 or h = 1, depending on which point we pair with (2, 3.25).

So, one estimate is

f ′(2) ≈ f(1)− f(2)

1− 2
=

2.5− 3.25

−1
= 0.75.

The other is

f ′(2) ≈ f(3)− f(2)

3− 2
=

3.625− 3.25

1
= 0.375.

Since the first approximation looks only backward from the point (2, 3.25) and the second approx-
imation looks only forward from (2, 3.25), it makes sense to average these two values in order to
account for behavior on both sides of the point of interest. Doing so, we find that

f ′(2) ≈ 0.75 + 0.375

2
= 0.5625.

The intuitive approach to average the two estimates found in Example 1.4 is in fact the best
possible estimate to f ′(2) when we have just two function values for f on opposite sides of the
point of interest. To see why, we think about the diagram in Figure 1.23, which shows a possible
function y = f(x) that satisfies the data given in Example 1.4. On the left, we see the two secant
lines with slopes that come from computing the backward difference f(1)−f(2)

1−2 = 0.75 and from the
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forward difference f(3)−f(2)
3−2 = 0.375. Note how the first such line’s slope over-estimates the slope

of the tangent line at (2, f(2)), while the second line’s slope underestimates f ′(2). On the right,
however, we see the secant line whose slope is given by the central difference

f(3)− f(1)

3− 1
=

3.625− 2.5

2
=

1.125

2
= 0.5625.

Note that this central difference has the exact same value as the average of the forward difference
and backward difference (and it is straightforward to explain why this always holds), and more-
over that the central difference yields a very good approximation to the derivative’s value, in part
because the secant line that uses both a point before and after the point of tangency yields a line
that is closer to being parallel to the tangent line.

1 2 3

1

2

3

1 2 3

1

2

3

Figure 1.23: At left, the graph of y = f(x) along with the secant line through (1, 2.5) and (2, 3.25), the secant
line through (2, 3.25) and (3, 3.625), as well as the tangent line. At right, the same graph along with the
secant line through (1, 2.5) and (3, 3.625), plus the tangent line.

In general, the central difference approximation to the value of the first derivative is given by

f ′(a) ≈ f(a+ h)− f(a− h)

2h
,

and this quantity measures the slope of the secant line to y = f(x) through the points (a−h, f(a−
h)) and (a+h, f(a+h)). Anytime we have symmetric data surrounding a point at which we desire
to estimate the derivative, the central difference is an ideal choice for so doing.

The following activities will further explore the meaning of the derivative in several different
contexts while also viewing the derivative from graphical, numerical, and algebraic perspectives.

Activity 1.12.

A potato is placed in an oven, and the potato’s temperature F (in degrees Fahrenheit) at various
points in time is taken and recorded in the following table. Time t is measured in minutes.
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t F (t)

0 70
15 180.5
30 251
45 296
60 324.5
75 342.8
90 354.5

(a) Use a central difference to estimate the instantaneous rate of change of the temperature
of the potato at t = 30. Include units on your answer.

(b) Use a central difference to estimate the instantaneous rate of change of the temperature
of the potato at t = 60. Include units on your answer.

(c) Without doing any calculation, which do you expect to be greater: F ′(75) or F ′(90)?
Why?

(d) Suppose it is given that F (64) = 330.28 and F ′(64) = 1.341. What are the units on these
two quantities? What do you expect the temperature of the potato to be when t = 65?
when t = 66? Why?

(e) Write a couple of careful sentences that describe the behavior of the temperature of the
potato on the time interval [0, 90], as well as the behavior of the instantaneous rate of
change of the temperature of the potato on the same time interval.

C

Activity 1.13.

A company manufactures rope, and the total cost of producing r feet of rope is C(r) dollars.

(a) What does it mean to say that C(2000) = 800?

(b) What are the units of C ′(r)?

(c) Suppose that C(2000) = 800 and C ′(2000) = 0.35. Estimate C(2100), and justify your
estimate by writing at least one sentence that explains your thinking.

(d) Which of the following statements do you think is true, and why?

• C ′(2000) < C ′(3000)

• C ′(2000) = C ′(3000)

• C ′(2000) > C ′(3000)

(e) Suppose someone claims that C ′(5000) = −0.1. What would the practical meaning of
this derivative value tell you about the approximate cost of the next foot of rope? Is this
possible? Why or why not?

C
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Activity 1.14.

Researchers at a major car company have found a function that relates gasoline consumption to
speed for a particular model of car. In particular, they have determined that the consumption
C, in liters per kilometer, at a given speed s, is given by a function C = f(s), where s is the
car’s speed in kilometers per hour.

(a) Data provided by the car company tells us that f(80) = 0.015, f(90) = 0.02, and
f(100) = 0.027. Use this information to estimate the instantaneous rate of change of
fuel consumption with respect to speed at s = 90. Be as accurate as possible, use proper
notation, and include units on your answer.

(b) By writing a complete sentence, interpret the meaning (in the context of fuel consump-
tion) of “f(80) = 0.015.”

(c) Write at least one complete sentence that interprets the meaning of the value of f ′(90)
that you estimated in (a).

C

In Section 1.4, we learned how use to the graph of a given function f to plot the graph of its
derivative, f ′. It is important to remember that when we do so, not only does the scale on the
vertical axis often have to change to accurately represent f ′, but the units on that axis also differ.
For example, suppose that P (t) = 400 − 330e−0.03t tells us the temperature in degrees Fahrenheit
of a potato in an oven at time t in minutes. In Figure 1.24, we sketch the graph of P on the left and
the graph of P ′ on the right.
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Figure 1.24: Plot of P (t) = 400− 330e−0.03t at left, and its derivative P ′(t) at right.

Note how not only are the vertical scales different in size, but different in units, as the units of
P are ◦F, while those of P ′ are ◦F/min. In all cases where we work with functions that have an
applied context, it is helpful and instructive to think carefully about units involved and how they
further inform the meaning of our computations.
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Summary

In this section, we encountered the following important ideas:

• Regardless of the context of a given function y = f(x), the derivative always measures the
instantaneous rate of change of the output variable with respect to the input variable.

• The units on the derivative function y = f ′(x) are units of f per unit of x. Again, this measures
how fast the output of the function f changes when the input of the function changes.

• The central difference approximation to the value of the first derivative is given by

f ′(a) ≈ f(a+ h)− f(a− h)

2h
,

and this quantity measures the slope of the secant line to y = f(x) through the points (a −
h, f(a− h)) and (a+ h, f(a+ h)). The central difference generates a good approximation of the
derivative’s value any time we have symmetric data surrounding a point of interest.

• Knowing the derivative and function values at a single point enables us to estimate other func-
tion values nearby. If, for example, we know that f ′(7) = 2, then we know that at x = 7, the
function f is increasing at an instantaneous rate of 2 units of output for every one unit of input.
Thus, we expect f(8) to be approximately 2 units greater than f(7). The value is approximate
because we don’t know that the rate of change stays the same as x changes.

Exercises

1. A cup of coffee has its temperature F (in degrees Fahrenheit) at time t given by the function
F (t) = 75 + 110e−0.05t, where time is measured in minutes.

(a) Use a central difference with h = 0.01 to estimate the value of F ′(10).

(b) What are the units on the value of F ′(10) that you computed in (a)? What is the practical
meaning of the value of F ′(10)?

(c) Which do you expect to be greater: F ′(10) or F ′(20)? Why?

(d) Write a sentence that describes the behavior of the function y = F ′(t) on the time inter-
val 0 ≤ t ≤ 30. How do you think its graph will look? Why?

2. The temperature change T (in Fahrenheit degrees), in a patient, that is generated by a dose q
(in milliliters), of a drug, is given by the function T = f(q).

(a) What does it mean to say f(50) = 0.75? Write a complete sentence to explain, using
correct units.

(b) A person’s sensitivity, s, to the drug is defined by the function s(q) = f ′(q). What are
the units of sensitivity?
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(c) Suppose that f ′(50) = −0.02. Write a complete sentence to explain the meaning of this
value. Include in your response the information given in (a).

3. The velocity of a ball that has been tossed vertically in the air is given by v(t) = 16− 32t, where
v is measured in feet per second, and t is measured in seconds. The ball is in the air from t = 0
until t = 2.

(a) When is the ball’s velocity greatest?

(b) Determine the value of v′(1). Justify your thinking.

(c) What are the units on the value of v′(1)? What does this value and the corresponding
units tell you about the behavior of the ball at time t = 1?

(d) What is the physical meaning of the function v′(t)?

4. The value, V , of a particular automobile (in dollars) depends on the number of miles, m, the
car has been driven, according to the function V = h(m).

(a) Suppose that h(40000) = 15500 and h(55000) = 13200. What is the average rate of
change of h on the interval [40000, 55000], and what are the units on this value?

(b) In addition to the information given in (a), say that h(70000) = 11100. Determine the
best possible estimate of h′(55000) and write one sentence to explain the meaning of
your result, including units on your answer.

(c) Which value do you expect to be greater: h′(30000) or h′(80000)? Why?

(d) Write a sentence to describe the long-term behavior of the function V = h(m), plus
another sentence to describe the long-term behavior of h′(m). Provide your discussion
in practical terms regarding the value of the car and the rate at which that value is
changing.
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1.6 The second derivative

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How does the derivative of a function tell us whether the function is increasing or decreas-
ing at a point or on an interval?

• What can we learn by taking the derivative of the derivative (to achieve the second deriva-
tive) of a function f?

• What does it mean to say that a function is concave up or concave down? How are these
characteristics connected to certain properties of the derivative of the function?

• What are the units on the second derivative? How do they help us understand the rate of
change of the rate of change?

Introduction

Given a differentiable function y = f(x), we know that its derivative, y = f ′(x), is a related
function whose output at a value x = a tells us the slope of the tangent line to y = f(x) at the
point (a, f(a)). That is, heights on the derivative graph tell us the values of slopes on the original
function’s graph. Therefore, the derivative tells us important information about the function f .

A
B

Figure 1.25: Two tangent lines on a graph demonstrate how the slope of the tangent line tells us whether
the function is rising or falling, as well as whether it is doing so rapidly or slowly.

At any point where f ′(x) is positive, it means that the slope of the tangent line to f is positive,
and therefore the function f is increasing (or rising) at that point. Similarly, if f ′(a) is negative, we
know that the graph of f is decreasing (or falling) at that point.
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In the next part of our study, we work to understand not only whether the function f is in-
creasing or decreasing at a point or on an interval, but also how the function f is increasing or
decreasing. Comparing the two tangent lines shown in Figure 1.25, we see that at point A, the
value of f ′(x) is positive and relatively close to zero, which coincides with the graph rising slowly.
By contrast, at point B, the derivative is negative and relatively large in absolute value, which
is tied to the fact that f is decreasing rapidly at B. It also makes sense to not only ask whether
the value of the derivative function is positive or negative and whether the derivative is large or
small, but also to ask “how is the derivative changing?”

We also now know that the derivative, y = f ′(x), is itself a function. This means that we can
consider taking its derivative – the derivative of the derivative – and therefore ask questions like
“what does the derivative of the derivative tell us about how the original function behaves?” As
we have done regularly in our work to date, we start with an investigation of a familiar problem
in the context of a moving object.

Preview Activity 1.6. The position of a car driving along a straight road at time t in minutes is
given by the function y = s(t) that is pictured in Figure 1.26. The car’s position function has units
measured in thousands of feet. For instance, the point (2, 4) on the graph indicates that after 2
minutes, the car has traveled 4000 feet.
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Figure 1.26: The graph of y = s(t), the position of the car (measured in thousands of feet from its starting
location) at time t in minutes.

(a) In everyday language, describe the behavior of the car over the provided time interval.
In particular, you should carefully discuss what is happening on each of the time intervals
[0, 1], [1, 2], [2, 3], [3, 4], and [4, 5], plus provide commentary overall on what the car is doing
on the interval [0, 12].

(b) On the lefthand axes provided in Figure 1.27, sketch a careful, accurate graph of y = s′(t).
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(c) What is the meaning of the function y = s′(t) in the context of the given problem? What
can we say about the car’s behavior when s′(t) is positive? when s′(t) is zero? when s′(t)
is negative?

(d) Rename the function you graphed in (b) to be called y = v(t). Describe the behavior of v
in words, using phrases like “v is increasing on the interval . . .” and “v is constant on the
interval . . ..”

(e) Sketch a graph of the function y = v′(t) on the righthand axes provide in Figure 1.26.
Write at least one sentence to explain how the behavior of v′(t) is connected to the graph
of y = v(t).
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Figure 1.27: Axes for plotting y = v(t) = s′(t) and y = v′(t).

./

Increasing, decreasing, or neither

When we look at the graph of a function, there are features that strike us naturally, and common
language can be used to name these features. In many different settings so far, we have intuitively
used the words increasing and decreasing to describe a function’s graph. Here we connect these
terms more formally to a function’s behavior on an interval of input values.

Definition 1.5. Given a function f(x) defined on the interval (a, b), we say that f is increasing on
(a, b) provided that for all x, y in the interval (a, b), if x < y, then f(x) < f(y). Similarly, we say
that f is decreasing on (a, b) provided that for all x, y in the interval (a, b), if x < y, then f(x) > f(y).

Simply put, an increasing function is one that is rising as we move from left to right along the
graph, and a decreasing function is one that falls as the value of the input increases. For a function
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that has a derivative at a point, we will also talk about whether or not the function is increasing or
decreasing at that point. Moreover, the fact of whether or not the function is increasing, decreasing,
or neither at a given point depends precisely on the value of the derivative at that point.

Let f be a function that is differentiable at x = a. Then f is increasing at x = a if and only if
f ′(a) > 0 and f is decreasing at x = a if and only if f ′(a) < 0. If f ′(a) = 0, then we say f is
neither increasing nor decreasing at x = a.

-2 2

-2

2

A

By = f(x)

Figure 1.28: A function that is decreasing at A, increasing at B, and more generally, decreasing on the
intervals −3 < x < −2 and 0 < x < 2 and increasing on −2 < x < 0 and 2 < x < 3.

For example, the function pictured in Figure 1.28 is increasing at any point at which f ′(x) is
positive, and hence is increasing on the entire interval −2 < x < 0. Note that at both x = ±2 and
x = 0, we say that f is neither increasing nor decreasing, because f ′(x) = 0 at these values.

The Second Derivative

For any function, we are now accustomed to investigating its behavior by thinking about its
derivative. Given a function f , its derivative is a new function, one that is given by the rule

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Because f ′ is itself a function, it is perfectly feasible for us to consider the derivative of the deriva-
tive, which is the new function y = [f ′(x)]′. We call this resulting function the second derivative of
y = f(x), and denote the second derivative by y = f ′′(x). Due to the presence of multiple possible
derivatives, we will sometimes call f ′ “the first derivative” of f , rather than simply “the deriva-
tive” of f . Formally, the second derivative is defined by the limit definition of the derivative of
the first derivative:

f ′′(x) = lim
h→0

f ′(x+ h)− f ′(x)

h
.
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We note that all of the established meaning of the derivative function still holds, so when we
compute y = f ′′(x), this new function measures slopes of tangent lines to the curve y = f ′(x), as
well as the instantaneous rate of change of y = f ′(x). In other words, just as the first derivative
measures the rate at which the original function changes, the second derivative measures the rate
at which the first derivative changes. This means that the second derivative tracks the instanta-
neous rate of change of the instantaneous rate of change of f . That is, the second derivative will
help us to understand how the rate of change of the original function is itself changing.

Concavity

In addition to asking whether a function is increasing or decreasing, it is also natural to inquire how
a function is increasing or decreasing. To begin, there are three basic behaviors that an increasing
function can demonstrate on an interval, as pictured in Figure 1.29: the function can increase
more and more rapidly, increase at the same rate, or increase in a way that is slowing down.
Fundamentally, we are beginning to think about how a particular curve bends, with the natural
comparison being made to lines, which don’t bend at all. More than this, we want to understand
how the bend in a function’s graph is tied to behavior characterized by the first derivative of the
function.

Figure 1.29: Three functions that are all increasing, but doing so at an increasing rate, at a constant rate, and
at a decreasing rate, respectively.

For the leftmost curve in Figure 1.29, picture a sequence of tangent lines to the curve. As we
move from left to right, the slopes of those tangent lines will increase. Therefore, the rate of change
of the pictured function is increasing, and this explains why we say this function is increasing at
an increasing rate. For the rightmost graph in Figure 1.29, observe that as x increases, the function
increases but the slope of the tangent line decreases, hence this function is increasing at a decreasing
rate.

Of course, similar options hold for how a function can decrease. Here we must be extra care-
ful with our language, since decreasing functions involve negative slopes, and negative numbers
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present an interesting situation in the tension between common language and mathematical lan-
guage. For example, it can be tempting to say that “−100 is bigger than −2.” But we must re-
member that when we say one number is greater than another, this describes how the numbers
lie on a number line: x < y provided that x lies to the left of y. So of course, −100 is less than −2.
Informally, it might be helpful to say that “−100 is more negative than −2.” This leads us to note
particularly that when a function’s values are negative, and those values subsequently get more
negative, the function must be decreasing.

Now consider the three graphs shown in Figure 1.30. Clearly the middle graph demonstrates
the behavior of a function decreasing at a constant rate. If we think about a sequence of tangent
lines to the first curve that progress from left to right, we see that the slopes of these lines get less
and less negative as we move from left to right. That means that the values of the first deriva-
tive, while all negative, are increasing, and thus we say that the leftmost curve is decreasing at an
increasing rate.

Figure 1.30: From left to right, three functions that are all decreasing, but doing so in different ways.

This leaves only the rightmost curve in Figure 1.30 to consider. For that function, the slope of
the tangent line is negative throughout the pictured interval, but as we move from left to right, the
slopes get more and more negative. Hence the slope of the curve is decreasing, and we say that
the function is decreasing at a decreasing rate.

This leads us to introduce the notion of concavity which provides simpler language to describe
some of these behaviors. Informally, when a curve opens up on a given interval, like the upright
parabola y = x2 or the exponential growth function y = ex, we say that the curve is concave up on
that interval. Likewise, when a curve opens down, such as the parabola y = −x2 or the opposite
of the exponential function y = −ex, we say that the function is concave down. This behavior is
linked to both the first and second derivatives of the function.

In Figure 1.31, we see two functions along with a sequence of tangent lines to each. On the
lefthand plot where the function is concave up, observe that the tangent lines to the curve always
lie below the curve itself and that, as we move from left to right, the slope of the tangent line
is increasing. Said differently, the function f is concave up on the interval shown because its
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derivative, f ′, is increasing on that interval. Similarly, on the righthand plot in Figure 1.31, where
the function shown is concave down, there we see that the tangent lines alway lie above the curve
and that the value of the slope of the tangent line is decreasing as we move from left to right.
Hence, what makes f concave down on the interval is the fact that its derivative, f ′, is decreasing.

Figure 1.31: At left, a function that is concave up; at right, one that is concave down.

We state these most recent observations formally as the definitions of the terms concave up and
concave down.

Definition 1.6. Let f be a differentiable function on an interval (a, b). Then f is concave up on (a, b)
if and only if f ′ is increasing on (a, b); f is concave down on (a, b) if and only if f ′ is decreasing on
(a, b).

The following activities lead us to further explore how the first and second derivatives of a
function determine the behavior and shape of its graph. We begin by revisiting Preview Activ-
ity 1.6.

Activity 1.15.

The position of a car driving along a straight road at time t in minutes is given by the function
y = s(t) that is pictured in Figure 1.32. The car’s position function has units measured in
thousands of feet. Remember that you worked with this function and sketched graphs of y =
v(t) = s′(t) and y = v′(t) in Preview Activity 1.6.

(a) On what intervals is the position function y = s(t) increasing? decreasing? Why?

(b) On which intervals is the velocity function y = v(t) = s′(t) increasing? decreasing?
neither? Why?

(c) Acceleration is defined to be the instantaneous rate of change of velocity, as the accel-
eration of an object measures the rate at which the velocity of the object is changing.
Say that the car’s acceleration function is named a(t). How is a(t) computed from v(t)?
How is a(t) computed from s(t)? Explain.
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Figure 1.32: The graph of y = s(t), the position of the car (measured in thousands of feet from its starting
location) at time t in minutes.

(d) What can you say about s′′ whenever s′ is increasing? Why?

(e) Using only the words increasing, decreasing, constant, concave up, concave down, and lin-
ear, complete the following sentences. For the position function s with velocity v and
acceleration a,
• on an interval where v is positive, s is .
• on an interval where v is negative, s is .
• on an interval where v is zero, s is .
• on an interval where a is positive, v is .
• on an interval where a is negative, v is .
• on an interval where a is zero, v is .
• on an interval where a is positive, s is .
• on an interval where a is negative, s is .
• on an interval where a is zero, s is .

C

The context of position, velocity, and acceleration is an excellent one in which to understand
how a function, its first derivative, and its second derivative are related to one another. In Ac-
tivity 1.15, we can replace s, v, and a with an arbitrary function f and its derivatives f ′ and f ′′,
and essentially all the same observations hold. In particular, note that f ′ is increasing if and only
if both f is concave up, and similarly f ′ is increasing if and only if f ′′ is positive. Likewise, f ′ is
decreasing if and only if both f is concave down, and f ′ is decreasing if and only if f ′′ is negative.

Activity 1.16.

This activity builds on our experience and understanding of how to sketch the graph of f ′ given
the graph of f . Below, given the graph of a function f , sketch f ′ on the first axes below, and
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then sketch f ′′ on the second set of axes. In addition, for each, write several careful sentences
in the spirit of those in Activity 1.15 that connect the behaviors of f , f ′, and f ′′. For instance,
write something such as

f ′ is on the interval , which is connected to the fact that
f is on the same interval , and f ′′ is
on the interval as well

but of course with the blanks filled in. Throughout, view the scale of the grid for the graph of f
as being 1× 1, and assume the horizontal scale of the grid for the graph of f ′ is identical to that
for f . If you need to adjust the vertical scale on the axes for the graph of f ′ or f ′′, you should
label that accordingly.

f

x

f ′

x

f ′′

x

f

x

f ′

x

f ′′

x

Figure 1.33: Two given functions f , with axes provided for plotting f ′ and f ′′ below.
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C

Activity 1.17.

A potato is placed in an oven, and the potato’s temperature F (in degrees Fahrenheit) at vari-
ous points in time is taken and recorded in the following table. Time t is measured in minutes.
In Activity 1.12, we computed approximations to F ′(30) and F ′(60) using central differences.
Those values and more are provided in the second table below, along with several others com-
puted in the same way.

t F (t)

0 70
15 180.5
30 251
45 296
60 324.5
75 342.8
90 354.5

t F ′(t)

0 NA
15 6.03
30 3.85
45 2.45
60 1.56
75 1.00
90 NA

(a) What are the units on the values of F ′(t)?

(b) Use a central difference to estimate the value of F ′′(30).

(c) What is the meaning of the value of F ′′(30) that you have computed in (c) in terms of
the potato’s temperature? Write several careful sentences that discuss, with appropriate
units, the values of F (30), F ′(30), and F ′′(30), and explain the overall behavior of the
potato’s temperature at this point in time.

(d) Overall, is the potato’s temperature increasing at an increasing rate, increasing at a con-
stant rate, or increasing at a decreasing rate? Why?

C

Summary

In this section, we encountered the following important ideas:

• A differentiable function f is increasing at a point or on an interval whenever its first derivative
is positive, and decreasing whenever its first derivative is negative.

• By taking the derivative of the derivative of a function f , we arrive at the second derivative,
f ′′. The second derivative measures the instantaneous rate of change of the first derivative, and
thus the sign of the second derivative tells us whether or not the slope of the tangent line to f
is increasing or decreasing.

• A differentiable function is concave up whenever its first derivative is increasing (or equiva-
lently whenever its second derivative is positive), and concave down whenever its first deriva-
tive is decreasing (or equivalently whenever its second derivative is negative). Examples of
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functions that are everywhere concave up are y = x2 and y = ex; examples of functions that are
everywhere concave down are y = −x2 and y = −ex.

• The units on the second derivative are “units of output per unit of input per unit of input.”
They tell us how the value of the derivative function is changing in response to changes in the
input. In other words, the second derivative tells us the rate of change of the rate of change of
the original function.

Exercises

1. Suppose that y = f(x) is a differentiable function for which the following information is
known: f(2) = −3, f ′(2) = 1.5, f ′′(2) = −0.25.

(a) Is f increasing or decreasing at x = 2? Is f concave up or concave down at x = 2?

(b) Do you expect f(2.1) to be greater than −3, equal to −3, or less than −3? Why?

(c) Do you expect f ′(2.1) to be greater than 1.5, equal to 1.5, or less than 1.5? Why?

(d) Sketch a graph of y = f(x) near (2, f(2)) and include a graph of the tangent line.

2. For a certain function y = g(x), its derivative is given by the function pictured in Figure 1.34.

-3 -1 1 3

2

4
y = g′(x)

Figure 1.34: The graph of y = g′(x).

(a) What is the approximate slope of the tangent line to y = g(x) at the point (2, g(2))?

(b) How many real number solutions can there be to the equation g(x) = 0? Justify your
conclusion fully and carefully by explaining what you know about how the graph of g
must behave based on the given graph of g′.

(c) On the interval −3 < x < 3, how many times does the concavity of g change? Why?

(d) Use the provided graph to estimate the value of g′′(2).

3. A bungee jumper’s height h (in feet ) at time t (in seconds) is given in part by the data in the
following table:
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t 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
h(t) 200 184.2 159.9 131.9 104.7 81.8 65.5 56.8 55.5 60.4 69.8

t 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
h(t) 81.6 93.7 104.4 112.6 117.7 119.4 118.2 114.8 110.0 104.7

(a) Use the given data to estimate h′(4.5), h′(5), and h′(5.5). At which of these times is the
bungee jumper rising most rapidly?

(b) Use the given data and your work in (a) to estimate h′′(5).

(c) What physical property of the bungee jumper does the value of h′′(5) measure? What
are its units?

(d) Based on the data, on what approximate time intervals is the function y = h(t) concave
down? What is happening to the velocity of the bungee jumper on these time intervals?

4. For each prompt that follows, sketch a possible graph of a function on the interval −3 < x < 3
that satisfies the stated properties.

(a) y = f(x) such that f is increasing on −3 < x < 3, f is concave up on −3 < x < 0, and f
is concave down on 0 < x < 3.

(b) y = g(x) such that g is increasing on −3 < x < 3, g is concave down on −3 < x < 0,
and g is concave up on 0 < x < 3.

(c) y = h(x) such that h is decreasing on −3 < x < 3, h is concave up on −3 < x < −1,
neither concave up nor concave down on −1 < x < 1, and h is concave down on
1 < x < 3.

(d) y = p(x) such that p is decreasing and concave down on −3 < x < 0 and p is increasing
and concave down on 0 < x < 3.
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1.7 Limits, Continuity, and Differentiability

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What does it mean graphically to say that f has limit L as x→ a? How is this connected to
having a left-hand limit at x = a and having a right-hand limit at x = a?

• What does it mean to say that a function f is continuous at x = a? What role do limits play
in determining whether or not a function is continuous at a point?

• What does it mean graphically to say that a function f is differentiable at x = a? How is
this connected to the function being locally linear?

• How are the characteristics of a function having a limit, being continuous, and being differ-
entiable at a given point related to one another?

Introduction

In Section 1.2, we learned about how the concept of limits can be used to study the trend of a
function near a fixed input value. As we study such trends, we are fundamentally interested in
knowing how well-behaved the function is at the given point, say x = a. In this present section,
we aim to expand our perspective and develop language and understanding to quantify how the
function acts and how its value changes near a particular point. Beyond thinking about whether
or not the function has a limit L at x = a, we will also consider the value of the function f(a) and
how this value is related to limx→a f(x), as well as whether or not the function has a derivative
f ′(a) at the point of interest. Throughout, we will build on and formalize ideas that we have
encountered in several settings.

We begin to consider these issues through the following preview activity that asks you to
consider the graph of a function with a variety of interesting behaviors.

Preview Activity 1.7. A function f defined on −4 < x < 4 is given by the graph in Figure 1.35.
Use the graph to answer each of the following questions. Note: to the right of x = 2, the graph of
f is exhibiting infinite oscillatory behavior similar to the function sin(πx ) that we encountered in
Figure 1.7 in Example 1.2.

(a) For each of the values a = −3,−2,−1, 0, 1, 2, 3, determine whether or not lim
x→a

f(x) exists.
If the function has a limit L at a given point, state the value of the limit using the notation
lim
x→a

f(x) = L. If the function does not have a limit at a given point, write a sentence to
explain why.

(b) For each of the values of a from part (a) where f has a limit, determine the value of f(a)
at each such point. In addition, for each such a value, does f(a) have the same value as
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Figure 1.35: The graph of y = f(x).

lim
x→a

f(x)?

(c) For each of the values a = −3,−2,−1, 0, 1, 2, 3, determine whether or not f ′(a) exists. In
particular, based on the given graph, ask yourself if it is reasonable to say that f has a
tangent line at (a, f(a)) for each of the given a-values. If so, visually estimate the slope of
the tangent line to find the value of f ′(a).

./

Having a limit at a point

In Section 1.2, we first encountered limits and learned that we say that f has limit L as x ap-
proaches a and write lim

x→a
f(x) = L provided that we can make the value of f(x) as close to L

as we like by taking x sufficiently close (but not equal to) a. Here, we expand further on this
definition and focus in more depth on what it means for a function not to have a limit at a given
value.

Essentially there are two behaviors that a function can exhibit at a point where it fails to have a
limit. In Figure 1.36, at left we see a function f whose graph shows a jump at a = 1. In particular,
if we let x approach 1 from the left side, the value of f approaches 2, while if we let x go to 1 from
the right, the value of f tends to 3. Because the value of f does not approach a single number as x
gets arbitrarily close to 1 from both sides, we know that f does not have a limit at a = 1.

Since f does approach a single value on each side of a = 1, we can introduce the notion of left
and right (or one-sided) limits. We say that f has limit L1 as x approaches a from the left and write

lim
x→a−

f(x) = L1

provided that we can make the value of f(x) as close to L1 as we like by taking x sufficiently close
to a while always having x < a. In this case, we call L1 the left-hand limit of f as x approaches a.
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Similarly, we say L2 is the right-hand limit of f as x approaches a and write

lim
x→a+

f(x) = L2

provided that we can make the value of f(x) as close to L2 as we like by taking x sufficiently close
to a while always having x > a. In the graph of the function f in Figure 1.36, we see that

lim
x→1−

f(x) = 2 and lim
x→1+

f(x) = 3

and precisely because the left and right limits are not equal, the overall limit of f as x→ 1 fails to
exist.

1

2

3
f

1

1

2

3
g

Figure 1.36: Functions f and g that each fail to have a limit at a = 1.

For the function g pictured at right in Figure 1.36, the function fails to have a limit at a = 1
for a different reason. While the function does not have a jump in its graph at a = 1, it is still
not the case that g approaches a single value as x approaches 1. In particular, due to the infinitely
oscillating behavior of g to the right of a = 1, we say that the right-hand limit of g as x→ 1+ does
not exist, and thus lim

x→1
g(x) does not exist.

To summarize, anytime either a left- or right-hand limit fails to exist or the left- and right-hand
limits are not equal to each other, the overall limit will not exist. Said differently,

A function f has limit L as x→ a if and only if

lim
x→a−

f(x) = L = lim
x→a+

f(x).

That is, a function has a limit at x = a if and only if both the left- and right-hand limits at x = a
exist and share the same value.

In Preview Activity 1.7, the function f given in Figure 1.35 only fails to have a limit at two
values: at a = −2 (where the left- and right-hand limits are 2 and −1, respectively) and at x = 2,
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where limx→2+ f(x) does not exist). Note well that even at values like a = −1 and a = 0 where
there are holes in the graph, the limit still exists.

Activity 1.18.

Consider a function that is piecewise-defined according to the formula

f(x) =





3(x+ 2) + 2 for −3 < x < −2
2
3(x+ 2) + 1 for −2 ≤ x < −1
2
3(x+ 2) + 1 for −1 < x < 1

2 for x = 1

4− x for x > 1

Use the given formula to answer the following questions.
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Figure 1.37: Axes for plotting the function y = f(x) in Activity 1.18.

(a) For each of the values a = −2,−1, 0, 1, 2, compute f(a).

(b) For each of the values a = −2,−1, 0, 1, 2, determine lim
x→a−

f(x) and lim
x→a+

f(x).

(c) For each of the values a = −2,−1, 0, 1, 2, determine lim
x→a

f(x). If the limit fails to exist,
explain why by discussing the left- and right-hand limits at the relevant a-value.

(d) For which values of a is the following statement true?

lim
x→a

f(x) 6= f(a)

(e) On the axes provided in Figure 1.37, sketch an accurate, labeled graph of y = f(x). Be
sure to carefully use open circles (◦) and filled circles (•) to represent key points on the
graph, as dictated by the piecewise formula.

C
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Being continuous at a point

Intuitively, a function is continuous if we can draw it without ever lifting our pencil from the page.
Alternatively, we might say that the graph of a continuous function has no jumps or holes in it.
We first consider three specific situations in Figure 1.38 where all three functions have a limit at
a = 1, and then work to make the idea of continuity more precise.

1

2

3
f

1

2

3
g

1

2

3 h

Figure 1.38: Functions f , g, and h that demonstrate subtly different behaviors at a = 1.

Note that f(1) is not defined, which leads to the resulting hole in the graph of f at a = 1. We
will naturally say that f is not continuous at a = 1. For the next function g in in Figure 1.38, we
observe that while limx→1 g(x) = 3, the value of g(1) = 2, and thus the limit does not equal the
function value. Here, too, we will say that g is not continuous, even though the function is defined
at a = 1. Finally, the function h appears to be the most well-behaved of all three, since at a = 1 its
limit and its function value agree. That is,

lim
x→1

h(x) = 3 = h(1).

With no hole or jump in the graph of h at a = 1, we desire to say that h is continuous there.

More formally, we make the following definition.

Definition 1.7. A function f is continuous provided that

(a) f has a limit as x→ a,

(b) f is defined at x = a, and

(c) lim
x→a

f(x) = f(a).

Conditions (a) and (b) are technically contained implicitly in (c), but we state them explicitly to
emphasize their individual importance. In words, (c) essentially says that a function is continuous
at x = a provided that its limit as x → a exists and equals its function value at x = a. Thus,
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continuous functions are particularly nice: to evaluate the limit of a continuous function at a
point, all we need to do is evaluate the function.

For example, consider p(x) = x2−2x+3. It can be proved that every polynomial is a continuous
function at every real number, and thus if we would like to know limx→2 p(x), we simply compute

lim
x→2

(x2 − 2x+ 3) = 22 − 2 · 2 + 3 = 3.

This route of substituting an input value to evaluate a limit works anytime we know function
being considered is continuous. Besides polynomial functions, all exponential functions and the
sine and cosine functions are continuous at every point, as are many other familiar functions and
combinations thereof.

Activity 1.19.

This activity builds on your work in Preview Activity 1.7, using the same function f as given
by the graph that is repeated in Figure 1.39
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Figure 1.39: The graph of y = f(x) for Activity 1.19.

(a) At which values of a does limx→a f(x) not exist?

(b) At which values of a is f(a) not defined?

(c) At which values of a does f have a limit, but limx→a f(x) 6= f(a)?

(d) State all values of a for which f is not continuous at x = a.

(e) Which condition is stronger, and hence implies the other: f has a limit at x = a or
f is continuous at x = a? Explain, and hence complete the following sentence: “If f

at x = a, then f at x = a,” where you
complete the blanks with has a limit and is continuous, using each phrase once.

C
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Being differentiable at a point

We recall that a function f is said to be differentiable at x = a whenever f ′(a) exists. Moreover, for
f ′(a) to exist, we know that the function y = f(x) must have a tangent line at the point (a, f(a)),
since f ′(a) is precisely the slope of this line. In order to even ask if f has a tangent line at (a, f(a)),
it is necessary that f be continuous at x = a: if f fails to have a limit at x = a, if f(a) is not defined,
or if f(a) does not equal the value of limx→a f(x), then it doesn’t even make sense to talk about a
tangent line to the curve at this point.

Indeed, it can be proved formally that if a function f is differentiable at x = a, then it must be
continuous at x = a. So, if f is not continuous at x = a, then it is automatically the case that f is
not differentiable there. For example, in Figure 1.38 from our early discussion of continuity, both
f and g fail to be differentiable at x = 1 because neither function is continuous at x = 1. But can a
function fail to be differentiable at a point where the function is continuous?

In Figure 1.40, we revisit the situation where a function has a sharp corner at a point, something
we encountered several times in Section 1.4. For the pictured function f , we observe that f is
clearly continuous at a = 1, since limx→1 f(x) = 1 = f(1).

1

1

f

(1, 1)

Figure 1.40: A function f that is continuous at a = 1 but not differentiable at a = 1; at right, we zoom in on
the point (1, 1) in a magnified version of the box in the left-hand plot.

But the function f in Figure 1.40 is not differentiable at a = 1 because f ′(1) fails to exist.
One way to see this is to observe that f ′(x) = −1 for every value of x that is less than 1, while
f ′(x) = +1 for every value of x that is greater than 1. That makes it seem that either +1 or
−1 would be equally good candidates for the value of the derivative at x = 1. Alternately, we
could use the limit definition of the derivative to attempt to compute f ′(1), and discover that the
derivative does not exist. A similar problem will be investigated in Activity 1.20. Finally, we can
also see visually that the function f in Figure 1.40 does not have a tangent line. When we zoom in
on (1, 1) on the graph of f , no matter how closely we examine the function, it will always look like
a “V”, and never like a single line, which tells us there is no possibility for a tangent line there.

To make a more general observation, if a function does have a tangent line at a given point,



1.7. LIMITS, CONTINUITY, AND DIFFERENTIABILITY 67

when we zoom in on the point of tangency, the function and the tangent line should appear essen-
tially indistinguishable7. Conversely, if we have a function such that when we zoom in on a point
the function looks like a single straight line, then the function should have a tangent line there,
and thus be differentiable. Hence, a function that is differentiable at x = a will, up close, look
more and more like its tangent line at (a, f(a)), and thus we say that a function is differentiable at
x = a is locally linear.

To summarize the preceding discussion of differentiability and continuity, we make several
important observations.

• If f is differentiable at x = a, then f is continuous at x = a. Equivalently, iff fails to be
continuous at x = a, then f will not be differentiable at x = a.

• A function can be continuous at a point, but not be differentiable there. In particular, a
function f is not differentiable at x = a if the graph has a sharp corner (or cusp) at the point
(a, f(a)).

• If f is differentiable at x = a, then f is locally linear at x = a. That is, when a function
is differentiable, it looks linear when viewed up close because it resembles its tangent line
there.

Activity 1.20.

In this activity, we explore two different functions and classify the points at which each is not
differentiable. Let g be the function given by the rule g(x) = |x|, and let f be the function that
we have previously explored in Preview Activity 1.7, whose graph is given again in Figure 1.41.

(a) Reasoning visually, explain why g is differentiable at every point x such that x 6= 0.

(b) Use the limit definition of the derivative to show that g′(0) = limh→0
|h|
h .

(c) Explain why g′(0) fails to exist by using small positive and negative values of h.

(d) State all values of a for which f is not differentiable at x = a. For each, provide a reason
for your conclusion.

(e) True or false: if a function p is differentiable at x = b, then limx→b p(x) must exist. Why?

C

Summary

In this section, we encountered the following important ideas:

• A function f has limit L as x→ a if and only if f has a left-hand limit at x = a, has a right-hand
limit at x = a, and the left- and right-hand limits are equal. Visually, this means that there can
7See, for instance, http://gvsu.edu/s/6J for an applet (due to David Austin, GVSU) where zooming in shows

the increasing similarity between the tangent line and the curve.

http://gvsu.edu/s/6J
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Figure 1.41: The graph of y = f(x) for Activity 1.20.

be a hole in the graph at x = a, but the function must approach the same single value from
either side of x = a.

• A function f is continuous at x = a whenever f(a) is defined, f has a limit as x → a, and the
value of the limit and the value of the function agree. This guarantees that there is not a hole or
jump in the graph of f at x = a.

• A function f is differentiable at x = a whenever f ′(a) exists, which means that f has a tangent
line at (a, f(a)) and thus f is locally linear at the value x = a. Informally, this means that the
function looks like a line when viewed up close at (a, f(a)) and that there is not a corner point
or cusp at (a, f(a)).

• Of the three conditions discussed in this section (having a limit at x = a, being continuous at
x = a, and being differentiable at x = a), the strongest condition is being differentiable, and the
next strongest is being continuous. In particular, if f is differentiable at x = a, then f is also
continuous at x = a, and if f is continuous at x = a, then f has a limit at x = a.

Exercises

1. For each of the following prompts, give an example of a function that satisfies the stated criteria.
A formula or a graph, with reasoning, is sufficient for each. If no such example is possible,
explain why.

(a) A function f that is continuous at a = 2 but not differentiable at a = 2.

(b) A function g that is differentiable at a = 3 but does not have a limit at a = 3.

(c) A function h that has a limit at a = −2, is defined at a = −2, but is not continuous at
a = −2.

(d) A function p that satisfies all of the following:
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• p(−1) = 3 and limx→−1 p(x) = 2

• p(0) = 1 and p′(0) = 0

• limx→1 p(x) = p(1) and p′(1) does not exist

2. Consider the graph of the function y = p(x) that is provided in Figure 1.42. Assume that each
portion of the graph of p is a straight line, as pictured.
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3
p

-3 3

-3

3

Figure 1.42: At left, the piecewise linear function y = p(x). At right, axes for plotting y = p′(x).

(a) State all values of a for which limx→a p(x) does not exist.

(b) State all values of a for which p is not continuous at a.

(c) State all values of a for which p is not differentiable at x = a.

(d) On the axes provided in Figure 1.42, sketch an accurate graph of y = p′(x).

3. Let h(x) be a function whose derivative y = h′(x) is given by the graph on the right in Fig-
ure 1.43.

(a) Based on the graph of y = h′(x), what can you say about the behavior of the function
y = h(x)?

(b) At which values of x is y = h′(x) not defined? What behavior does this lead you to
expect to see in the graph of y = h(x)?

(c) Is it possible for y = h(x) to have points where h is not continuous? Explain your
answer.

(d) On the axes provided at left, sketch at least two distinct graphs that are possible func-
tions y = h(x) that each have a derivative y = h′(x) that matches the provided graph at
right. Explain why there are multiple possibilities for y = h(x).

4. Consider the function g(x) =
√
|x|.

(a) Use a graph to explain visually why g is not differentiable at x = 0.
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y = h′(x)

Figure 1.43: Axes for plotting y = h(x) and, at right, the graph of y = h′(x).

(b) Use the limit definition of the derivative to show that

g′(0) = lim
h→0

√
|h|
h

.

(c) Investigate the value of g′(0) by estimating the limit in (b) using small positive and

negative values of h. For instance, you might compute
√
|−0.01|
0.01 . Be sure to use several

different values of h (both positive and negative), including ones closer to 0 than 0.01.
What do your results tell you about g′(0)?

(d) Use your graph in (a) to sketch an approximate graph of y = g′(x).
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1.8 The Tangent Line Approximation

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is the formula for the general tangent line approximation to a differentiable function
y = f(x) at the point (a, f(a))?

• What is the principle of local linearity and what is the local linearization of a differentiable
function f at a point (a, f(a))?

• How does knowing just the tangent line approximation tell us information about the be-
havior of the original function itself near the point of approximation? How does knowing
the second derivative’s value at this point provide us additional knowledge of the original
function’s behavior?

Introduction

Among all functions, linear functions are simplest. One of the powerful consequences of a func-
tion y = f(x) being differentiable at a point (a, f(a)) is that, up close, the function y = f(x) is
locally linear and looks like its tangent line at that point. In certain circumstances, this allows us
to approximate the original function f with a simpler function L that is linear: this can be advan-
tageous when we have limited information about f or when f is computationally or algebraically
complicated. We will explore all of these situations in what follows.

It is essential to recall that when f is differentiable at x = a, the value of f ′(a) provides the
slope of the tangent line to y = f(x) at the point (a, f(a)). By knowing both a point on the line and
the slope of the line we are thus able to find the equation of the tangent line. Preview Activity 1.8
will refresh these concepts through a key example and set the stage for further study.

Preview Activity 1.8. Consider the function y = g(x) = −x2 + 3x+ 2.

(a) Use the limit definition of the derivative to compute a formula for y = g′(x).

(b) Determine the slope of the tangent line to y = g(x) at the value x = 2.

(c) Compute g(2).

(d) Find an equation for the tangent line to y = g(x) at the point (2, f(2)). Write your result in
point-slope form8.

(e) On the axes provided in Figure 1.44, sketch an accurate, labeled graph of y = g(x) along
with its tangent line at the point (2, g(2)).

8Recall that a line with slope m that passes through (x0, y0) has equation y−y0 = m(x−x0), and this is the point-slope
form of the equation.
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Figure 1.44: Axes for plotting y = g(x) and its tangent line to the point (2, g(2)).

./

The tangent line

Given a function f that is differentiable at x = a, we know that we can determine the slope of
the tangent line to y = f(x) at (a, f(a)) by computing f ′(a). The resulting tangent line through
(a, f(a)) with slope m = f ′(a) has its equation in point-slope form given by

y − f(a) = f ′(a)(x− a),

which we can also express as y = f ′(a)(x−a)+f(a). Note well: there is a major difference between
f(a) and f(x) in this context. The former is a constant that results from using the given fixed value
of a, while the latter is the general expression for the rule that defines the function. The same is
true for f ′(a) and f ′(x): we must carefully distinguish between these expressions. Each time we
find the tangent line, we need to evaluate the function and its derivative at a fixed a-value.

In Figure 1.45, we see a labeled plot of the graph of a function f and its tangent line at the point
(a, f(a)). Notice how when we zoom in we see the local linearity of f more clearly highlighted
as the function and its tangent line are nearly indistinguishable up close. This can also be seen
dynamically in the java applet at http://gvsu.edu/s/6J.

The local linearization

A slight change in perspective and notation will enable us to be more precise in discussing how
the tangent line to y = f(x) at (a, f(a)) approximates f near x = a. Taking the equation for the
tangent line and solving for y, we observe that the tangent line is given by

y = f ′(a)(x− a) + f(a)

http://gvsu.edu/s/6J
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x

y
y = f(x)

a

(a, f(a))

y = f ′(a)(x− a) + f(a)

(a, f(a))

y = f(x)

y = L(x)

Figure 1.45: A function y = f(x) and its tangent line at the point (a, f(a)): at left, from a distance, and
at right, up close. At right, we label the tangent line function by y = L(x) and observe that for x near a,
f(x) ≈ L(x).

and moreover that this line is itself a function of x. Replacing the variable y with the expression
L(x), we call

L(x) = f ′(a)(x− a) + f(a)

the local linearization of f at the point (a, f(a)). In this notation, it is particularly important to
observe that L(x) is nothing more than a new name for the tangent line, and that for x close to a,
we have that f(x) ≈ L(x).

Say, for example, that we know that a function y = f(x) has its tangent line approximation
given by L(x) = 3 − 2(x − 1) at the point (1, 3), but we do not know anything else about the
function f . If we are interested in estimating a value of f(x) for x near 1, such as f(1.2), we can
use the fact that f(1.2) ≈ L(1.2) and hence

f(1.2) ≈ L(1.2) = 3− 2(1.2− 1) = 3− 2(0.2) = 2.6.

Again, much of the new perspective here is only in notation since y = L(x) is simply a new name
for the tangent line function. In light of this new notation and our observations above, we note
that since L(x) = f(a)+f ′(a)(x−a) and L(x) ≈ f(x) for x near a, it also follows that we can write

f(x) ≈ f(a) + f ′(a)(x− a) for x near a.

The next activity explores some additional important properties of the local linearization y =
L(x) to a function f at given a-value.

Activity 1.21.

Suppose it is known that for a given differentiable function y = g(x), its local linearization at
the point where a = −1 is given by L(x) = −2 + 3(x+ 1).
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(a) Compute the values of L(−1) and L′(−1).

(b) What must be the values of g(−1) and g′(−1)? Why?

(c) Do you expect the value of g(−1.03) to be greater than or less than the value of g(−1)?
Why?

(d) Use the local linearization to estimate the value of g(−1.03).

(e) Suppose that you also know that g′′(−1) = 2. What does this tell you about the graph
of y = g(x) at a = −1?

(f) For x near −1, sketch the graph of the local linearization y = L(x) as well as a possible
graph of y = g(x) on the axes provided in Figure 1.46.

Figure 1.46: Axes for plotting y = L(x) and y = g(x).

C

As we saw in the example provided by Activity 1.21, the local linearization y = L(x) is a linear
function that shares two important values with the function y = f(x) that it is derived from. In
particular, observe that since L(x) = f(a) + f ′(a)(x − a), it follows that L(a) = f(a). In addition,
since L is a linear function, its derivative is its slope. Hence, L′(x) = f ′(a) for every value of x,
and specifically L′(a) = f ′(a). Therefore, we see that L is a linear function that has both the same
value and the same slope as the function f at the point (a, f(a)).

In situations where we know the linear approximation y = L(x), we therefore know the orig-
inal function’s value and slope at the point of tangency. What remains unknown, however, is
the shape of the function f at the point of tangency. There are essentially four possibilities, as
enumerated in Figure 1.47.

These stem from the fact that there are three options for the value of the second derivative:
either f ′′(a) < 0, f ′′(a) = 0, or f ′′(a) > 0. If f ′′(a) > 0, then we know the graph of f is concave
up, and we see the first possibility on the left, where the tangent line lies entirely below the curve.
If f ′′(a) < 0, then we find ourselves in the second situation (from left) where f is concave down
and the tangent line lies above the curve. In the situation where f ′′(a) = 0 and f ′′ changes sign at
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Figure 1.47: Four possible graphs for a nonlinear differentiable function and how it can be situated relative
to its tangent line at a point.

x = a, the concavity of the graph will change, and we will see either the third or fourth option9. A
fifth option (that is not very interesting) can occur, which is where the function f is linear, and so
f(x) = L(x) for all values of x.

The plots in Figure 1.47 highlight yet another important thing that we can learn from the con-
cavity of the graph near the point of tangency: whether the tangent line lies above or below the
curve itself. This is key because it tells us whether or not the tangent line approximation’s values
will be too large or too small in comparison to the true value of f . For instance, in the first situation
in the leftmost plot in Figure 1.47 where f ′′(a) > 0, since the tangent line falls below the curve, we
know that L(x) ≤ f(x) for all values of x near a.

We explore these ideas further in the following activity.

Activity 1.22.

This activity concerns a function f(x) about which the following information is known:

• f is a differentiable function defined at every real number x

• f(2) = −1

• y = f ′(x) has its graph given in Figure 1.48

Your task is to determine as much information as possible about f (especially near the value
a = 2) by responding to the questions below.

(a) Find a formula for the tangent line approximation, L(x), to f at the point (2,−1).

(b) Use the tangent line approximation to estimate the value of f(2.07). Show your work
carefully and clearly.

(c) Sketch a graph of y = f ′′(x) on the righthand grid in Figure 1.48; label it appropriately.

(d) Is the slope of the tangent line to y = f(x) increasing, decreasing, or neither when
x = 2? Explain.

9It is possible to have f ′′(a) = 0 and have f ′′ not change sign at x = a, in which case the graph will look like one of
the first two options.
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Figure 1.48: At center, a graph of y = f ′(x); at left, axes for plotting y = f(x); at right, axes for plotting
y = f ′′(x).

(e) Sketch a possible graph of y = f(x) near x = 2 on the lefthand grid in Figure 1.48.
Include a sketch of y = L(x) (found in part (a)). Explain how you know the graph of
y = f(x) looks like you have drawn it.

(f) Does your estimate in (b) over- or under-estimate the true value of f(2)? Why?

C

The idea that a differentiable function looks linear and can be well-approximated by a linear
function is an important one that finds wide application in calculus. For example, by approxi-
mating a function with its local linearization, it is possible to develop an effective algorithm to
estimate the zeroes of a function. Local linearity also helps us to make further sense of certain
challenging limits. For instance, we have seen that a limit such as

lim
x→0

sin(x)

x

is indeterminate because both its numerator and denominator tend to 0. While there is no algebra
that we can do to simplify sin(x)

x , it is straightforward to show that the linearization of f(x) = sin(x)
at the point (0, 0) is given by L(x) = x. Hence, for values of x near 0, sin(x) ≈ x. As such, for
values of x near 0,

sin(x)

x
≈ x

x
= 1,

which makes plausible the fact that

lim
x→0

sin(x)

x
= 1.

These ideas and other applications of local linearity will be explored later on in our work.

Summary

In this section, we encountered the following important ideas:
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• The tangent line to a differentiable function y = f(x) at the point (a, f(a)) is given in point-
slope form by the equation

y − f(a) = f ′(a)(x− a).

• The principle of local linearity tells us that if we zoom in on a point where a function y = f(x)
is differentiable, the function should become indistinguishable from its tangent line. That is, a
differentiable function looks linear when viewed up close. We rename the tangent line to be the
function y = L(x) where L(x) = f(a) + f ′(a)(x − a) and note that f(x) ≈ L(x) for all x near
x = a.

• If we know the tangent line approximation L(x) = f(a)+f ′(a)(x−a), then because L(a) = f(a)
and L′(a) = f ′(a), we also know both the value and the derivative of the function y = f(x) at
the point where x = a. In other words, the linear approximation tells us the height and slope
of the original function. If, in addition, we know the value of f ′′(a), we then know whether the
tangent line lies above or below the graph of y = f(x) depending on the concavity of f .

Exercises

1. A certain function y = p(x) has its local linearization at a = 3 given by L(x) = −2x+ 5.

(a) What are the values of p(3) and p′(3)? Why?

(b) Estimate the value of p(2.79).

(c) Suppose that p′′(3) = 0 and you know that p′′(x) < 0 for x < 3. Is your estimate in (b)
too large or too small?

(d) Suppose that p′′(x) > 0 for x > 3. Use this fact and the additional information above to
sketch an accurate graph of y = p(x) near x = 3. Include a sketch of y = L(x) in your
work.

2. A potato is placed in an oven, and the potato’s temperature F (in degrees Fahrenheit) at various
points in time is taken and recorded in the following table. Time t is measured in minutes.

t F (t)

0 70
15 180.5
30 251
45 296
60 324.5
75 342.8
90 354.5

(a) Use a central difference to estimate F ′(60). Use this estimate as needed in subsequent
questions.

(b) Find the local linearization y = L(t) to the function y = F (t) at the point where a = 60.
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(c) Determine an estimate for F (63) by employing the local linearization.

(d) Do you think your estimate in (c) is too large or too small? Why?

3. An object moving along a straight line path has a differentiable position function y = s(t). It is
known that at time t = 9 seconds, the object’s position is s = 4 feet (measured from its starting
point at t = 0). Furthermore, the object’s instantaneous velocity at t = 9 is−1.2 feet per second,
and its acceleration at the same instant is 0.08 feet per second per second.

(a) Use local linearity to estimate the position of the object at t = 9.34.

(b) Is your estimate likely too large or too small? Why?

(c) In everyday language, describe the behavior of the moving object at t = 9. Is it moving
toward its starting point or away from it? Is its velocity increasing or decreasing?

4. For a certain function f , its derivative is known to be f ′(x) = (x− 1)e−x
2
. Note that you do not

know a formula for y = f(x).

(a) At what x-value(s) is f ′(x) = 0? Justify your answer algebraically, but include a graph
of f ′ to support your conclusion.

(b) Reasoning graphically, for what intervals of x-values is f ′′(x) > 0? What does this tell
you about the behavior of the original function f? Explain.

(c) Assuming that f(2) = −3, estimate the value of f(1.88) by finding and using the tangent
line approximation to f at x = 2. Is your estimate larger or smaller than the true value
of f(1.88)? Justify your answer.



Chapter 2

Computing Derivatives

2.1 Elementary derivative rules

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What are alternate notations for the derivative?

• How can we sometimes use the algebraic structure of a function f(x) to easily compute a
formula for f ′(x)?

• What is the derivative of a power function of the form f(x) = xn? What is the derivative of
an exponential function of form f(x) = ax?

• If we know the derivative of y = f(x), how is the derivative of y = kf(x) computed, where
k is a constant?

• If we know the derivatives of y = f(x) and y = g(x), how is the derivative of y = f(x)+g(x)
computed?

Introduction

In Chapter 1, we developed the concept of the derivative of a function. We now know that the
derivative f ′ of a function f measures the instantaneous rate of change of f with respect to x
as well as the slope of the tangent line to y = f(x) at any given value of x. To date, we have
focused primarily on interpreting the derivative graphically or, in the context of functions in a
physical setting, as a meaningful rate of change. To actually calculate the value of the derivative
at a specific point, we have typically relied on the limit definition of the derivative.

79
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In this present chapter, we will investigate how the limit definition of the derivative

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

leads to interesting patterns and rules that enable us to quickly find a formula for f ′(x) based on
the formula for f(x) without using the limit definition directly. For example, we already know
that if f(x) = x, then it follows that f ′(x) = 1. While we could use the limit definition of the
derivative to confirm this, we know it to be true because f(x) is a linear function with slope 1
at every value of x. One of our goals is to be able to take standard functions, say ones such as
g(x) = 4x7 − sin(x) + 3ex, and, based on the algebraic form of the function, be able to apply
shortcuts to almost immediately determine the formula for g′(x).

Preview Activity 2.1. Functions of the form f(x) = xn, where n = 1, 2, 3, . . ., are often called power
functions. The first two questions below revisit work we did earlier in Chapter 1, and the following
questions extend those ideas to higher powers of x.

(a) Use the limit definition of the derivative to find f ′(x) for f(x) = x2.

(b) Use the limit definition of the derivative to find f ′(x) for f(x) = x3.

(c) Use the limit definition of the derivative to find f ′(x) for f(x) = x4. (Hint: (a + b)4 =
a4 + 4a3b+ 6a2b2 + 4ab3 + b4. Apply this rule to (x+ h)4 within the limit definition.)

(d) Based on your work in (a), (b), and (c), what do you conjecture is the derivative of f(x) =
x5? Of f(x) = x13?

(e) Conjecture a formula for the derivative of f(x) = xn that holds for any positive integer n.
That is, given f(x) = xn where n is a positive integer, what do you think is the formula for
f ′(x)?

./

Some Key Notation

In addition to our usual f ′ notation for the derivative, there are other ways to symbolically denote
the derivative of a function, as well as the instruction to take the derivative. We know that if
we have a function, say f(x) = x2, that we can denote its derivative by f ′(x), and we write
f ′(x) = 2x. Equivalently, if we are thinking more about the relationship between y and x, we
sometimes denote the derivative of y with respect to x with the symbol

dy

dx

which we read “dee-y dee-x.” This notation comes from the fact that the derivative is related to
the slope of a line, and slope is measured by 4y4x . Note that while we read 4y4x as “change in y over
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change in x,” for the derivative symbol dydx , we view this is a single symbol, not a quotient of two
quantities1. For example, if y = x2, we’ll write that the derivative is dy

dx = 2x.

Furthermore, we use a variant of dy
dx notation to convey the instruction to take the derivative

of a certain quantity with respect to a given variable. In particular, if we write

d

dx
[�]

this means “take the derivative of the quantity in � with respect to x.” To continue our example
above with the squaring function, here we may write d

dx [x2] = 2x.

It is important to note that the independent variable can be different from x. If we have f(z) =
z2, we then write f ′(z) = 2z. Similarly, if y = t2, we can say dy

dt = 2t. And changing the variable
and derivative notation once more, it is also true that d

dq [q2] = 2q. This notation may also be

applied to second derivatives: f ′′(z) = d
dz

[
df
dz

]
= d2f

dz2
.

In what follows, we’ll be working to widely expand our repertoire of functions for which we
can quickly compute the corresponding derivative formula

Constant, Power, and Exponential Functions

So far, we know the derivative formula for two important classes of functions: constant functions
and power functions. For the first kind, observe that if f(x) = c is a constant function, then its
graph is a horizontal line with slope zero at every point. Thus, d

dx [c] = 0. We summarize this with
the following rule.

Constant Functions: For any real number c, if f(x) = c, then f ′(x) = 0.

Thus, if f(x) = 7, then f ′(x) = 0. Similarly, d
dx [
√

3] = 0.

For power functions, from your work in Preview Activity 2.1, you have conjectured that for
any positive integer n, if f(x) = xn, then f ′(x) = nxn−1. Not only can this rule be formally proved
to hold for any positive integer n, but also for any nonzero real number (positive or negative).

Power Functions: For any nonzero real number, if f(x) = xn, then f ′(x) = nxn−1.

This rule for power functions allows us to find derivatives such as the following: if g(z) = z−3,
then g′(z) = −3z−4. Similarly, if h(t) = t7/5, then dh

dt = 7
5 t

2/5; likewise, d
dq [qπ] = πqπ−1.

As we next turn to thinking about derivatives of combinations of basic functions, it will be
instructive to have one more type of basic function whose derivative formula we know. For now,
we simply state this rule without explanation or justification; we will explore why this rule is true

1That is, we do not say “dee-y over dee-x.”
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in one of the exercises at the end of this section, plus we will encounter graphical reasoning for
why the rule is plausible in Preview Activity 2.2.

Exponential Functions: For any positive real number a, if f(x) = ax, then f ′(x) = ax ln(a).

For instance, this rule tells us that if f(x) = 2x, then f ′(x) = 2x ln(2). Similarly, for p(t) = 10t,
p′(t) = 10t ln(10). It is especially important to note that when a = e, where e is the base of the
natural logarithm function, we have that

d

dx
[ex] = ex ln(e) = ex

since ln(e) = 1. This is an extremely important property of the function ex: its derivative function
is itself!

Finally, note carefully the distinction between power functions and exponential functions: in
power functions, the variable is in the base, as in x2, while in exponential functions, the variable
is in the power, as in 2x. As we can see from the rules, this makes a big difference in the form of
the derivative.

The following activity will check your understanding of the derivatives of the three basic types
of functions noted above.

Activity 2.1.

Use the three rules above to determine the derivative of each of the following functions. For
each, state your answer using full and proper notation, labeling the derivative with its name.
For example, if you are given a function h(z), you should write “h′(z) =” or “dhdz =” as part of
your response.

(a) f(t) = π

(b) g(z) = 7z

(c) h(w) = w3/4

(d) p(x) = 31/2

(e) r(t) = (
√

2)t

(f) d
dq [q−1]

(g) m(t) = 1
t3

C

Constant Multiples and Sums of Functions

Of course, most of the functions we encounter in mathematics are more complicated than being
simply constant, a power of a variable, or a base raised to a variable power. In this section and
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several following, we will learn how to quickly compute the derivative of a function constructed
as an algebraic combination of basic functions. For instance, we’d like to be able to understand
how to take the derivative of a polynomial function such as p(t) = 3t5 − 7t4 + t2 − 9, which is a
function made up of constant multiples and sums of powers of t. To that end, we develop two
new rules: the Constant Multiple Rule and the Sum Rule.

Say we have a function y = f(x) whose derivative formula is known. How is the derivative
of y = kf(x) related to the derivative of the original function? Recall that when we multiply a
function by a constant k, we vertically stretch the graph by a factor of |k| (and reflect the graph
across y = 0 if k < 0). This vertical stretch affects the slope of the graph, making the slope of the
function y = kf(x) be k times as steep as the slope of y = f(x). In terms of the derivative, this
is essentially saying that when we multiply a function by a factor of k, we change the value of its
derivative by a factor of k as well. Thus2, the Constant Multiple Rule holds:

The Constant Multiple Rule: For any real number k, if f(x) is a differentiable function with
derivative f ′(x), then d

dx [kf(x)] = kf ′(x).

In words, this rule says that “the derivative of a constant times a function is the constant times
the derivative of the function.” For example, if g(t) = 3 · 5t, we have g′(t) = 3 · 5t ln(5). Similarly,
d
dz [5z−2] = 5(−2z−3).

Next we examine what happens when we take a sum of two functions. If we have y = f(x)
and y = g(x), we can compute a new function y = (f + g)(x) by adding the outputs of the two
functions: (f + g)(x) = f(x) + g(x). Not only does this result in the value of the new function
being the sum of the values of the two known functions, but also the slope of the new function is
the sum of the slopes of the known function. Therefore3, we arrive at the following Sum Rule for
derivatives:

The Sum Rule: If f(x) and g(x) are differentiable functions with derivatives f ′(x) and g′(x)
respectively, then d

dx [f(x) + g(x)] = f ′(x) + g′(x).

In words, the Sum Rule tells us that “the derivative of a sum is the sum of the derivatives.”
It also tells us that any time we take a sum of two differentiable functions, the result must also
be differentiable. Furthermore, because we can view the difference function y = (f − g)(x) =
f(x) − g(x) as y = f(x) + (−1 · g(x)), the Sum Rule and Constant Multiple Rules together tell us
that d

dx [f(x) + (−1 · g(x))] = f ′(x)− g′(x), or that “the derivative of a difference is the difference of
the derivatives.” Hence we can now compute derivatives of sums and differences of elementary
functions. For instance, d

dw (2w + w2) = 2w ln(2) + 2w, and if h(q) = 3q5 − 4q−3, then h′(q) =
3(5q5)− 4(−3q−4) = 15q5 + 12q−4.

Activity 2.2.

2The Constant Multiple Rule can be formally proved as a consequence of properties of limits, using the limit defini-
tion of the derivative.

3Like the Constant Multiple Rule, the Sum Rule can be formally proved as a consequence of properties of limits,
using the limit definition of the derivative.
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Use only the rules for constant, power, and exponential functions, together with the Constant
Multiple and Sum Rules, to compute the derivative of each function below with respect to
the given independent variable. Note well that we do not yet know any rules for how to
differentiate the product or quotient of functions. This means that you may have to do some
algebra first on the functions below before you can actually use existing rules to compute the
desired derivative formula. In each case, label the derivative you calculate with its name using
proper notation such as f ′(x), h′(z), dr/dt, etc.

(a) f(x) = x5/3 − x4 + 2x

(b) g(x) = 14ex + 3x5 − x

(c) h(z) =
√
z + 1

z4
+ 5z

(d) r(t) =
√

53 t7 − πet + e4

(e) s(y) = (y2 + 1)(y2 − 1)

(f) q(x) =
x3 − x+ 2

x

(g) p(a) = 3a4 − 2a3 + 7a2 − a+ 12

C

In the same way that we have shortcut rules to help us find derivatives, we introduce some
language that is simpler and shorter. Often, rather than say “take the derivative of f ,” we’ll instead
say simply “differentiate f .” This phrasing is tied to the notion of having a derivative to begin
with: if the derivative exists at a point, we say “f is differentiable,” which is tied to the fact that f
can be differentiated.

As we work more and more with the algebraic structure of functions, it is important to strive to
develop a big picture view of what we are doing. Here, we can note several general observations
based on the rules we have so far. One is that the derivative of any polynomial function will be
another polynomial function, and that the degree of the derivative is one less than the degree of the
original function. For instance, if p(t) = 7t5−4t3+8t, p is a degree 5 polynomial, and its derivative,
p′(t) = 35t4 − 12t2 + 8, is a degree 4 polynomial. Additionally, the derivative of any exponential
function is another exponential function: for example, if g(z) = 7 · 2z , then g′(z) = 7 · 2z ln(2),
which is also exponential.

Furthermore, while our current emphasis is on learning shortcut rules for finding derivatives
without directly using the limit definition, we should be certain not to lose sight of the fact that
all of the meaning of the derivative still holds that we developed in Chapter 1. That is, anytime
we compute a derivative, that derivative measures the instantaneous rate of change of the original
function, as well as the slope of the tangent line at any selected point on the curve. The following
activity asks you to combine the just-developed derivative rules with some key perspectives that
we studied in Chapter 1.

Activity 2.3.
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Each of the following questions asks you to use derivatives to answer key questions about
functions. Be sure to think carefully about each question and to use proper notation in your
responses.

(a) Find the slope of the tangent line to h(z) =
√
z + 1

z at the point where z = 4.

(b) A population of cells is growing in such a way that its total number in millions is given
by the function P (t) = 2(1.37)t + 32, where t is measured in days.

i. Determine the instantaneous rate at which the population is growing on day 4, and
include units on your answer.

ii. Is the population growing at an increasing rate or growing at a decreasing rate on
day 4? Explain.

(c) Find an equation for the tangent line to the curve p(a) = 3a4 − 2a3 + 7a2 − a+ 12 at the
point where a = −1.

(d) What the difference between being asked to find the slope of the tangent line (asked in
(a)) and the equation of the tangent line (asked in (c))?

C

Summary

In this section, we encountered the following important ideas:

• Given a differentiable function y = f(x), we can express the derivative of f in several different
notations: f ′(x), dfdx , dydx , and d

dx [f(x)].

• The limit definition of the derivative leads to patterns among certain families of functions that
enable us to compute derivative formulas without resorting directly to the limit definition. For
example, if f is a power function of the form f(x) = xn, then f ′(x) = nxn−1 for any real number
n other than 0. This is called the Rule for Power Functions.

• We have stated a rule for derivatives of exponential functions in the same spirit as the rule for
power functions: for any positive real number a, if f(x) = ax, then f ′(x) = ax ln(a).

• If we are given a constant multiple of a function whose derivative we know, or a sum of func-
tions whose derivatives we know, the Constant Multiple and Sum Rules make it straightfor-
ward to compute the derivative of the overall function. More formally, if f(x) and g(x) are
differentiable with derivatives f ′(x) and g′(x) and a and b are constants, then

d

dx
[af(x) + bg(x)] = af ′(x) + bg′(x).

Exercises

1. Let f and g be differentiable functions for which the following information is known: f(2) = 5,
g(2) = −3, f ′(2) = −1/2, g′(2) = 2.
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(a) Let h be the new function defined by the rule h(x) = 3f(x)−4g(x). Determine h(2) and
h′(2).

(b) Find an equation for the tangent line to y = h(x) at the point (2, h(2)).

(c) Let p be the function defined by the rule p(x) = −2f(x) + 1
2g(x). Is p increasing, de-

creasing, or neither at a = 2? Why?

(d) Estimate the value of p(2.03) by using the local linearization of p at the point (2, p(2)).

2. Consider the functions r(t) = tt and s(t) = arccos(t), for which you are given the facts that
r′(t) = tt(ln(t) + 1) and s′(t) = − 1√

1−t2 . Do not be concerned with where these derivative
formulas come from. We restrict our interest in both functions to the domain 0 < t < 1.

(a) Let w(t) = 3tt − 2 arccos(t). Determine w′(t).

(b) Find an equation for the tangent line to y = w(t) at the point (1
2 , w(1

2)).

(c) Let v(t) = tt + arccos(t). Is v increasing or decreasing at the instant t = 1
2? Why?

3. Let functions p and q be the piecewise linear functions given by their respective graphs in
Figure 2.1. Use the graphs to answer the following questions.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3
p

q

Figure 2.1: The graphs of p (in blue) and q (in green).

(a) At what values of x is p not differentiable? At what values of x is q not differentiable?
Why?

(b) Let r(x) = p(x) + 2q(x). At what values of x is r not differentiable? Why?

(c) Determine r′(−2) and r′(0).

(d) Find an equation for the tangent line to y = r(x) at the point (2, r(2)).

4. Let f(x) = ax. The goal of this problem is to explore how the value of a affects the derivative
of f(x), without assuming we know the rule for d

dx [ax] that we have stated and used in earlier
work in this section.
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(a) Use the limit definition of the derivative to show that

f ′(x) = lim
h→0

ax · ah − ax
h

.

(b) Explain why it is also true that

f ′(x) = ax · lim
h→0

ah − 1

h
.

(c) Use computing technology and small values of h to estimate the value of

L = lim
h→0

ah − 1

h

when a = 2. Do likewise when a = 3.

(d) Note that it would be ideal if the value of the limit L was 1, for then f would be a
particularly special function: its derivative would be simply ax, which would mean
that its derivative is itself. By experimenting with different values of a between 2 and
3, try to find a value for a for which

L = lim
h→0

ah − 1

h
= 1.

(e) Compute ln(2) and ln(3). What does your work in (b) and (c) suggest is true about
d
dx [2x] and d

dx [2x].

(f) How do your investigations in (d) lead to a particularly important fact about the num-
ber e?
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2.2 The sine and cosine functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is a graphical justification for why d
dx [ax] = ax ln(a)?

• What do the graphs of y = sin(x) and y = cos(x) suggest as formulas for their respective
derivatives?

• Once we know the derivatives of sin(x) and cos(x), how do previous derivative rules work
when these functions are involved?

Introduction

Throughout Chapter 2, we will be working to develop shortcut derivative rules that will help us
to bypass the limit definition of the derivative in order to quickly determine the formula for f ′(x)
when we are given a formula for f(x). In Section 2.1, we learned the rule for power functions,
that if f(x) = xn, then f ′(x) = nxn−1, and justified this in part due to results from different n-
values when applying the limit definition of the derivative. We also stated the rule for exponential
functions, that if a is a positive real number annd f(x) = ax, then f ′(x) = ax ln(a). Later in this
present section, we are going to work to conjecture formulas for the sine and cosine functions,
primarily through a graphical argument. To help set the stage for doing so, the following preview
activity asks you to think about exponential functions and why it is reasonable to think that the
derivative of an exponential function is a constant times the exponential function itself.

Preview Activity 2.2. Consider the function g(x) = 2x, which is graphed in Figure 2.2.

(a) At each of x = −2,−1, 0, 1, 2, use a straightedge to sketch an accurate tangent line to
y = g(x).

(b) Use the provided grid to estimate the slope of the tangent line you drew at each point in
(a).

(c) Use the limit definition of the derivative to estimate g′(0) by using small values of h, and
compare the result to your visual estimate for the slope of the tangent line to y = g(x) at
x = 0 in (b).

(d) Based on your work in (a), (b), and (c), sketch an accurate graph of y = g′(x) on the axes
adjacent to the graph of y = g(x).

(e) Write at least one sentence that explains why it is reasonable to think that g′(x) = cg(x),
where c is a constant. In addition, calculate ln(2), and then discuss how this value, com-
bined with your work above, reasonably suggests that g′(x) = 2x ln(2).

./
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Figure 2.2: At left, the graph of y = g(x) = 2x. At right, axes for plotting y = g′(x).

The sine and cosine functions

The sine and cosine functions are among the most important functions in all of mathematics.
Sometimes called the circular functions due to their genesis in the unit circle, these periodic func-
tions play a key role in modeling repeating phenomena such as the location of a point on a bicycle
tire, the behavior of an oscillating mass attached to a spring, tidal elevations, and more. Like poly-
nomial and exponential functions, the sine and cosine functions are considered basic functions,
ones that are often used in the building of more complicated functions. As such, we would like to
know formulas for d

dx [sin(x)] and d
dx [cos(x)], and the next two activities lead us to that end.

Activity 2.4.

Consider the function f(x) = sin(x), which is graphed in Figure 2.3 below. Note carefully that
the grid in the diagram does not have boxes that are 1 × 1, but rather approximately 1.57 × 1,
as the horizontal scale of the grid is π/2 units per box.

(a) At each of x = −2π,−3π
2 ,−π,−π

2 , 0,
π
2 , π,

3π
2 , 2π, use a straightedge to sketch an accurate

tangent line to y = f(x).

(b) Use the provided grid to estimate the slope of the tangent line you drew at each point.
Pay careful attention to the scale of the grid.

(c) Use the limit definition of the derivative to estimate f ′(0) by using small values of h, and
compare the result to your visual estimate for the slope of the tangent line to y = f(x)
at x = 0 in (b). Using periodicity, what does this result suggest about f ′(2π)? about
f ′(−2π)?

(d) Based on your work in (a), (b), and (c), sketch an accurate graph of y = f ′(x) on the
axes adjacent to the graph of y = f(x).
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(e) What familiar function do you think is the derivative of f(x) = sin(x)?

-1

1

−2π −π π

2π

−2π −π π 2π
-1

1

Figure 2.3: At left, the graph of y = f(x) = sin(x).

C

Activity 2.5.

Consider the function g(x) = cos(x), which is graphed in Figure 2.4 below. Note carefully that
the grid in the diagram does not have boxes that are 1 × 1, but rather approximately 1.57 × 1,
as the horizontal scale of the grid is π/2 units per box.

-1

1

−2π −π π 2π −2π −π π 2π
-1

1

Figure 2.4: At left, the graph of y = g(x) = cos(x).

(a) At each of x = −2π,−3π
2 ,−π,−π

2 , 0,
π
2 , π,

3π
2 , 2π, use a straightedge to sketch an accurate

tangent line to y = g(x).

(b) Use the provided grid to estimate the slope of the tangent line you drew at each point.
Again, note the scale of the axes and grid.

(c) Use the limit definition of the derivative to estimate g′(π2 ) by using small values of
h, and compare the result to your visual estimate for the slope of the tangent line to
y = g(x) at x = π

2 in (b). Using periodicity, what does this result suggest about g′(−3π
2 )?

can symmetry on the graph help you estimate other slopes easily?

(d) Based on your work in (a), (b), and (c), sketch an accurate graph of y = g′(x) on the axes
adjacent to the graph of y = g(x).

(e) What familiar function do you think is the derivative of g(x) = cos(x)?

C
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The results of the two preceding activities suggest that the sine and cosine functions not only
have the beautiful interrelationships that are learned in a course in trigonometry – connections
such as the identities sin2(x) + cos2(x) = 1 and cos(x − π

2 ) = sin(x) – but that they are even
further linked through calculus, as the derivative of each involves the other. The following rules
summarize the results of the activities4.

Sine and Cosine Functions: For all real numbers x,

d

dx
[sin(x)] = cos(x) and

d

dx
[cos(x)] = − sin(x)

We have now added two additional functions to our library of basic functions whose deriva-
tives we know: power functions, exponential functions, and the sine and cosine functions. The
constant multiple and sum rules still hold, of course, and all of the inherent meaning of the deriva-
tive persists, regardless of the functions that are used to constitute a given choice of f(x). The
following activity puts our new knowledge of the derivatives of sin(x) and cos(x) to work.

Activity 2.6.

Answer each of the following questions. Where a derivative is requested, be sure to label the
derivative function with its name using proper notation.

(a) Determine the derivative of h(t) = 3 cos(t)− 4 sin(t).

(b) Find the exact slope of the tangent line to y = f(x) = 2x + sin(x)
2 at the point where

x = π
6 .

(c) Find the equation of the tangent line to y = g(x) = x2 + 2 cos(x) at the point where
x = π

2 .

(d) Determine the derivative of p(z) = z4 + 4z + 4 cos(z)− sin(π2 ).

(e) The function P (t) = 24 + 8 sin(t) represents a population of a particular kind of animal
that lives on a small island, where P is measured in hundreds and t is measured in
decades since January 1, 2010. What is the instantaneous rate of change of P on January
1, 2030? What are the units of this quantity? Write a sentence in everyday language that
explains how the population is behaving at this point in time.

C

Summary

In this section, we encountered the following important ideas:

• If we consider the graph of an exponential function f(x) = ax (where a > 1), the graph of
f ′(x) behaves similarly, appearing exponential and as a possibly scaled version of the original

4These two rules may be formally proved using the limit definition of the derivative and the expansion identities
for sin(x+ h) and cos(x+ h).
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function ax. For f(x) = 2x, careful analysis of the graph and its slopes suggests that d
dx [2x] =

2x ln(2), which is a special case of the rule we stated in Section 2.1.

• By carefully analyzing the graphs of y = sin(x) and y = cos(x), plus using the limit definition
of the derivative at select points, we found that d

dx [sin(x)] = cos(x) and d
dx [cos(x)] = − sin(x).

• We note that all previously encountered derivative rules still hold, but now may also be applied
to functions involving the sine and cosine, plus all of the established meaning of the derivative
applies to these trigonometric functions as well.

Exercises

1. Suppose that V (t) = 24 · 1.07t + 6 sin(t) represents the value of a person’s investment portfolio
in thousands of dollars in year t, where t = 0 corresponds to January 1, 2010.

(a) At what instantaneous rate is the portfolio’s value changing on January 1, 2012? Include
units on your answer.

(b) Determine the value of V ′′(2). What are the units on this quantity and what does it tell
you about how the portfolio’s value is changing?

(c) On the interval 0 ≤ t ≤ 20, graph the function V (t) = 24 · 1.07t + 6 sin(t) and describe
its behavior in the context of the problem. Then, compare the graphs of the functions
A(t) = 24 · 1.07t and V (t) = 24 · 1.07t + 6 sin(t), as well as the graphs of their derivatives
A′(t) and V ′(t). What is the impact of the term 6 sin(t) on the behavior of the function
V (t)?

2. Let f(x) = 3 cos(x)− 2 sin(x) + 6.

(a) Determine the exact slope of the tangent line to y = f(x) at the point where a = π
4 .

(b) Determine the tangent line approximation to y = f(x) at the point where a = π.

(c) At the point where a = π
2 , is f increasing, decreasing, or neither?

(d) At the point where a = 3π
2 , does the tangent line to y = f(x) lie above the curve, below

the curve, or neither? How can you answer this question without even graphing the
function or the tangent line?

3. In this exercise, we explore how the limit definition of the derivative more formally shows that
d
dx [sin(x)] = cos(x). Letting f(x) = sin(x), note that the limit definition of the derivative tells
us that

f ′(x) = lim
h→0

sin(x+ h)− sin(x)

h
.

(a) Recall the trigonometric identity for the sine of a sum of angles α and β:
sin(α + β) = sin(α) cos(β) + cos(α) sin(β). Use this identity and some algebra to show
that

f ′(x) = lim
h→0

sin(x)(cos(h)− 1) + cos(x) sin(h)

h
.
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(b) Next, note that as h changes, x remains constant. Explain why it therefore makes sense
to say that

f ′(x) = sin(x) · lim
h→0

cos(h)− 1

h
+ cos(x) · lim

h→0

sin(h)

h
.

(c) Finally, use small values of h to estimate the values of the two limits in (c):

lim
h→0

cos(h)− 1

h
and lim

h→0

sin(h)

h
.

(d) What do your results in (c) thus tell you about f ′(x)?



94 2.3. THE PRODUCT AND QUOTIENT RULES

2.3 The product and quotient rules

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How does the algebraic structure of a function direct us in computing its derivative using
shortcut rules?

• How do we compute the derivative of a product of two basic functions in terms of the
derivatives of the basic functions?

• How do we compute the derivative of a quotient of two basic functions in terms of the
derivatives of the basic functions?

• How do the product and quotient rules combine with the sum and constant multiple rules
to expand the library of functions we can quickly differentiate?

Introduction

So far, the basic functions we know how to differentiate include power functions (xn), exponential
functions (ax), and the two fundamental trigonometric functions (sin(x) and cos(x)). With the sum
rule and constant multiple rules, we can also compute the derivative of combined functions such
as

f(x) = 7x11 − 4 · 9x + π sin(x)−
√

3 cos(x),

because the function f is fundamentally a sum of basic functions. Indeed, we can now quickly say
that f ′(x) = 77x10 − 4 · 9x ln(9) + π cos(x) +

√
3 sin(x).

But we can of course combine basic functions in ways other than multiplying them by con-
stants and taking sums and differences. For example, we could consider the function that results
from a product of two basic functions, such as

p(z) = z3 cos(z),

or another that is generated by the quotient of two basic functions, one like

q(t) =
sin(t)

2t
.

While the derivative of a sum is the sum of the derivatives, it turns out that the rules for computing
derivatives of products and quotients are more complicated. In what follows we explore why this
is the case, what the product and quotient rules actually say, and work to expand our repertoire
of functions we can easily differentiate. To start, Preview Activity 2.3 asks you to investigate the
derivative of a product and quotient of two polynomials.

Preview Activity 2.3. Let f and g be the functions defined by f(t) = 2t2 and g(t) = t3 + 4t.



2.3. THE PRODUCT AND QUOTIENT RULES 95

(a) Determine f ′(t) and g′(t).

(b) Let p(t) = 2t2(t3 + 4t) and observe that p(t) = f(t) · g(t). Rewrite the formula for p by
distributing the 2t2 term. Then, compute p′(t) using the sum and constant multiple rules.

(c) True or false: p′(t) = f ′(t) · g′(t).

(d) Let q(t) =
t3 + 4t

2t2
and observe that q(t) =

g(t)

f(t)
. Rewrite the formula for q by dividing each

term in the numerator by the denominator and simplify to write q as a sum of constant
multiples of powers of t. Then, compute q′(t) using the sum and constant multiple rules.

(e) True or false: q′(t) =
g′(t)
f ′(t)

.

./

The product rule

As parts (b) and (d) of Preview Activity 2.3 show, it is not true in general that the derivative of
a product of two functions is the product of the derivatives of those functions. Indeed, the rule
for differentiating a function of the form p(x) = f(x) · g(x) in terms of the derivatives of f and g
is more complicated than simply taking the product of the derivatives of f and g. To see further
why this is the case, as well as to begin to understand how the product rule actually works, we
consider an example involving meaningful functions.

Say that an investor is regularly purchasing stock in a particular company. Let N(t) be a
function that represents the number of shares owned on day t, where t = 0 represents the first day
on which shares were purchased. Further, let S(t) be a function that gives the value of one share
of the stock on day t; note that the units on S(t) are dollars per share. Moreover, to compute the
total value on day t of the stock held by the investor, we use the function V (t) = N(t) · S(t). By
taking the product

V (t) = N(t) shares · S(t) dollars per share,

we have the total value in dollars of the shares held. Observe that over time, both the number of
shares and the value of a given share will vary. The derivative N ′(t) measures the rate at which
the number of shares held is changing, while S′(t) measures the rate at which the value per share
is changing. The big question we’d like to answer is: how do these respective rates of change
affect the rate of change of the total value function?

To help better understand the relationship among changes in N , S, and V , let’s consider some
specific data. Suppose that on day 100, the investor owns 520 shares of stock and the stock’s
current value is $27.50 per share. This tells us that N(100) = 520 and S(100) = 27.50. In addition,
say that on day 100, the investor purchases an additional 12 shares (so the number of shares held
is rising at a rate of 12 shares per day), and that on that same day the price of the stock is rising at
a rate of 0.75 dollars per share per day. Viewed in calculus notation, this tells us that N ′(100) = 12
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(shares per day) and S′(100) = 0.75 (dollars per share per day). At what rate is the value of the
investor’s total holdings changing on day 100?

Observe that the increase in total value comes from two sources: the growing number of shares,
and the rising value of each share. If only the number of shares is rising (and the value of each
share is constant), the rate at which which total value would rise is found by computing the prod-
uct of the current value of the shares with the rate at which the number of shares is changing. That
is, the rate at which total value would change is given by

S(100) ·N ′(100) = 27.50
dollars
share

· 12
shares

day
= 330

dollars
day

.

Note particularly how the units make sense and explain that we are finding the rate at which the
total value V is changing, measured in dollars per day. If instead the number of shares is constant,
but the value of each share is rising, then the rate at which the total value would rise is found
similarly by taking the product of the number of shares with the rate of change of share value. In
particular, the rate total value is rising is

N(100) · S′(100) = 520 shares · 0.75
dollars per share

day
= 390

dollars
day

.

Of course, when both the number of shares is changing and the value of each share is changing,
we have to include both of these sources, and hence the rate at which the total value is rising is

V ′(100) = S(100) ·N ′(100) +N(100) · S′(100) = 330 + 390 = 720
dollars

day
.

This tells us that we expect the total value of the investor’s holdings to rise by about $720 on
the 100th day.5

Next, we expand our perspective from the specific example above to the more general and
abstract setting of a product p of two differentiable functions, f and g. If we have P (x) = f(x)·g(x),
our work above suggests that P ′(x) = f(x)g′(x)+g(x)f ′(x). Indeed, a formal proof using the limit
definition of the derivative can be given to show that the following rule, called the product rule,
holds in general.

Product Rule: If f and g are differentiable functions, then their product P (x) = f(x) · g(x) is
also a differentiable function, and

P ′(x) = f(x)g′(x) + g(x)f ′(x).

5While this example highlights why the product rule is true, there are some subtle issues to recognize. For one,
if the stock’s value really does rise exactly $0.75 on day 100, and the number of shares really rises by 12 on day 100,
then we’d expect that V (101) = N(101) · S(101) = 532 · 28.25 = 15029. If, as noted above, we expect the total value
to rise by $720, then with V (100) = N(100) · S(100) = 520 · 27.50 = 14300, then it seems like we should find that
V (101) = V (100) + 720 = 15020. Why do the two results differ by 9? One way to understand why this difference
occurs is to recognize that N ′(100) = 12 represents an instantaneous rate of change, while our (informal) discussion has
also thought of this number as the total change in the number of shares over the course of a single day. The formal
proof of the product rule reconciles this issue by taking the limit as the change in the input tends to zero.



2.3. THE PRODUCT AND QUOTIENT RULES 97

In light of the earlier example involving shares of stock, the product rule also makes sense
intuitively: the rate of change of P should take into account both how fast f and g are changing,
as well as how large f and g are at the point of interest. Furthermore, we note in words what the
product rule says: if P is the product of two functions f (the first function) and g (the second),
then “the derivative of P is the first times the derivative of the second, plus the second times
the derivative of the first.” It is often a helpful mental exercise to say this phrasing aloud when
executing the product rule.

For example, if P (z) = z3 · cos(z), we can now use the product rule to differentiate P . The first
function is z3 and the second function is cos(z). By the product rule, P ′ will be given by the first,
z3, times the derivative of the second, − sin(z), plus the second, cos(z), times the derivative of the
first, 3z2. That is,

P ′(z) = z3(− sin(z)) + cos(z)3z2 = −z3 sin(z) + 3z2 cos(z).

The following activity further explores the use of the product rule.

Activity 2.7.

Use the product rule to answer each of the questions below. Throughout, be sure to carefully
label any derivative you find by name. That is, if you’re given a formula for f(x), clearly label
the formula you find for f ′(x). It is not necessary to algebraically simplify any of the derivatives
you compute.

(a) Let m(w) = 3w174w. Find m′(w).

(b) Let h(t) = (sin(t) + cos(t))t4. Find h′(t).

(c) Determine the slope of the tangent line to the curve y = f(x) at the point where a = 1 if
f is given by the rule f(x) = ex sin(x).

(d) Find the tangent line approximation L(x) to the function y = g(x) at the point where
a = −1 if g is given by the rule g(x) = (x2 + x)2x.

C

The quotient rule

Because quotients and products are closely linked, we can use the product rule to understand how
to take the derivative of a quotient. In particular, let Q(x) be defined by Q(x) = f(x)/g(x), where
f and g are both differentiable functions. We desire a formula for Q′ in terms of f , g, f ′, and g′. It
turns out that Q is differentiable everywhere that g(x) 6= 0. Moreover, taking the formula Q = f/g
and multiplying both sides by g, we can observe that

f(x) = Q(x) · g(x).
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Thus, we can use the product rule to differentiate f . Doing so,

f ′(x) = Q(x)g′(x) + g(x)Q′(x).

Since we want to know a formula for Q′, we work to solve this most recent equation for Q′(x),
finding first that

Q′(x)g(x) = f ′(x)−Q(x)g′(x).

Dividing both sides by g(x), we have

Q′(x) =
f ′(x)−Q(x)g′(x)

g(x)
.

Finally, we also recall that Q(x) = f(x)
g(x) . Using this expression in the preceding equation and sim-

plifying, we have

Q′(x) =
f ′(x)− f(x)

g(x)g
′(x)

g(x)

=
f ′(x)− f(x)

g(x)g
′(x)

g(x)
· g(x)

g(x)

=
g(x)f ′(x)− f(x)g′(x)

g(x)2
.

This shows the fundamental argument for why the quotient rule holds.

Quotient Rule: If f and g are differentiable functions, then their quotient Q(x) = f(x)
g(x) is also a

differentiable function for all x where g(x) 6= 0, and

Q′(x) =
g(x)f ′(x)− f(x)g′(x)

g(x)2
.

Like the product rule, it can be helpful to think of the quotient rule verbally. If a function Q
is the quotient of a top function f and a bottom function g, then Q′ is given by “the bottom times
the derivative of the top, minus the top times the derivative of the bottom, all over the bottom
squared.” For example, if Q(t) = sin(t)/2t, then we can identify the top function as sin(t) and the
bottom function as 2t. By the quotient rule, we then have that Q′ will be given by the bottom, 2t,
times the derivative of the top, cos(t), minus the top, sin(t), times the derivative of the bottom,
2t ln(2), all over the bottom squared, (2t)2. That is,

Q′(t) =
2t cos(t)− sin(t)2t ln(2)

(2t)2
.

In this particular example, it is possible to simplify Q′(t) by removing a factor of 2t from both the
numerator and denominator, hence finding that

Q′(t) =
cos(t)− sin(t) ln(2)

2t
.
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In general, we must be careful in doing any such simplification, as we don’t want to correctly
execute the quotient rule but then find an incorrect overall derivative due to an algebra error.
As such, we will often place more emphasis on correctly using derivative rules than we will on
simplifying the result that follows.

The following activity further explores the use of the quotient rule.

Activity 2.8.

Use the quotient rule to answer each of the questions below. Throughout, be sure to carefully
label any derivative you find by name. That is, if you’re given a formula for f(x), clearly label
the formula you find for f ′(x). It is not necessary to algebraically simplify any of the derivatives
you compute.

(a) Let r(z) =
3z

z4 + 1
. Find r′(z).

(b) Let v(t) =
sin(t)

cos(t) + t2
. Find v′(t).

(c) Determine the slope of the tangent line to the curve R(x) =
x2 − 2x− 8

x2 − 9
at the point

where x = 0.

(d) When a camera flashes, the intensity I of light seen by the eye is given by the function

I(t) =
100t

et
,

where I is measured in candles and t is measured in milliseconds. Compute I ′(0.5),
I ′(2), and I ′(5); include appropriate units on each value; and discuss the meaning of
each.

C

Combining rules

One of the challenges to learning to apply various derivative shortcut rules correctly and effec-
tively is recognizing the fundamental structure of a function. For instance, consider the function
given by

f(x) = x sin(x) +
x2

cos(x) + 2
.

How do we decide which rules to apply? Our first task is to recognize the overall structure of the
given function. Observe that the function f is fundamentally a sum of two slightly less compli-
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cated functions, so we can apply the sum rule6 and get

f ′(x) =
d

dx

[
x sin(x) +

x2

cos(x) + 2

]

=
d

dx
[x sin(x)] +

d

dx

[
x2

cos(x) + 2

]

Now, the left-hand term above is a product, so the product rule is needed there, while the right-
hand term is a quotient, so the quotient rule is required. Applying these rules respectively, we
find that

f ′(x) = (x cos(x) + sin(x)) +
(cos(x) + 2)2x− x2(− sin(x))

(cos(x) + 2)2

= x cos(x) + sin(x) +
2x cos(x) + 4x2 + x2 sin(x)

(cos(x) + 2)2
.

We next consider how the situation changes with the function defined by

s(y) =
y · 7y
y2 + 1

.

Overall, s is a quotient of two simpler function, so the quotient rule will be needed. Here, we
execute the quotient rule and use the notation d

dy to defer the computation of the derivative of the
numerator and derivative of the denominator. Thus,

s′(y) =
(y2 + 1) · ddy [y · 7y]− y · 7y · ddy

[
y2 + 1

]

(y2 + 1)2
.

Now, there remain two derivatives to calculate. The first one, d
dy [y · 7y] calls for use of the product

rule, while the second, d
dy

[
y2 + 1

]
takes only an elementary application of the sum rule. Applying

these rules, we now have

s′(y) =
(y2 + 1)[y · 7y ln(7) + 7y · 1]− y · 7y[2y]

(y2 + 1)2
.

While some minor simplification is possible, we are content to leave s′(y) in its current form,
having found the desired derivative of s. In summary, to compute the derivative of s, we applied
the quotient rule. In so doing, when it was time to compute the derivative of the top function, we
used the product rule; at the point where we found the derivative of the bottom function, we used
the sum rule.

In general, one of the main keys to success in applying derivative rules is to recognize the
structure of the function, followed by the careful and diligent application of relevant derivative
rules. The best way to get good at this process is by doing a large number of exercises, and the
next activity provides some practice and exploration to that end.

Activity 2.9.
6When taking a derivative that involves the use of multiple derivative rules, it is often helpful to use the notation

d
dx

[ ] to wait to apply subsequent rules. This is demonstrated in each of the two examples presented here.
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Use relevant derivative rules to answer each of the questions below. Throughout, be sure to
use proper notation and carefully label any derivative you find by name.

(a) Let f(r) = (5r3 + sin(r))(4r − 2 cos(r)). Find f ′(r).

(b) Let p(t) =
cos(t)

t6 · 6t . Find p′(t).

(c) Let g(z) = 3z7ez − 2z2 sin(z) +
z

z2 + 1
. Find g′(z).

(d) A moving particle has its position in feet at time t in seconds given by the function

s(t) =
3 cos(t)− sin(t)

et
. Find the particle’s instantaneous velocity at the moment t = 1.

(e) Suppose that f(x) and g(x) are differentiable functions and it is known that f(3) = −2,

f ′(3) = 7, g(3) = 4, and g′(3) = −1. If p(x) = f(x) · g(x) and q(x) =
f(x)

g(x)
, calculate p′(3)

and q′(3).

C

As the algebraic complexity of the functions we are able to differentiate continues to increase,
it is important to remember that all of the derivative’s meaning continues to hold. Regardless of
the structure of the function f , the value of f ′(a) tells us the instantaneous rate of change of f with
respect to x at the moment x = a, as well as the slope of the tangent line to y = f(x) at the point
(a, f(a)).

Summary

In this section, we encountered the following important ideas:

• If a function is a sum, product, or quotient of simpler functions, then we can use the sum,
product, or quotient rules to differentiate the overall function in terms of the simpler functions
and their derivatives.

• The product rule tells us that if P is a product of differentiable functions f and g according to
the rule P (x) = f(x)g(x), then

P ′(x) = f(x)g′(x) + g(x)f ′(x).

• The quotient rule tells us that if Q is a quotient of differentiable functions f and g according to
the rule Q(x) = f(x)

g(x) , then

Q′(x) =
g(x)f ′(x)− f(x)g′(x)

g(x)2
.

• The product and quotient rules now complement the constant multiple and sum rules and
enable us to compute the derivative of any function that consists of sums, constant multiples,
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products, and quotients of basic functions we already know how to differentiate. For instance,
if F has the form

F (x) =
2a(x)− 5b(x)

c(x) · d(x)
,

then F is fundamentally a quotient, and the numerator is a sum of constant multiples and the
denominator is a product. Hence the derivative of F can be found by applying the quotient
rule and then using the sum and constant multiple rules to differentiate the numerator and the
product rule to differentiate the denominator.

Exercises

1. Let f and g be differentiable functions for which the following information is known: f(2) = 5,
g(2) = −3, f ′(2) = −1/2, g′(2) = 2.

(a) Let h be the new function defined by the rule h(x) = g(x) · f(x). Determine h(2) and
h′(2).

(b) Find an equation for the tangent line to y = h(x) at the point (2, h(2)).

(c) Let r be the function defined by the rule r(x) = g(x)
f(x) . Is r increasing, decreasing, or

neither at a = 2? Why?

(d) Estimate the value of r(2.06) by using the local linearization of p at the point (2, p(2)).

2. Consider the functions r(t) = tt and s(t) = arccos(t), for which you are given the facts that
r′(t) = tt(ln(t) + 1) and s′(t) = − 1√

1−t2 . Do not be concerned with where these derivative
formulas come from. We restrict our interest in both functions to the domain 0 < t < 1.

(a) Let w(t) = tt arccos(t). Determine w′(t).

(b) Find an equation for the tangent line to y = w(t) at the point (1
2 , w(1

2)).

(c) Let v(t) = tt

arccos(t) . Is v increasing or decreasing at the instant t = 1
2? Why?

3. Let functions p and q be the piecewise linear functions given by their respective graphs in
Figure 2.5. Use the graphs to answer the following questions.

(a) Let r(x) = p(x) · q(x). Determine r′(−2) and r′(0).

(b) Are there values of x for which r′(x) does not exist? If so, which values, and why?

(c) Find an equation for the tangent line to y = r(x) at the point (2, r(2)).

(d) Let z(x) = q(x)
p(x) . Determine z′(0) and z′(2).

(e) Are there values of x for which z′(x) does not exist? If so, which values, and why?

4. A farmer with large land holdings has historically grown a wide variety of crops. With the
price of ethanol fuel rising, he decides that it would be prudent to devote more and more of his
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Figure 2.5: The graphs of p (in blue) and q (in green).

acreage to producing corn. As he grows more and more corn, he learns efficiencies that increase
his yield per acre. In the present year, he used 7000 acres of his land to grow corn, and that land
had an average yield of 170 bushels per acre. At the current time, he plans to increase his
number of acres devoted to growing corn at a rate of 600 acres/year, and he expects that right
now his average yield is increasing at a rate of 8 bushels per acre per year. Use this information
to answer the following questions.

(a) Say that the present year is t = 0, that A(t) denotes the number of acres the farmer
devotes to growing corn in year t, Y (t) represents the average yield in year t (measured
in bushels per acre), andC(t) is the total number of bushels of corn the farmer produces.
What is the formula for C(t) in terms of A(t) and Y (t)? Why?

(b) What is the value of C(0)? What does it measure?

(c) Write an expression for C ′(t) in terms of A(t), A′(t), Y (t), and Y ′(t). Explain your
thinking.

(d) What is the value of C ′(0)? What does it measure?

(e) Based on the given information and your work above, estimate the value of C(1).

5. Let f(v) be the gas consumption (in liters/km) of a car going at velocity v (in km/hour). In
other words, f(v) tells you how many liters of gas the car uses to go one kilometer if it is
traveling at v kilometers per hour. In addition, suppose that f(80) = 0.05 and f ′(80) = 0.0004.

(a) Let g(v) be the distance the same car goes on one liter of gas at velocity v. What is the
relationship between f(v) and g(v)? Hence find g(80) and g′(80).

(b) Let h(v) be the gas consumption in liters per hour of a car going at velocity v. In other
words, h(v) tells you how many liters of gas the car uses in one hour if it is going at
velocity v. What is the algebraic relationship between h(v) and f(v)? Hence find h(80)
and h′(80).
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(c) How would you explain the practical meaning of these function and derivative values
to a driver who knows no calculus? Include units on each of the function and derivative
values you discuss in your response.
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2.4 Derivatives of other trigonometric functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What are the derivatives of the tangent, cotangent, secant, and cosecant functions?

• How do the derivatives of tan(x), cot(x), sec(x), and csc(x) combine with other derivative
rules we have developed to expand the library of functions we can quickly differentiate?

Introduction

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple
idea: locating a point on the unit circle.

1

θ

(x, y)

sin(θ)

cos(θ)

Figure 2.6: The unit circle and the definition of the sine and cosine functions.

Because each angle θ corresponds to one and only one point (x, y) on the unit circle, the x-
and y-coordinates of this point are each functions of θ. Indeed, this is the very definition of cos(θ)
and sin(θ): cos(θ) is the x-coordinate of the point on the unit circle corresponding to the angle θ,
and sin(θ) is the y-coordinate. From this simple definition, all of trigonometry is founded. For
instance, the fundamental trigonometric identity,

sin2(θ) + cos2(θ) = 1,

is a restatement of the Pythagorean Theorem, applied to the right triangle shown in Figure 2.6.

We recall as well that there are four other trigonometric functions, each defined in terms of
the sine and/or cosine functions. These six trigonometric functions together offer us a wide range
of flexibility in problems involving right triangles. The tangent function is defined by tan(θ) =
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sin(θ)
cos(θ) , while the cotangent function is its reciprocal: cot(θ) = cos(θ)

sin(θ) . The secant function is the
reciprocal of the cosine function, sec(θ) = 1

cos(θ) , and the cosecant function is the reciprocal of the
sine function, csc(θ) = 1

sin(θ) .

Because we know the derivatives of the sine and cosine function, and the other four trigono-
metric functions are defined in terms of these familiar functions, we can now develop shortcut
differentiation rules for the tangent, cotangent, secant, and cosecant functions. In this section’s
preview activity, we work through the steps to find the derivative of y = tan(x).

Preview Activity 2.4. Consider the function f(x) = tan(x), and remember that tan(x) = sin(x)
cos(x) .

(a) What is the domain of f?

(b) Use the quotient rule to show that one expression for f ′(x) is

f ′(x) =
cos(x) cos(x) + sin(x) sin(x)

cos2(x)
.

(c) What is the Fundamental Trigonometric Identity? How can this identity be used to find a
simpler form for f ′(x)?

(d) Recall that sec(x) = 1
cos(x) . How can we express f ′(x) in terms of the secant function?

(e) For what values of x is f ′(x) defined? How does this set compare to the domain of f?

./

Derivatives of the cotangent, secant, and cosecant functions

In Preview Activity 2.4, we found that the derivative of the tangent function can be expressed in
several ways, but most simply in terms of the secant function. Next, we develop the derivative of
the cotangent function.

Let g(x) = cot(x). To find g′(x), we observe that g(x) = cos(x)
sin(x) and apply the quotient rule.

Hence

g′(x) =
sin(x)(− sin(x))− cos(x) cos(x)

sin2(x)

= −sin2(x) + cos2(x)

sin2(x)

By the Fundamental Trigonometric Identity, we see that g′(x) = − 1
sin2(x)

; recalling that csc(x) =
1

sin(x) , it follows that we can most simply express g′ by the rule

g′(x) = − csc2(x).
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Note that neither g nor g′ is defined when sin(x) = 0, which occurs at every integer multiple of π.
Hence we have the following rule.

Cotangent Function: For all real numbers x such that x 6= kπ, where k = 0,±1,±2, . . .,

d

dx
[cot(x)] = − csc2(x).

Observe that the shortcut rule for the cotangent function is very similar to the rule we discov-
ered in Preview Activity 2.4 for the tangent function.

Tangent Function: For all real numbers x such that x 6= kπ
2 , where k = ±1,±2, . . .,

d

dx
[tan(x)] = sec2(x).

In the next two activities, we develop the rules for differentiating the secant and cosecant
functions.

Activity 2.10.

Let h(x) = sec(x) and recall that sec(x) = 1
cos(x) .

(a) What is the domain of h?

(b) Use the quotient rule to develop a formula for h′(x) that is expressed completely in
terms of sin(x) and cos(x).

(c) How can you use other relationships among trigonometric functions to write h′(x) only
in terms of tan(x) and sec(x)?

(d) What is the domain of h′? How does this compare to the domain of h?

C

Activity 2.11.

Let p(x) = csc(x) and recall that csc(x) = 1
sin(x) .

(a) What is the domain of p?

(b) Use the quotient rule to develop a formula for p′(x) that is expressed completely in
terms of sin(x) and cos(x).

(c) How can you use other relationships among trigonometric functions to write p′(x) only
in terms of cot(x) and csc(x)?

(d) What is the domain of p′? How does this compare to the domain of p?

C
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The quotient rule has thus enabled us to determine the derivatives of the tangent, cotangent,
secant, and cosecant functions, expanding our overall library of basic functions we can differenti-
ate. Moreover, we observe that just as the derivative of any polynomial function is a polynomial,
and the derivative of any exponential function is another exponential function, so it is that the
derivative of any basic trigonometric function is another function that consists of basic trigono-
metric functions. This makes sense because all trigonometric functions are periodic, and hence
their derivatives will be periodic, too.

As has been and will continue to be the case throughout our work in Chapter 2, the derivative
retains all of its fundamental meaning as an instantaneous rate of change and as the slope of the
tangent line to the function under consideration. Our present work primarily expands the list of
functions for which we can quickly determine a formula for the derivative. Moreover, with the
addition of tan(x), cot(x), sec(x), and csc(x) to our library of basic functions, there are many more
functions we can differentiate through the sum, constant multiple, product, and quotient rules.

Activity 2.12.

Answer each of the following questions. Where a derivative is requested, be sure to label the
derivative function with its name using proper notation.

(a) Let f(x) = 5 sec(x)− 2 csc(x). Find the slope of the tangent line to f at the point where
x = π

3 .

(b) Let p(z) = z2 sec(z) − z cot(z). Find the instantaneous rate of change of p at the point
where z = π

4 .

(c) Let h(t) =
tan(t)

t2 + 1
− 2et cos(t). Find h′(t).

(d) Let g(r) =
r sec(r)

5r
. Find g′(r).

(e) When a mass hangs from a spring and is set in motion, the object’s position oscillates in
a way that the size of the oscillations decrease. This is usually called a damped oscillation.
Suppose that for a particular object, its displacement from equilibrium (where the object
sits at rest) is modeled by the function

s(t) =
15 sin(t)

et
.

Assume that s is measured in inches and t in seconds. Sketch a graph of this function
for t ≥ 0 to see how it represents the situation described. Then compute ds/dt, state the
units on this function, and explain what it tells you about the object’s motion. Finally,
compute and interpret s′(2).

C

Summary

In this section, we encountered the following important ideas:
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• The derivatives of the other four trigonometric functions are

d

dx
[tan(x)] = sec2(x),

d

dx
[cot(x)] = − csc2(x),

d

dx
[sec(x)] = sec(x) tan(x), and

d

dx
[csc(x)] = − csc(x) cot(x).

Each derivative exists and is defined on the same domain as the original function. For example,
both the tangent function and its derivative are defined for all real numbers x such that x 6= kπ

2 ,
where k = ±1,±2, . . ..

• The above four rules for the derivatives of the tangent, cotangent, secant, and cosecant can be
used along with the rules for power functions, exponential functions, and the sine and cosine,
as well as the sum, constant multiple, product, and quotient rules, to quickly differentiate a
wide range of different functions.

Exercises

1. An object moving vertically has its height at time t (measured in feet, with time in seconds)
given by the function h(t) = 3 + 2 cos(t)

1.2t .

(a) What is the object’s instantaneous velocity when t = 2?

(b) What is the object’s acceleration at the instant t = 2?

(c) Describe in everyday language the behavior of the object at the instant t = 2.

2. Let f(x) = sin(x) cot(x).

(a) Use the product rule to find f ′(x).

(b) True or false: for all real numbers x, f(x) = cos(x).

(c) Explain why the function that you found in (a) is almost the opposite of the sine func-
tion, but not quite. (Hint: convert all of the trigonometric functions in (a) to sines and
cosines, and work to simplify. Think carefully about the domain of f and the domain
of f ′.)

3. Let p(z) be given by the rule

p(z) =
z tan(z)

z2 sec(z) + 1
+ 3ez + 1.

(a) Determine p′(z).

(b) Find an equation for the tangent line to p at the point where z = 0.

(c) At t = 0, is p increasing, decreasing, or neither? Why?
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2.5 The chain rule

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is a composite function and how do we recognize its structure algebraically?

• Given a composite function C(x) = f(g(x)) that is built from differentiable functions f and
g, how do we compute C ′(x) in terms of f , g, f ′, and g′? What is the statement of the Chain
Rule?

Introduction

In addition to learning how to differentiate a variety of basic functions, we have also been devel-
oping our ability to understand how to use rules to differentiate certain algebraic combinations of
them. For example, we not only know how to take the derivative of f(x) = sin(x) and g(x) = x2,
but now we can quickly find the derivative of each of the following combinations of f and g:

s(x) = 3x2 − 5 sin(x),

p(x) = x2 sin(x), and

q(x) =
sin(x)

x2
.

Finding s′ uses the sum and constant multiple rules, determining p′ requires the product rule,
and q′ can be attained with the quotient rule. Again, we note the importance of recognizing the
algebraic structure of a given function in order to find its derivative: s(x) = 3g(x)− 5f(x), p(x) =

g(x) · f(x), and q(x) = f(x)
g(x) .

There is one more natural way to algebraically combine basic functions, and that is by compos-
ing them. For instance, let’s consider the function

C(x) = sin(x2),

and observe that any input x passes through a chain of functions. In particular, in the process that
defines the function C(x), x is first squared, and then the sine of the result is taken. Using an
arrow diagram,

x −→ x2 −→ sin(x2).

In terms of the elementary functions f and g, we observe that x is first input in the function g, and
then the result is used as the input in f . Said differently, we can write

C(x) = f(g(x)) = sin(x2)

and say that C is the composition of f and g. We will refer to g, the function that is first applied to
x, as the inner function, while f , the function that is applied to the result, is the outer function.
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The main question that we answer in the present section is: given a composite function C(x) =
f(g(x)) that is built from differentiable functions f and g, how do we compute C ′(x) in terms of
f , g, f ′, and g′? In the same way that the rate of change of a product of two functions, p(x) =
f(x) · g(x), depends on the behavior of both f and g, it makes sense intuitively that the rate of
change of a composite function C(x) = f(g(x)) will also depend on some combination of f and
g and their derivatives. The rule that describes how to compute C ′ in terms of f and g and their
derivatives will be called the chain rule.

But before we can learn what the chain rule says and why it works, we first need to be com-
fortable decomposing composite functions so that we can correctly identify the inner and outer
functions, as we did in the example above with C(x) = sin(x2).

Preview Activity 2.5. For each function given below, identify its fundamental algebraic structure.
In particular, is the given function a sum, product, quotient, or composition of basic functions? If
the function is a composition of basic functions, state a formula for the inner function g and the
outer function f so that the overall composite function can be written in the form f(g(x)). If the
function is a sum, product, or quotient of basic functions, use the appropriate rule to determine
its derivative.

(a) h(x) = tan(2x)

(b) p(x) = 2x tan(x)

(c) r(x) = (tan(x))2

(d) m(x) = etan(x)

(e) w(x) =
√
x+ tan(x)

(f) z(x) =
√

tan(x)

./

The chain rule

One of the challenges of differentiating a composite function is that it often cannot be written in
an alternate algebraic form. For instance, the function C(x) = sin(x2) cannot be expanded or
otherwise rewritten, so it presents no alternate approaches to taking the derivative. But other
composite functions can be expanded or simplified, and these present a way to begin to explore
how the chain rule might have to work. To that end, we consider two examples of composite
functions that present alternate means of finding the derivative.

Example 2.1. Let f(x) = −4x+ 7 and g(x) = 3x− 5. Determine a formula for C(x) = f(g(x)) and
compute C ′(x). How is C ′ related to f and g and their derivatives?
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Solution. By the rules given for f and g,

C(x) = f(g(x))

= f(3x− 5)

= −4(3x− 5) + 7

= −12x+ 20 + 7

= −12x+ 27.

Thus, C ′(x) = −12. Noting that f ′(x) = −4 and g′(x) = 3, we observe that C ′ appears to be the
product of f ′ and g′.

From one perspective, Example 2.1 may be too elementary. Linear functions are the simplest of all
functions, and perhaps composing linear functions (which yields another linear function) does not
exemplify the true complexity that is involved with differentiating a composition of more compli-
cated functions. At the same time, we should remember the perspective that any differentiable
function is locally linear, so any function with a derivative behaves like a line when viewed up
close. From this point of view, the fact that the derivatives of f and g are multiplied to find the
derivative of their composition turns out to be a key insight.

We now consider a second example involving a nonlinear function to gain further understand-
ing of how differentiating a composite function involves the basic functions that combine to form
it.

Example 2.2. Let C(x) = sin(2x). Use the double angle identity to rewrite C as a product of basic
functions, and use the product rule to find C ′. Rewrite C ′ in the simplest form possible.

Solution. By the double angle identity for the sine function,

C(x) = sin(2x) = 2 sin(x) cos(x).

Applying the product rule and simplifying,

C ′(x) = 2 sin(x)(− sin(x)) + cos(x)(2 cos(x)) = 2(cos2(x)− sin2(x)).

Next, we recall that one of the double angle identities for the cosine function tells us that

cos(2x) = cos2(x)− sin2(x).

Substituting this result in our expression for C ′(x), we now have that

C ′(x) = 2 cos(2x).
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So from Example 2.2, we see that if C(x) = sin(2x), then C ′(x) = 2 cos(2x). Letting g(x) = 2x and
f(x) = sin(x), we observe that C(x) = f(g(x)). Moreover, with g′(x) = 2 and f ′(x) = cos(x), it
follows that we can view the structure of C ′(x) as

C ′(x) = 2 cos(2x) = g′(x)f ′(g(x)).

In this example, we see that for the composite function C(x) = f(g(x)), the derivative C ′ is (as in
the example involving linear functions) constituted by multiplying the derivatives of f and g, but
with the special condition that f ′ is evaluated at g(x), rather than at x.

It makes sense intuitively that these two quantities are involved in understanding the rate of
change of a composite function: if we are considering C(x) = f(g(x)) and asking how fast C is
changing at a given x value as x changes, it clearly matters (a) how fast g is changing at x, as well
as how fast f is changing at the value of g(x). It turns out that this structure holds not only for
the functions in Examples 2.1 and 2.2, but indeed for all differentiable functions7 as is stated in the
Chain Rule.

Chain Rule: If g is differentiable at x and f is differentiable at g(x), then the composite function
C defined by C(x) = f(g(x)) is differentiable at x and

C ′(x) = f ′(g(x))g′(x).

As with the product and quotient rules, it is often helpful to think verbally about what the
chain rule says: “If C is a composite function defined by an outer function f and an inner function
g, then C ′ is given by the derivative of the outer function, evaluated at the inner function, times
the derivative of the inner function.”

At least initially in working particular examples requiring the chain rule, it can be also be
helpful to clearly identify the inner function g and outer function f , compute their derivatives
individually, and then put all of the pieces together to generate the derivative of the overall com-
posite function. To see what we mean by this, consider the function

r(x) = (tan(x))2.

The function r is composite, with inner function g(x) = tan(x) and outer function f(x) = x2.
Organizing the key information involving f , g, and their derivatives, we have

f(x) = x2 g(x) = tan(x)
f ′(x) = 2x g′(x) = sec2(x)
f ′(g(x)) = 2 tan(x)

Applying the chain rule, which tells us that r′(x) = f ′(g(x))g′(x), we find that for r(x) =
(tan(x))2, its derivative is

r′(x) = 2 tan(x) sec2(x).

7Like other differentiation rules, the Chain Rule can be proved formally using the limit definition of the derivative.
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As a side note, we remark that another way to write r(x) is r(x) = tan2(x). Observe that in
this format, the composite nature of the function is more implicit, but this is common notation for
powers of trigonometric functions: cos4(x), sin5(x), and sec2(x) are all composite functions, with
the outer function a power function and the inner function a trigonometric one.

The chain rule now substantially expands the library of functions we can differentiate, as the
following activity demonstrates.

Activity 2.13.

For each function given below, identify an inner function g and outer function f to write the
function in the form f(g(x)). Then, determine f ′(x), g′(x), and f ′(g(x)), and finally apply the
chain rule to determine the derivative of the given function.

(a) h(x) = cos(x4)

(b) p(x) =
√

tan(x)

(c) s(x) = 2sin(x)

(d) z(x) = cot5(x)

(e) m(x) = (sec(x) + ex)9

C

Using multiple rules simultaneously

The chain rule now joins the sum, constant multiple, product, and quotient rules in our collec-
tion of the different techniques for finding the derivative of a function through understanding its
algebraic structure and the basic functions that constitute it. It takes substantial practice to get
comfortable with navigating multiple rules in a single problem; using proper notation and taking
a few extra steps can be particularly helpful as well. We demonstrate with an example and then
provide further opportunity for practice in the following activity.

Example 2.3. Find a formula for the derivative of h(t) = 3t
2+2t sec4(t).

Solution. We first observe that the most basic structure of h is that it is the product of two func-
tions: h(t) = a(t) · b(t) where a(t) = 3t

2+2t and b(t) = sec4(t). Therefore, we see that we will
need to use the product rule to differentiate h. When it comes time to differentiate a and b in their
roles in the product rule, we observe that since each is a composite function, the chain rule will be
needed. We therefore begin by working separately to compute a′(t) and b′(t).

Writing a(t) = f(g(t)) = 3t
2+2t, and finding the derivatives of f and g, we have

f(t) = 3t g(t) = t2 + 2t
f ′(t) = 3t ln(3) g′(t) = 2t+ 1

f ′(g(t)) = 3t
2+2t ln(3)
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Thus, by the chain rule, it follows that a′(t) = f ′(g(t))g′(t) = 3t
2+2t ln(3)(2t+ 1).

Turning next to b, we write b(t) = r(s(t)) = sec4(t) and find the derivatives of r and g. Doing
so,

r(t) = t4 s(t) = sec(t)
r′(t) = 4t3 s′(t) = sec(t) tan(t)
r′(s(t)) = 4 sec3(t)

By the chain rule, we now know that b′(t) = r′(s(t))s′(t) = 4 sec3(t) sec(t) tan(t) = 4 sec4(t) tan(t).

Now we are finally ready to compute the derivative of the overall function h. Recalling that
h(t) = 3t

2+2t sec4(t), by the product rule we have

h′(t) = 3t
2+2t d

dt
[sec4(t)] + sec4(t)

d

dt
[3t

2+2t].

From our work above with a and b, we know the derivatives of 3t
2+2t and sec4(t), and therefore

h′(t) = 3t
2+2t4 sec4(t) tan(t) + sec4(t)3t

2+2t ln(3)(2t+ 2).

Activity 2.14.

For each of the following functions, find the function’s derivative. State the rule(s) you use,
label relevant derivatives appropriately, and be sure to clearly identify your overall answer.

(a) p(r) = 4
√
r6 + 2er

(b) m(v) = sin(v2) cos(v3)

(c) h(y) =
cos(10y)

e4y + 1

(d) s(z) = 2z
2 sec(z)

(e) c(x) = sin(ex
2
)

C

The chain rule now adds substantially to our ability to do different familiar problems that in-
volve derivatives. Whether finding the equation of the tangent line to a curve, the instantaneous
velocity of a moving particle, or the instantaneous rate of change of a certain quantity, if the func-
tion under consideration involves a composition of other functions, the chain rule is indispensable.

Activity 2.15.

Use known derivative rules, including the chain rule, as needed to answer each of the following
questions.

(a) Find an equation for the tangent line to the curve y =
√
ex + 3 at the point where x = 0.
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(b) If s(t) =
1

(t2 + 1)3
represents the position function of a particle moving horizontally

along an axis at time t (where s is measured in inches and t in seconds), find the par-
ticle’s instantaneous velocity at t = 1. Is the particle moving to the left or right at that
instant?

(c) At sea level, air pressure is 30 inches of mercury. At an altitude of h feet above sea level,
the air pressure, P , in inches of mercury, is given by the function

P = 30e−0.0000323h.

Compute dP/dh and explain what this derivative function tells you about air pressure,
including a discussion of the units on dP/dh. In addition, determine how fast the air
pressure is changing for a pilot of a small plane passing through an altitude of 1000 feet.

(d) Suppose that f(x) and g(x) are differentiable functions and that the following informa-
tion about them is known:

x f(x) f ′(x) g(x) g′(x)

−1 2 −5 −3 4

2 −3 4 −1 2

If C(x) is a function given by the formula f(g(x)), determine C ′(2). In addition, if D(x)
is the function f(f(x)), find D′(−1).

C

The composite version of basic function rules

As we gain more experience with differentiating complicated functions, we will become more
comfortable in the process of simply writing down the derivative without taking multiple steps.
We demonstrate part of this perspective here by showing how we can find a composite rule that
corresponds to two of our basic functions. For instance, we know that d

dx [sin(x)] = cos(x). If we
instead want to know

d

dx
[sin(u(x))],

where u is a differentiable function of x, then this requires the chain rule with the sine function as
the outer function. Applying the chain rule,

d

dx
[sin(u(x))] = cos(u(x)) · u′(x).

Similarly, since d
dx [ax] = ax ln(a), it follows by the chain rule that

d

dx
[au(x)] = au(x) ln(a).
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In the process of getting comfortable with derivative rules, an excellent exercise is to write down
a list of all basic functions whose derivatives are known, list those derivatives, and then write the
corresponding chain rule for the composite version with the inner function being an unknown
function u(x) and the outer function being the known basic function. These versions of the chain
rule are particularly simple when the inner function is linear, since the derivative of a linear func-
tion is a constant. For instance,

d

dx

[
(5x+ 7)10

]
= 10(5x+ 7)9 · 5,

d

dx
[tan(17x)] = 17 sec2(17x), and

d

dx

[
e−3x

]
= −3e−3x.

Summary

In this section, we encountered the following important ideas:

• A composite function is one where the input variable x first passes through one function, and
then the resulting output passes through another. For example, the function h(x) = 2sin(x) is
composite since x −→ sin(x) −→ 2sin(x).

• Given a composite function C(x) = f(g(x)) that is built from differentiable functions f and g,
the chain rule tells us that we compute C ′(x) in terms of f , g, f ′, and g′ according to the formula

C ′(x) = f ′(g(x))g′(x).

Exercises

1. Consider the basic functions f(x) = x3 and g(x) = sin(x).

(a) Let h(x) = f(g(x)). Find the exact instantaneous rate of change of h at the point where
x = π

4 .

(b) Which function is changing most rapidly at x = 0.25: h(x) = f(g(x)) or r(x) = g(f(x))?
Why?

(c) Let h(x) = f(g(x)) and r(x) = g(f(x)). Which of these functions has a derivative that is
periodic? Why?

2. Let u(x) be a differentiable function. For each of the following functions, determine the deriva-
tive. Each response will involve u and/or u′.

(a) p(x) = eu(x)

(b) q(x) = u(ex)
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(c) r(x) = cot(u(x))

(d) s(x) = u(cot(x))

(e) a(x) = u(x4)

(f) b(x) = u4(x)

3. Let functions p and q be the piecewise linear functions given by their respective graphs in
Figure 2.7. Use the graphs to answer the following questions.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3
p

q

Figure 2.7: The graphs of p (in blue) and q (in green).

(a) Let C(x) = p(q(x)). Determine C ′(−1) and C ′(−2).

(b) Find a value of x for which C ′(x) does not exist. Explain your thinking.

(c) Let Y (x) = q(q(x)) and Z(x) = q(p(x)). Determine Y ′(−2) and Z ′(0).

4. If a spherical tank of radius 4 feet has h feet of water present in the tank, then the volume of
water in the tank is given by the formula

V =
π

3
h2(12− h).

(a) At what instantaneous rate is the volume of water in the tank changing with respect to
the height of the water at the instant h = 1? What are the units on this quantity?

(b) Now suppose that the height of water in the tank is being regulated by an inflow and
outflow (e.g., a faucet and a drain) so that the height of the water at time t is given by
the rule h(t) = sin(πt) + 1, where t is measured in hours (and h is still measured in
feet). At what rate is the height of the water changing with respect to time at the instant
t = 2?

(c) Continuing under the assumptions in (b), at what instantaneous rate is the volume of
water in the tank changing with respect to time at the instant t = 2?
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(d) What are the main differences between the rates found in (a) and (c)? Include a discus-
sion of the relevant units.
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2.6 Derivatives of Inverse Functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is the derivative of the natural logarithm function?

• What are the derivatives of the inverse trigonometric functions arcsin(x) and arctan(x)?

• If g is the inverse of a differentiable function f , how is g′ computed in terms of f , f ′, and g?

Introduction

Much of mathematics centers on the notion of function. Indeed, throughout our study of calculus,
we are investigating the behavior of functions, often doing so with particular emphasis on how
fast the output of the function changes in response to changes in the input. Because each function
represents a process, a natural question to ask is whether or not the particular process can be
reversed. That is, if we know the output that results from the function, can we determine the
input that led to it? Connected to this question, we now also ask: if we know how fast a particular
process is changing, can we determine how fast the inverse process is changing?

As we have noted, one of the most important functions in all of mathematics is the natural
exponential function f(x) = ex. Because the natural logarithm, g(x) = ln(x), is the inverse of the
natural exponential function, the natural logarithm is similarly important. One of our goals in this
section is to learn how to differentiate the logarithm function, and thus expand our library of basic
functions with known derivative formulas. First, we investigate a more familiar setting to refresh
some of the basic concepts surrounding functions and their inverses.

Preview Activity 2.6. The equation y = 5
9(x−32) relates a temperature given in x degrees Fahren-

heit to the corresponding temperature y measured in degrees Celcius.

(a) Solve the equation y = 5
9(x − 32) for x to write x (Fahrenheit temperature) in terms of y

(Celcius temperature).

(b) Let C(x) = 5
9(x − 32) be the function that takes a Fahrenheit temperature as input and

produces the Celcius temperature as output. In addition, let F (y) be the function that
converts a temperature given in y degrees Celcius to the temperature F (y) measured in
degrees Fahrenheit. Use your work in (a) to write a formula for F (y).

(c) Next consider the new function defined by p(x) = F (C(x)). Use the formulas for F and
C to determine an expression for p(x) and simplify this expression as much as possible.
What do you observe?

(d) Now, let r(y) = C(F (y)). Use the formulas for F and C to determine an expression for
r(y) and simplify this expression as much as possible. What do you observe?
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(e) What is the value of C ′(x)? of F ′(y)? How do these values appear to be related?

./

Basic facts about inverse functions

A function f : A → B is a rule that associates each element in the set A to one and only one
element in the set B. We call A the domain of f and B the codomain of f . If there exists a function
g : B → A such that g(f(a)) = a for every possible choice of a in the set A and f(g(b)) = b for
every b in the set B, then we say that g is the inverse of f . We often use the notation f−1 (read “f -
inverse”) to denote the inverse of f . Perhaps the most essential thing to observe about the inverse
function is that it undoes the work of f . Indeed, if y = f(x), then

f−1(y) = f−1(f(x)) = x,

and this leads us to another key observation: writing y = f(x) and x = f−1(y) say the exact same
thing. The only difference between the two equations is one of perspective – one is solved for x,
while the other is solved for y.

Here we briefly remind ourselves of some key facts about inverse functions. For a function
f : A→ B,

• f has an inverse if and only if f is one-to-one8 and onto9;

• provided f−1 exists, the domain of f−1 is the codomain of f , and the codomain of f−1 is the
domain of f ;

• f−1(f(x)) = x for every x in the domain of f and f(f−1(y)) = y for every y in the codomain
of f ;

• y = f(x) if and only if x = f−1(y).

The last stated fact reveals a special relationship between the graphs of f and f−1. In particular,
if we consider y = f(x) and a point (x, y) that lies on the graph of f , then it is also true that
x = f−1(y), which means that the point (y, x) lies on the graph of f−1. This shows us that the
graphs of f and f−1 are the reflections of one another across the line y = x, since reflecting across
y = x is precisely the geometric action that swaps the coordinates in an ordered pair. In Figure 2.8,
we see this exemplified for the function y = f(x) = 2x and its inverse, with the points (−1, 1

2) and
(1

2 ,−1) highlighting the reflection of the curves across y = x.

To close our review of important facts about inverses, we recall that the natural exponential
function y = f(x) = ex has an inverse function, and its inverse is the natural logarithm, x =
f−1(y) = ln(y). Indeed, writing y = ex is interchangeable with x = ln(y), plus ln(ex) = x for every
real number x and eln(y) = y for every positive real number y.

8A function f is one-to-one provided that no two distinct inputs lead to the same output.
9A function f is onto provided that every possible element of the codomain can be realized as an output of the

function for some choice of input from the domain.
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-2 2

-2

2

y = f(x)

y = f−1(x)

(−1, 12 )

(12 ,−1)

y = x

Figure 2.8: A graph of a function y = f(x) along with its inverse, y = f−1(x).

The derivative of the natural logarithm function

In what follows, we determine a formula for the derivative of g(x) = ln(x). To do so, we take
advantage of the fact that we know the derivative of the natural exponential function, which is
the inverse of g. In particular, we know that writing g(x) = ln(x) is equivalent to writing eg(x) = x.
Now we differentiate both sides of this most recent equation. In particular, we observe that

d

dx

[
eg(x)

]
=

d

dx
[x].

The righthand side is simply 1; applying the chain rule to the left side, we find that

eg(x)g′(x) = 1.

Since our goal is to determine g′(x), we solve for g′(x), so

g′(x) =
1

eg(x)
.

Finally, we recall that since g(x) = ln(x), eg(x) = eln(x) = x, and thus

g′(x) =
1

x
.

Natural Logarithm: For all positive real numbers x,
d

dx
[ln(x)] =

1

x
.

This rule for the natural logarithm function now joins our list of other basic derivative rules
that we have already established. There are two particularly interesting things to note about the
fact that d

dx [ln(x)] = 1
x . One is that this rule is restricted to only apply to positive values of x, as
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these are the only values for which the original function is defined. The other is that for the first
time in our work, differentiating a basic function of a particular type has led to a function of a
very different nature: the derivative of the natural logarithm is not another logarithm, nor even
an exponential function, but rather a rational one.

Derivatives of logarithms may now be computed in concert with all of the rules known to date.
For instance, if f(t) = ln(t2 + 1), then by the chain rule, f ′(t) = 1

t2+1
· 2t.

Activity 2.16.

For each function given below, find its derivative.

(a) h(x) = x2 ln(x)

(b) p(t) =
ln(t)

et + 1

(c) s(y) = ln(cos(y) + 2)

(d) z(x) = tan(ln(x))

(e) m(z) = ln(ln(z))

C

In addition to the important rule we have derived for the derivative of the natural log func-
tions, there are additional interesting connections to note between the graphs of f(x) = ex and
f−1(x) = ln(x).

-4 4 8

-4

4

8
y = ex

y = ln(x)

A

B

A′

B′

Figure 2.9: A graph of the function y = ex along with its inverse, y = ln(x), where both functions are viewed
using the input variable x.

In Figure 2.9, we are reminded that since the natural exponential function has the property
that its derivative is itself, the slope of the tangent to y = ex is equal to the height of the curve at
that point. For instance, at the point A = (ln(0.5), 0.5), the slope of the tangent line is mA = 0.5,
and at B = (ln(5), 5), the tangent line’s slope is mB = 5. At the corresponding points A′ and B′

on the graph of the natural logarithm function (which come from reflecting across the line y = x),
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we know that the slope of the tangent line is the reciprocal of the x-coordinate of the point (since
d
dx [ln(x)] = 1

x ). Thus, with A′ = (0.5, ln(0.5)), we have mA′ = 1
0.5 = 2, and at B′ = (5, ln(5)),

mB′ = 1
5 .

In particular, we observe that mA′ = 1
mA

and mB′ = 1
mB

. This is not a coincidence, but in fact
holds for any curve y = f(x) and its inverse, provided the inverse exists. One rationale for why
this is the case is due to the reflection across y = x: in so doing, we essentially change the roles
of x and y, thus reversing the rise and run, which leads to the slope of the inverse function at the
reflected point being the reciprocal of the slope of the original function. At the close of this section,
we will also look at how the chain rule provides us with an algebraic formulation of this general
phenomenon.

Inverse trigonometric functions and their derivatives

Trigonometric functions are periodic, so they fail to be one-to-one, and thus do not have inverses.
However, if we restrict the domain of each trigonometric function, we can force the function to be
one-to-one. For instance, consider the sine function on the domain [−π

2 ,
π
2 ].

−π
2

π
2

−π
2

π
2

f

f−1

(π2 , 1)

(1, π2 )

Figure 2.10: A graph of f(x) = sin(x) (in blue), restricted to the domain [−π2 , π2 ], along with its inverse,
f−1(x) = arcsin(x) (in magenta).

Because no output of the sine function is repeated on this interval, the function is one-to-one
and thus has an inverse. In particular, if we view f(x) = sin(x) as having domain [−π

2 ,
π
2 ] and

codomain [−1, 1], then there exists an inverse function f−1 such that

f−1 : [−1, 1]→ [−π
2
,
π

2
].

We call f−1 the arcsine (or inverse sine) function and write f−1(y) = arcsin(y). It is especially
important to remember that writing

y = sin(x) and x = arcsin(y)



2.6. DERIVATIVES OF INVERSE FUNCTIONS 125

say the exact same thing. We often read “the arcsine of y” as “the angle whose sine is y.” For
example, we say that π

6 is the angle whose sine is 1
2 , which can be written more concisely as

arcsin(1
2) = π

6 , which is equivalent to writing sin(π6 ) = 1
2 .

Next, we determine the derivative of the arcsine function. Letting h(x) = arcsin(x), our goal is
to find h′(x). Since h(x) is the angle whose sine is x, it is equivalent to write

sin(h(x)) = x.

Differentiating both sides of the previous equation, we have

d

dx
[sin(h(x))] =

d

dx
[x],

and by the fact that the righthand side is simply 1 and by the chain rule applied to the left side,

cos(h(x))h′(x) = 1.

Solving for h′(x), it follows that

h′(x) =
1

cos(h(x))
.

Finally, we recall that h(x) = arcsin(x), so the denominator of h′(x) is the function cos(arcsin(x)),
or in other words, “the cosine of the angle whose sine is x.” A bit of right triangle trigonometry
allows us to simplify this expression considerably.

x1

θ
√
1− x2

Figure 2.11: The right triangle that corresponds to the angle θ = arcsin(x).

Let’s say that θ = arcsin(x), so that θ is the angle whose sine is x. From this, it follows that
we can picture θ as an angle in a right triangle with hypotenuse 1 and a vertical leg of length x,
as shown in Figure 2.11. The horizontal leg must be

√
1− x2, by the Pythagorean Theorem. Now,

note particularly that θ = arcsin(x) since sin(θ) = x, and recall that we want to know a different
expression for cos(arcsin(x)). From the figure, cos(arcsin(x)) = cos(θ) =

√
1− x2.
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Thus, returning to our earlier work where we established that if h(x) = arcsin(x), then h′(x) =
1

cos(arcsin(x)) , we have now shown that

h′(x) =
1√

1− x2
.

Inverse sine: For all real numbers x such that −1 ≤ x ≤ 1,
d

dx
[arcsin(x)] =

1√
1− x2

.

Activity 2.17.

The following prompts in this activity will lead you to develop the derivative of the inverse
tangent function.

(a) Let r(x) = arctan(x). Use the relationship between the arctangent and tangent functions
to rewrite this equation using only the tangent function.

(b) Differentiate both sides of the equation you found in (a). Solve the resulting equation for
r′(x), writing r′(x) as simply as possible in terms of a trigonometric function evaluated
at r(x).

(c) Recall that r(x) = arctan(x). Update your expression for r′(x) so that it only involves
trigonometric functions and the independent variable x.

(d) Introduce a right triangle with angle θ so that θ = arctan(x). What are the three sides of
the triangle?

(e) In terms of only x and 1, what is the value of cos(arctan(x))?

(f) Use the results of your work above to find an expression involving only 1 and x for
r′(x).

C

While derivatives for other inverse trigonometric functions can be established similarly, we
primarily limit ourselves to the arcsine and arctangent functions. With these rules added to our
library of derivatives of basic functions, we can differentiate even more functions using derivative
shortcuts. In Activity 2.18, we see each of these rules at work.

Activity 2.18.

Determine the derivative of each of the following functions.

(a) f(x) = x3 arctan(x) + ex ln(x)

(b) p(t) = 2t arcsin(t)

(c) h(z) = (arcsin(5z) + arctan(4− z))27

(d) s(y) = cot(arctan(y))

(e) m(v) = ln(sin2(v) + 1)
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(f) g(w) = arctan

(
ln(w)

1 + w2

)

C

The link between the derivative of a function and the derivative of its inverse

In Figure 2.9, we saw an interesting relationship between the slopes of tangent lines to the natural
exponential and natural logarithm functions at points that corresponded to reflection across the
line y = x. In particular, we observed that for a point such as (ln(2), 2) on the graph of f(x) = ex,
the slope of the tangent line at this point is f ′(ln(2)) = 2, while at the corresponding point (2, ln(2))
on the graph of f−1(x) = ln(x), the slope of the tangent line at this point is (f−1)′(2) = 1

2 , which is
the reciprocal of f ′(ln(2)).

That the two corresponding tangent lines having slopes that are reciprocals of one another is
not a coincidence. If we consider the general setting of a differentiable function f with differen-
tiable inverse g such that y = f(x) if and only if x = g(y), then we know that f(g(x)) = x for every
x in the domain of f−1. Differentiating both sides of this equation with respect to x, we have

d

dx
[f(g(x))] =

d

dx
[x],

and by the chain rule,
f ′(g(x))g′(x) = 1.

Solving for g′(x), we have

g′(x) =
1

f ′(g(x))
.

Here we see that the slope of the tangent line to the inverse function g at the point (x, g(x)) is
precisely the reciprocal of the slope of the tangent line to the original function f at the point
(g(x), f(g(x))) = (g(x), x).

To see this more clearly, consider the graph of the function y = f(x) shown in Figure 2.12,
along with its inverse y = g(x). Given a point (a, b) that lies on the graph of f , we know that (b, a)
lies on the graph of g; said differently, f(a) = b and g(b) = a. Now, applying the rule that

g′(x) =
1

f ′(g(x))

to the value x = b, we have

g′(b) =
1

f ′(g(b))
=

1

f ′(a)
,

which is precisely what we see in the figure: the slope of the tangent line to g at (b, a) is the
reciprocal of the slope of the tangent line to f at (a, b), since these two lines are reflections of one
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m = g′(b)
y = f(x)

y = g(x)

(a, b)

m = f ′(a)

(b, a)

Figure 2.12: A graph of function y = f(x) along with its inverse, y = g(x) = f−1(x). Observe that the slopes
of the two tangent lines are reciprocals of one another.

another across the line y = x.

Derivative of an inverse function: Suppose that f is a differentiable function with inverse g
and that (a, b) is a point that lies on the graph of f at which f ′(a) 6= 0. Then

g′(b) =
1

f ′(a)
.

More generally, for any x in the domain of g′, we have

g′(x) =
1

f ′(g(x))
.

The rules we derived for ln(x), arcsin(x), and arctan(x) are all just specific examples of this
general property of the derivative of an inverse function. For example, with g(x) = ln(x) and
f(x) = ex, it follows that

g′(x) =
1

f ′(g(x))
=

1

eln(x)
=

1

x
.

Summary

In this section, we encountered the following important ideas:

• For all positive real numbers x,
d

dx
[ln(x)] =

1

x
.
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• For all real numbers x such that −1 ≤ x ≤ 1,
d

dx
[arcsin(x)] =

1√
1− x2

. In addition, for all real

numbers x,
d

dx
[arctan(x)] =

1

1 + x2
.

• If g is the inverse of a differentiable function f , then for any point x in the domain of g′,

g′(x) =
1

f ′(g(x))
.

Exercises

1. Determine the derivative of each of the following functions. Use proper notation and clearly
identify the derivative rules you use.

(a) f(x) = ln(2 arctan(x) + 3 arcsin(x) + 5)

(b) r(z) = arctan(ln(arcsin(z)))

(c) q(t) = arctan2(3t) arcsin4(7t)

(d) g(v) = ln

(
arctan(v)

arcsin(v) + v2

)

y = f(x)

Figure 2.13: A function y = f(x) for use in Exercise 2.

2. Consider the graph of y = f(x) provided in Figure 2.13 and use it to answer the following
questions.

(a) Use the provided graph to estimate the value of f ′(1).

(b) Sketch an approximate graph of y = f−1(x). Label at least three distinct points on the
graph that correspond to three points on the graph of f .

(c) Based on your work in (a), what is the value of (f−1)′(−1)? Why?

3. Let f(x) = 1
4x

3 + 4.
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(a) Sketch a graph of y = f(x) and explain why f is an invertible function.

(b) Let g be the inverse of f and determine a formula for g.

(c) Compute f ′(x), g′(x), f ′(2), and g′(6). What is the special relationship between f ′(2)
and g′(6)? Why?

4. Let h(x) = x+ sin(x).

(a) Sketch a graph of y = h(x) and explain why h must be invertible.

(b) Explain why it does not appear to be algebraically possible to determine a formula for
h−1.

(c) Observe that the point (π2 ,
π
2 + 1) lies on the graph of y = h(x). Determine the value of

(h−1)′(π2 + 1).
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2.7 Derivatives of Functions Given Implicitly

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What does it mean to say that a curve is an implicit function of x, rather than an explicit
function of x?

• How does implicit differentiation enable us to find a formula for dy
dx when y is an implicit

function of x?

• In the context of an implicit curve, how can we use dy
dx to answer important questions about

the tangent line to the curve?

Introduction

In all of our studies with derivatives to date, we have worked in a setting where we can express a
formula for the function of interest explicitly in terms of x. But there are many interesting curves
that are determined by an equation involving x and y for which it is impossible to solve for y in
terms of x. Perhaps the simplest and most natural of all such curves are circles. Because of the

A

B

x2 + y2 = 16

-4 4

-4

4
x3 − y3 = 6xy

x

Figure 2.14: At left, the circle given by x2 + y2 = 16. In the middle, the portion of the circle x2 + y2 = 16
that has been highlighted in the box at left. And at right, the lemniscate given by x3 − y3 = 6xy.

circle’s symmetry, for each x value strictly between the endpoints of the horizontal diameter, there
are two corresponding y-values. For instance, in Figure 2.14, we have labeled A = (−3,

√
7) and

B = (−3,−
√

7), and these points demonstrate that the circle fails the vertical line test. Hence, it is
impossible to represent the circle through a single function of the form y = f(x). At the same time,
portions of the circle can be represented explicitly as a function of x, such as the highlighted arc
that is magnified in the center of Figure 2.14. Moreover, it is evident that the circle is locally linear,
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so we ought to be able to find a tangent line to the curve at every point; thus, it makes sense to
wonder if we can compute dy

dx at any point on the circle, even though we cannot write y explicitly
as a function of x. Finally, we note that the righthand curve in Figure 2.14 is called a lemniscate and
is just one of many fascinating possibilities for implicitly given curves.

In working with implicit functions, we will often be interested in finding an equation for dy
dx

that tells us the slope of the tangent line to the curve at a point (x, y). To do so, it will be necessary
for us to work with y while thinking of y as a function of x, but without being able to write an
explicit formula for y in terms of x. The following preview activity reminds us of some ways we
can compute derivatives of functions in settings where the function’s formula is not known. For
instance, recall the earlier example d

dx [eu(x)] = eu(x)u′(x).

Preview Activity 2.7. Let f be a differentiable function of x (whose formula is not known) and re-
call that d

dx [f(x)] and f ′(x) are interchangeable notations. Determine each of the following deriva-
tives of combinations of explicit functions of x, the unknown function f , and an arbitrary constant
c.

(a)
d

dx

[
x2 + f(x)

]

(b)
d

dx

[
x2f(x)

]

(c)
d

dx

[
c+ x+ f(x)2

]

(d)
d

dx

[
f(x2)

]

(e)
d

dx
[xf(x) + f(cx) + cf(x)]

./

Implicit Differentiation

Because a circle is perhaps the simplest of all curves that cannot be represented explicitly as a
single function of x, we begin our exploration of implicit differentiation with the example of the
circle given by x2 +y2 = 16. It is visually apparent that this curve is locally linear, so it makes sense
for us to want to find the slope of the tangent line to the curve at any point, and moreover to think
that the curve is differentiable. The big question is: how do we find a formula for dy

dx , the slope of
the tangent line to the circle at a given point on the circle? By viewing y as an implicit10 function of
x, we essentially think of y as some function whose formula f(x) is unknown, but which we can
differentiate. Just as y represents an unknown formula, so too its derivative with respect to x, dydx ,
will be (at least temporarily) unknown.

10Essentially the idea of an implicit function is that it can be broken into pieces where each piece can be viewed as an
explicit function of x, and the combination of those pieces constitutes the full implicit function. For the circle, we could
choose to take the top half as one explicit function of x, and the bottom half as another.
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Consider the equation x2 + y2 = 16 and view y as an unknown differentiable function of x.
Differentiating both sides of the equation with respect to x, we have

d

dx

[
x2 + y2

]
=

d

dx
[16] .

On the right, the derivative of the constant 16 is 0, and on the left we can apply the sum rule, so it
follows that

d

dx

[
x2
]

+
d

dx

[
y2
]

= 0.

Next, it is essential that we recognize the different roles being played by x and y. Since x is the
independent variable, it is the variable with respect to which we are differentiating, and thus
d
dx

[
x2
]

= 2x. But y is the dependent variable and y is an implicit function of x. Thus, when
we want to compute d

dx [y2] it is identical to the situation in Preview Activity 2.7 where we com-
puted d

dx [f(x)2]. In both situations, we have an unknown function being squared, and we seek
the derivative of the result. This requires the chain rule, by which we find that d

dx [y2] = 2y1 dy
dx .

Therefore, continuing our work in differentiating both sides of x2 + y2 = 16, we now have that

2x+ 2y
dy

dx
= 0.

Since our goal is to find an expression for dy
dx , we solve this most recent equation for dy

dx . Subtracting
2x from both sides and dividing by 2y,

dy

dx
= −2x

2y
= −x

y
.

mt = −a
b

(a, b)

mr = b
a

Figure 2.15: The circle given by x2 + y2 = 16 with point (a, b) on the circle and the tangent line at that point,
with labeled slopes of the radial line, mr, and tangent line, mt.

There are several important things to observe about the result that dydx = −x
y . First, this expres-

sion for the derivative involves both x and y. It makes sense that this should be the case, since for
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each value of x between −4 and 4, there are two corresponding points on the circle, and the slope
of the tangent line is different at each of these points. Second, this formula is entirely consistent
with our understanding of circles. If we consider the radius from the origin to the point (a, b), the
slope of this line segment is mr = b

a . The tangent line to the circle at (a, b) will be perpendicular
to the radius, and thus have slope mt = −a

b , as shown in Figure 2.15. Finally, the slope of the
tangent line is zero at (0, 4) and (0,−4), and is undefined at (−4, 0) and (4, 0); all of these values
are consistent with the formula dy

dx = −x
y .

We consider the following more complicated example to investigate and demonstrate some
additional algebraic issues that arise in problems involving implicit differentiation.

Example 2.4. For the curve given implicitly by x3 + y2 − 2xy = 2, shown in Figure 2.16, find the
slope of the tangent line at (−1, 1).

-3 3

-3

3

x

y

Figure 2.16: The curve x3 + y2 − 2xy = 2.

Solution. We begin by differentiating the curve’s equation implicitly. Taking the derivative of
each side with respect to x,

d

dx

[
x3 + y2 − 2xy

]
=

d

dx
[2] ,

by the sum rule and the fact that the derivative of a constant is zero, we have

d

dx
[x3] +

d

dx
[y2]− d

dx
[2xy] = 0.

For the three derivatives we now must execute, the first uses the simple power rule, the second
requires the chain rule (since y is an implicit function of x), and the third necessitates the product
rule (again since y is a function of x). Applying these rules, we now find that

3x2 + 2y
dy

dx
− [2x

dy

dx
+ 2y] = 0.
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Remembering that our goal is to find an expression for dy
dx so that we can determine the slope of a

particular tangent line, we want to solve the preceding equation for dy
dx . To do so, we get all of the

terms involving dy
dx on one side of the equation and then factor. Expanding and then subtracting

3x2 − 2y from both sides, it follows that

2y
dy

dx
− 2x

dy

dx
= 2y − 3x2.

Factoring the left side to isolate dy
dx , we have

dy

dx
(2y − 2x) = 2y − 3x2.

Finally, we divide both sides by (2y − 2x) and conclude that

dy

dx
=

2y − 3x2

2y − 2x
.

Here again, the expression for dy
dx depends on both x and y. To find the slope of the tangent line at

(−1, 1), we substitute this point in the formula for dy
dx , using the notation

dy

dx

∣∣∣∣
(−1,1)

=
2(1)− 3(−1)2

2(1)− 2(−1)
= −1

4
.

This value matches our visual estimate of the slope of the tangent line shown in Figure 2.16.

Example 2.4 shows that it is possible when differentiating implicitly to have multiple terms
involving dy

dx . Regardless of the particular curve involved, our approach will be similar each time.
After differentiating, we expand so that each side of the equation is a sum of terms, some of which
involve dy

dx . Next, addition and subtraction are used to get all terms involving dy
dx on one side of

the equation, with all remaining terms on the other. Finally, we factor to get a single instance of
dy
dx , and then divide to solve for dy

dx .

Note, too, that since dy
dx is often a function of both x and y, we use the notation

dy

dx

∣∣∣∣
(a,b)

to denote the evaluation of dy
dx at the point (a, b). This is analogous to writing f ′(a) when f ′ de-

pends on a single variable.

Finally, there is a big difference between writing d
dx and dy

dx . For example,

d

dx
[x2 + y2]
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gives an instruction to take the derivative with respect to x of the quantity x2 + y2, presumably
where y is a function of x. On the other hand,

dy

dx
(x2 + y2)

means the product of the derivative of y with respect to xwith the quantity x2+y2. Understanding
this notational subtlety is essential.

The following activities present opportunities to explore several different problems involving
implicit differentiation.

Activity 2.19.

Consider the curve defined by the equation x = y5 − 5y3 + 4y, whose graph is pictured in
Figure 2.17.

-3 3

-3

3

x

y

Figure 2.17: The curve x = y5 − 5y3 + 4y.

(a) Explain why it is not possible to express y as an explicit function of x.

(b) Use implicit differentiation to find a formula for dy/dx.

(c) Use your result from part (b) to find an equation of the line tangent to the graph of
x = y5 − 5y3 + 4y at the point (0, 1).

(d) Use your result from part (b) to determine all of the points at which the graph of x =
y5 − 5y3 + 4y has a vertical tangent line.

C

Two natural questions to ask about any curve involve where the tangent line can be vertical or
horizontal. To be horizontal, the slope of the tangent line must be zero, while to be vertical, the
slope must be undefined. It is typically the case when differentiating implicitly that the formula
for dy

dx is expressed as a quotient of functions of x and y, say

dy

dx
=
p(x, y)

q(x, y)
.
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Thus, we observe that the tangent line will be horizontal precisely when the numerator is zero,
or p(x, y) = 0. Similarly, the tangent line will be vertical whenever q(x, y) = 0, making the de-
nominator 0 and thus the slope undefined. If both x and y are involved in an equation such as
p(x, y) = 0, we try to solve for one of them in terms of the other, and then use the resulting con-
dition in the original equation that defines the curve to find an equation in a single variable that
we can solve to determine the point(s) that lie on the curve at which the condition holds. It is not
always possible to execute the desired algebra due to the possibly complicated combinations of
functions that often arise.

Activity 2.20.

Consider the curve defined by the equation y(y2 − 1)(y − 2) = x(x− 1)(x− 2), whose graph is
pictured in Figure 2.18. Through implicit differentiation, it can be shown that

1 2 3

-1

1

2

x

y

Figure 2.18: The curve y(y2 − 1)(y − 2) = x(x− 1)(x− 2).

dy

dx
=

(x− 1)(x− 2) + x(x− 2) + x(x− 1)

(y2 − 1)(y − 2) + 2y2(y − 2) + y(y2 − 1)
.

Use this fact to answer each of the following questions.

(a) Determine all points (x, y) at which the tangent line to the curve is horizontal.

(b) Determine all points (x, y) at which the tangent line is vertical.

(c) Find the equation of the tangent line to the curve at one of the points where x = 1.

C

The closing activity in this section offers more opportunities to practice implicit differentiation.

Activity 2.21.

For each of the following curves, use implicit differentiation to find dy/dx and determine the
equation of the tangent line at the given point.

(a) x3 − y3 = 6xy, (−3, 3)
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(b) sin(y) + y = x3 + x, (0, 0)

(c) xe−xy = y2, (0.571433, 1)

C

Summary

In this section, we encountered the following important ideas:

• When we have an equation involving x and y where y cannot be solved for explicitly in terms
of x, but where portions of the curve can be thought of as being generated by explicit functions
of x, we say that y is an implicit function of x. A good example of such a curve is the unit circle.

• In the process of implicit differentiation, we take the equation that generates an implicitly given
curve and differentiate both sides with respect to x while treating y as a function of x. In
so doing, the chain rule leads dy

dx to arise, and then we may subsequently solve for dy
dx using

algebra.

• While dy
dx may now involve both the variables x and y, dydx still measures the slope of the tangent

line to the curve, and thus this derivative may be used to decide when the tangent line is
horizontal ( dydx = 0) or vertical ( dydx is undefined), or to find the equation of the tangent line at a
particular point on the curve.

Exercises

1. Consider the curve given by the equation 2y3 +y2−y5 = x4−2x3 +x2. Find all points at which
the tangent line to the curve is horizontal or vertical.

2. For the curve given by the equation sin(x+ y) + cos(x− y) = 1, find the equation of the tangent
line to the curve at the point (π2 ,

π
2 ).

3. Implicit differentiation enables us a different perspective from which to see why the rule d
dx [ax] =

ax ln(a) holds, if we assume that d
dx [ln(x)] = 1

x . This exercise leads you through the key steps
to do so.

(a) Let y = ax. Rewrite this equation using the natural logarithm function to write x in
terms of y (and the constant a).

(b) Differentiate both sides of the equation you found in (a) with respect to x, keeping in
mind that y is implicitly a function of x.

(c) Solve the equation you found in (b) for dy
dx , and then use the definition of y to write dy

dx
solely in terms of x. What have you found?
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2.8 Using Derivatives to Evaluate Limits

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How can derivatives be used to help us evaluate indeterminate limits of the form 0
0?

• What does it mean to say that limx→∞ f(x) = L and limx→a f(x) =∞?

• How can derivatives assist us in evaluating indeterminate limits of the form ∞
∞?

Introduction

Because differential calculus is based on the definition of the derivative, and the definition of the
derivative involves a limit, there is a sense in which all of calculus rests on limits. In addition, the
limit involved in the limit definition of the derivative is one that always generates an indetermi-
nate form of 0

0 . If f is a differentiable function for which f ′(x) exists, then when we consider

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

it follows that not only does h → 0 in the denominator, but also (f(x + h) − f(x)) → 0 in the nu-
merator, since f is continuous. Thus, the fundamental form of the limit involved in the definition
of f ′(x) is 0

0 . Remember, saying a limit has an indeterminate form only means that we don’t yet
know its value and have more work to do: indeed, limits of the form 0

0 can take on any value, as
is evidenced by evaluating f ′(x) for varying values of x for a function such as f ′(x) = x2.

Of course, we have learned many different techniques for evaluating the limits that result
from the derivative definition, and including a large number of shortcut rules that enable us to
evaluate these limits quickly and easily. In this section, we turn the situation upside-down: rather
than using limits to evaluate derivatives, we explore how to use derivatives to evaluate certain
limits. This topic will combine several different ideas, including limits, derivative shortcuts, local
linearity, and the tangent line approximation.

Preview Activity 2.8. Let h be the function given by h(x) =
x5 + x− 2

x2 − 1
.

(a) What is the domain of h?

(b) Explain why lim
x→1

x5 + x− 2

x2 − 1
results in an indeterminate form.

(c) Next we will investigate the behavior of both the numerator and denominator of h near
the point where x = 1. Let f(x) = x5 +x−2 and g(x) = x2−1. Find the local linearizations
of f and g at a = 1, and call these functions Lf (x) and Lg(x), respectively.
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(d) Explain why h(x) ≈ Lf (x)

Lg(x)
for x near a = 1.

(e) Using your work from (c), evaluate

lim
x→1

Lf (x)

Lg(x)
.

What do you think your result tells us about lim
x→1

h(x)?

(f) Investigate the function h(x) graphically and numerically near x = 1. What do you think
is the value of lim

x→1
h(x)?

./

Using derivatives to evaluate indeterminate limits of the form 0
0
.

The fundamental idea of Preview Activity 2.8 – that we can evaluate an indeterminate limit of
the form 0

0 by replacing each of the numerator and denominator with their local linearizations at
the point of interest – can be generalized in a way that enables us to easily evaluate a wide range
of limits. We begin by assuming that we have a function h(x) that can be written in the form
h(x) = f(x)

g(x) where f and g are both differentiable at x = a and for which f(a) = g(a) = 0. We are
interested in finding a way to evaluate the indeterminate limit given by lim

x→a
h(x). In Figure 2.19, we

see a visual representation of the situation involving such functions f and g. In particular, we see

a

g

Lg

f
Lf

a
Lg ≈ g

Lf ≈ f

Figure 2.19: At left, the graphs of f and g near the value a, along with their tangent line approximations Lf
and Lg at x = a. At right, zooming in on the point a and the four graphs.

that both f and g have an x-intercept at the point where x = a. In addition, since each function is
differentiable, each is locally linear, and we can find their respective tangent line approximations
Lf and Lg at x = a, which are also shown in the figure. Since we are interested in the limit
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of f(x)
g(x) as x → a, the individual behaviors of f(x) and g(x) as x → a are key to understand.

Here, we take advantage of the fact that each function and its tangent line approximation become
indistinguishable as x→ a.

First, let’s reall that Lf (x) = f ′(a)(x − a) + f(a) and Lg(x) = g′(a)(x − a) + g(a). The critical
observation we make is that when taking the limit, because x is getting arbitrarily close to a, we
can replace f with Lf and replace g with Lg, and thus we observe that

lim
x→a

f(x)

g(x)
= lim

x→a
Lf (x)

Lg(x)

= lim
x→a

f ′(a)(x− a) + f(a)

g′(a)(x− a) + g(a)
.

Next, we remember a key fundamental assumption: that both f(a) = 0 and g(a) = 0, as this is
precisely what makes the original limit indeterminate. Substituting these values for f(a) and g(a)
in the limit above, we now have

lim
x→a

f(x)

g(x)
= lim

x→a
f ′(a)(x− a)

g′(a)(x− a)

= lim
x→a

f ′(a)

g′(a)
,

where the latter equality holds since x is approaching (but not equal to) a, so x−a
x−a = 1. Finally, we

note that f
′(a)
g′(a) is constant with respect to x, and thus

lim
x→a

f(x)

g(x)
=
f ′(a)

g′(a)
.

We have, of course, implicitly made the assumption that g′(a) 6= 0, which is essential to the overall
limit having the value f ′(a)

g′(a) . We summarize our work above with the statement of L’Hopital’s
Rule, which is the formal name of the result we have shown.

L’Hopital’s Rule: Let f and g be differentiable at x = a, and suppose that f(a) = g(a) = 0 and
that g′(a) 6= 0. Then

lim
x→a

f(x)

g(x)
=
f ′(a)

g′(a)
.

In practice, we typically add the minor assumption that f ′ and g′ are continuous at a, and
hence we can write that

lim
x→a

f(x)

g(x)
= lim

x→a
f ′(x)

g′(x)
,

which reflects the fundamental benefit of L’Hopital’s Rule: if f(x)
g(x) produces an indeterminate limit

of form 0
0 as x → a, it is equivalent to consider the limit of the quotient of the two functions’
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derivatives, f
′(x)
g′(x) . For example, if we consider the limit from Preview Activity 2.8,

lim
x→1

x5 + x− 2

x2 − 1
,

by L’Hopital’s Rule we have that

lim
x→1

x5 + x− 2

x2 − 1
= lim

x→1

5x4 + 1

2x
=

6

2
= 3.

By being able to replace the numerator and denominator with their respective derivatives, we
often move from an indeterminate limit to one whose value we can easily determine.

Activity 2.22.

Evaluate each of the following limits. If you use L’Hopital’s Rule, indicate where it was used,
and be certain its hypotheses are met before you apply it.

(a) lim
x→0

ln(1 + x)

x

(b) lim
x→π

cos(x)

x

(c) lim
x→1

2 ln(x)

1− ex−1

(d) lim
x→0

sin(x)− x
cos(2x)− 1

C

While L’Hopital’s Rule can be applied in an entirely algebraic way, it is important to remember

a

g

m = g′(a)

f

m = f ′(a)

a
m = g′(a)

m = f ′(a)

Figure 2.20: Two functions f and g that satisfy L’Hopital’s Rule.

that the genesis of the rule is graphical: the main idea is that the slopes of the tangent lines to f
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and g at x = a determine the value of the limit of f(x)
g(x) as x → a. We see this in Figure 2.20, which

is a modified version of Figure 2.19, where we can see from the grid that f ′(a) = 2 and g′(a) = −1,
hence by L’Hopital’s Rule,

lim
x→a

f(x)

g(x)
=
f ′(a)

g′(a)
=

2

−1
= −2.

Indeed, what we observe is that it’s not the fact that f and g both approach zero that matters most,
but rather the rate at which each approaches zero that determines the value of the limit. This is
a good way to remember what L’Hopital’s Rule says: if f(a) = g(a) = 0, the the limit of f(x)

g(x) as
x→ a is given by the ratio of the slopes of f and g at x = a.

Activity 2.23.

In this activity, we reason graphically to evaluate limits of ratios of functions about which some
information is known.

1 2 3 4

-2

-1

1

2
f

g

1 2 3 4

-2

-1

1

2
p

q

1 2 3 4

-2

-1

1

2

s

r

Figure 2.21: Three graphs referenced in the questions of Activity 2.23.

(a) Use the left-hand graph to determine the values of f(2), f ′(2), g(2), and g′(2). Then,
evaluate

lim
x→2

f(x)

g(x)
.

(b) Use the middle graph to find p(2), p′(2), q(2), and q′(2). Then, determine the value of

lim
x→2

p(x)

q(x)
.

(c) Use the right-hand graph to compute r(2), r′(2), s(2), s′(2). Explain why you cannot
determine the exact value of

lim
x→2

r(x)

s(x)

without further information being provided, but that you can determine the sign of
limx→2

r(x)
s(x) . In addition, state what the sign of the limit will be, with justification.

C
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Limits involving∞

The concept of infinity, denoted∞, arises naturally in calculus, like it does in much of mathemat-
ics. It is important to note from the outset that ∞ is a concept, but not a number itself. Indeed,
the notion of∞ naturally invokes the idea of limits. Consider, for example, the function f(x) = 1

x ,
whose graph is pictured in Figure 2.22. We note that x = 0 is not in the domain of f , so we may

1

1
f(x) = 1

x

Figure 2.22: The graph of f(x) = 1
x .

naturally wonder what happens as x → 0. As x → 0+, we observe that f(x) increases without
bound. That is, we can make the value of f(x) as large as we like by taking x closer and closer (but
not equal) to 0, while keeping x > 0. This is a good way to think about what infinity represents: a
quantity is tending to infinity if there is no single number that the quantity is always less than.

Recall that when we write lim
x→a

f(x) = L, this means that can make f(x) as close to L as we’d
like by taking x sufficiently close (but not equal) to a. We thus expand this notation and language
to include the possibility that either L or a can be∞. For instance, for f(x) = 1

x , we now write

lim
x→0+

1

x
=∞,

by which we mean that we can make 1
x as large as we like by taking x sufficiently close (but not

equal) to 0. In a similar way, we naturally write

lim
x→∞

1

x
= 0,

since we can make 1
x as close to 0 as we’d like by taking x sufficiently large (i.e., by letting x

increase without bound).

In general, we understand the notation lim
x→a

f(x) =∞ to mean that we can make f(x) as large

as we’d like by taking x sufficiently close (but not equal) to a, and the notation lim
x→∞

f(x) = L to

mean that we can make f(x) as close to L as we’d like by taking x sufficiently large. This notation
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applies to left- and right-hand limits, plus we can also use limits involving −∞. For example,
returning to Figure 2.22 and f(x) = 1

x , we can say that

lim
x→0−

1

x
= −∞ and lim

x→−∞
1

x
= 0.

Finally, we write
lim
x→∞

f(x) =∞

when we can make the value of f(x) as large as we’d like by taking x sufficiently large. For
example,

lim
x→∞

x2 =∞.

Note particularly that limits involving infinity identify vertical and horizontal asymptotes of a
function. If limx→a f(x) = ∞, then x = a is a vertical asymptote of f , while if limx→∞ f(x) = L,
then y = L is a horizontal asymptote of f . Similar statements can be made using −∞, as well as
with left- and right-hand limits as x→ a− or x→ a+.

In precalculus classes, it is common to study the end behavior of certain families of functions,
by which we mean the behavior of a function as x→∞ and as x→ −∞. Here we briefly examine
a library of some familiar functions and note the values of several limits involving ∞. For the

-4 4 8

-4

4

8
y = ex

y = ln(x)

-2 2

-64

64

y = f(x)

y = g(x)

10

1
y = sin(x)

Figure 2.23: Graphs of some familiar functions whose end behavior as x → ±∞ is known. In the middle
graph, f(x) = x3 − 16x and g(x) = x4 − 16x2 − 8.

natural exponential function ex, we note that limx→∞ ex = ∞ and limx→−∞ ex = 0, while for the
related exponential decay function e−x, observe that these limits are reversed, with limx→∞ e−x =
0 and limx→−∞ e−x =∞. Turning to the natural logarithm function, we have limx→0+ ln(x) = −∞
and limx→∞ ln(x) = ∞. While both ex and ln(x) grow without bound as x → ∞, the exponential
function does so much more quickly than the logarithm function does. We’ll soon use limits to
quantify what we mean by “quickly.”

For polynomial functions of the form p(x) = anx
n + an−1x

n−1 + · · · a1x+ a0, the end behavior
depends on the sign of an and whether the highest power n is even or odd. If n is even and an
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is positive, then limx→∞ p(x) = ∞ and limx→−∞ p(x) = ∞, as in the plot of g in Figure 2.23. If
instead an is negative, then limx→∞ p(x) = −∞ and limx→−∞ p(x) = −∞. In the situation where
n is odd, then either limx→∞ p(x) =∞ and limx→−∞ p(x) =∞ (which occurs when an is positive,
as in the graph of f in Figure 2.23), or limx→∞ p(x) = ∞ and limx→−∞ p(x) = ∞ (when an is
negative).

A function can fail to have a limit as x→∞. For example, consider the plot of the sine function
at right in Figure 2.23. Because the function continues oscillating between −1 and 1 as x→∞, we
say that limx→∞ sin(x) does not exist.

Finally, it is straightforward to analyze the behavior of any rational function as x → ∞. Con-
sider, for example, the function

q(x) =
3x2 − 4x+ 5

7x2 + 9x− 10
.

Note that both (3x2 − 4x + 5) → ∞ as x → ∞ and (7x2 + 9x − 10) → ∞ as x → ∞. Here we
say that limx→∞ q(x) has indeterminate form ∞

∞ , much like we did when we encountered limits
of the form 0

0 . We can determine the value of this limit through a standard algebraic approach.
Multiplying the numerator and denominator each by 1

x2
, we find that

lim
x→∞

q(x) = lim
x→∞

3x2 − 4x+ 5

7x2 + 9x− 10
·

1
x2

1
x2

= lim
x→∞

3− 4 1
x + 5 1

x2

7 + 9 1
x − 10 1

x2

=
3

7

since 1
x2
→ 0 and 1

x → 0 as x → ∞. This shows that the rational function q has a horizontal
asymptote at y = 3

7 . A similar approach can be used to determine the limit of any rational function
as x→∞.

But how should we handle a limit such as

lim
x→∞

x2

ex
?

Here, both x2 → ∞ and ex → ∞, but there is not an obvious algebraic approach that enables us
to find the limit’s value. Fortunately, it turns out that L’Hopital’s Rule extends to cases involving
infinity.

L’Hopital’s Rule (∞): If f and g are differentiable and both approach zero or both approach
±∞ as x→ a (where a is allowed to be∞), then

lim
x→a

f(x)

g(x)
= lim

x→a
f ′(x)

g′(x)
.

To evaluate limx→∞ x2

ex , we observe that we can apply L’Hopital’s Rule, since both x2 →∞ and
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ex →∞. Doing so, it follows that

lim
x→∞

x2

ex
= lim

x→∞
2x

ex
.

This updated limit is still indeterminate and of the form ∞
∞ , but it is simpler since 2x has replaced

x2. Hence, we can apply L’Hopital’s Rule again, by which we find that

lim
x→∞

x2

ex
= lim

x→∞
2x

ex
= lim

x→∞
2

ex
.

Now, since 2 is constant and ex → ∞ as x → ∞, it follows that 2
ex → 0 as x → ∞, which shows

that

lim
x→∞

x2

ex
= 0.

Activity 2.24.

Evaluate each of the following limits. If you use L’Hopital’s Rule, indicate where it was used,
and be certain its hypotheses are met before you apply it.

(a) lim
x→∞

x

ln(x)

(b) lim
x→∞

ex + x

2ex + x2

(c) lim
x→0+

ln(x)
1
x

(d) lim
x→π

2
−

tan(x)

x− π
2

(e) lim
x→∞

xe−x

C

When we are considering the limit of a quotient of two functions f(x)
g(x) that results in an inde-

terminate form of ∞∞ , in essence we are asking which function is growing faster without bound.
We say that the function g dominates the function f as x→∞ provided that

lim
x→∞

f(x)

g(x)
= 0,

whereas f dominates g provided that limx→∞
f(x)
g(x) = ∞. Finally, if the value of limx→∞

f(x)
g(x) is

finite and nozero, we say that f and g grow at the same rate. For example, from earlier work we
know that limx→∞ x2

ex = 0, so ex dominates x2, while limx→∞ 3x2−4x+5
7x2+9x−10

= 3
7 , so f(x) = 3x2−4x+5

and g(x) = 7x2 + 9x− 10 grow at the same rate.

Summary

In this section, we encountered the following important ideas:
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• Derivatives be used to help us evaluate indeterminate limits of the form 0
0 through L’Hopital’s

Rule, which is developed by replacing the functions in the numerator and denominator with
their tangent line approximations. In particular, if f(a) = g(a) = 0 and f and g are differentiable
at a, L’Hopital’s Rule tells us that

lim
x→a

f(x)

g(x)
= lim

x→a
f ′(x)

g′(x)
.

• When we write x → ∞, this means that x is increasing without bound. We thus use∞ along
with limit notation to write limx→∞ f(x) = L, which means we can make f(x) as close to L as
we like by choosing x to be sufficiently large, and similarly limx→a f(x) =∞, which means we
can make f(x) as large as we like by choosing x sufficiently close to a.

• A version of L’Hopital’s Rule also allows us to use derivatives to assist us in evaluating inde-
terminate limits of the form ∞

∞ . In particular, If f and g are differentiable and both approach
zero or both approach ±∞ as x→ a (where a is allowed to be∞), then

lim
x→a

f(x)

g(x)
= lim

x→a
f ′(x)

g′(x)
.

Exercises

1. Let f and g be differentiable functions about which the following information is known: f(3) =
g(3) = 0, f ′(3) = g′(3) = 0, f ′′(3) = −2, and g′′(3) = 1. Let a new function h be given by the
rule h(x) = f(x)

g(x) . On the same set of axes, sketch possible graphs of f and g near x = 3, and use
the provided information to determine the value of

lim
x→3

h(x).

Provide explanation to support your conclusion.

2. Find all vertical and horizontal asymptotes of the function

R(x) =
3(x− a)(x− b)
5(x− a)(x− c) ,

where a, b, and c are distinct, arbitrary constants. In addition, state all values of x for which R
is not continuous. Sketch a possible graph of R, clearly labeling the values of a, b, and c.

3. Consider the function g(x) = x2x, which is defined for all x > 0. Observe that limx→0+ g(x) is
indeterminate due to its form of 00. (Think about how we know that 0k = 0 for all k > 0, while
b0 = 1 for all b 6= 0, but that neither rule can apply to 00.)

(a) Let h(x) = ln(g(x)). Explain why h(x) = 2x ln(x).

(b) Next, explain why it is equivalent to write h(x) = 2 ln(x)
1
x

.
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(c) Use L’Hopital’s Rule and your work in (b) to compute limx→0+ h(x).

(d) Based on the value of limx→0+ h(x), determine limx→0+ g(x).

4. Recall we say that function g dominates function f provided that limx→∞ f(x) =∞, limx→∞ g(x) =

∞, and limx→∞
f(x)
g(x) = 0.

(a) Which function dominates the other: ln(x) or
√
x?

(b) Which function dominates the other: ln(x) or n
√
x? (n can be any positive integer)

(c) Explain why ex will dominate any polynomial function.

(d) Explain why xn will dominate ln(x) for any positive integer n.
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Chapter 3

Using Derivatives

3.1 Using derivatives to identify extreme values of a function

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What are the critical values of a function f and how are they connected to identifying the
most extreme values the function achieves?

• How does the first derivative of a function reveal important information about the behavior
of the function, including the function’s extreme values?

• How can the second derivative of a function be used to help identify extreme values of the
function?

Introduction

In many different settings, we are interested in knowing where a function achieves its least and
greatest values. These can be important in applications – say to identify a point at which maximum
profit or minimum cost occurs – or in theory to understand how to characterize the behavior of a
function or a family of related functions. Consider the simple and familiar example of a parabolic
function such as s(t) = −16t2 + 32t+ 48 (shown at left in Figure 3.1) that represents the height of
an object tossed vertically: its maximum value occurs at the vertex of the parabola and represents
the highest value that the object reaches. Moreover, this maximum value identifies an especially
important point on the graph, the point at which the curve changes from increasing to decreasing.

More generally, for any function we consider, we can investigate where its lowest and highest
points occur in comparison to points nearby or to all possible points on the graph. Given a function
f , we say that f(c) is a global or absolute maximum provided that f(c) ≥ f(x) for all x in the domain
of f , and similarly call f(c) a global or absolute minimum whenever f(c) ≤ f(x) for all x in the

151
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1 2
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40
y = s(t)V

y = g(x)

(a, g(a))

(b, g(b))

(c, g(c))

Figure 3.1: At left, s(t) = −16t2 + 24t + 32 whose vertex is ( 3
4 , 41); at right, a function g that demonstrates

several high and low points.

domain of f . For instance, for the function g given at right in Figure 3.1, g has a global maximum
of g(c), but g does not appear to have a global minimum, as the graph of g seems to decrease
without bound. We note that the point (c, g(c)) marks a fundamental change in the behavior of
g, where g changes from increasing to decreasing; similar things happen at both (a, g(a)) and
(b, g(b)), although these points are not global mins or maxes.

For any function f , we say that f(c) is a local maximum or relative maximum provided that
f(c) ≥ f(x) for all x near c, while f(c) is called a local or relative minimum whenever f(c) ≤ f(x)
for all x near c. Any maximum or minimum may be called an extreme value of f . For example, in
Figure 3.1, g has a relative minimum of g(b) at the point (b, g(b)) and a relative maximum of g(a)
at (a, g(a)). We have already identified the global maximum of g as g(c); this global maximum can
also be considered a relative maximum.

We would like to use fundamental calculus ideas to help us identify and classify key function
behavior, including the location of relative extremes. Of course, if we are given a graph of a
function, it is often straightforward to locate these important behaviors visually. We investigate
this situation in the following preview activity.

Preview Activity 3.1. Consider the function h given by the graph in Figure 3.2. Use the graph to
answer each of the following questions.

(a) Identify all of the values of c for which h(c) is a local maximum of h.

(b) Identify all of the values of c for which h(c) is a local minimum of h.

(c) Does h have a global maximum? If so, what is the value of this global maximum?

(d) Does h have a global minimum? If so, what is its value?

(e) Identify all values of c for which h′(c) = 0.
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-2 -1 1 2

-2

-1

1

2
y = h(x)

Figure 3.2: The graph of a function h on the interval [−3, 3].

(f) Identify all values of c for which h′(c) does not exist.

(g) True or false: every relative maximum and minimum of h occurs at a point where h′(c) is
either zero or does not exist.

(h) True or false: at every point where h′(c) is zero or does not exist, h has a relative maximum
or minimum.

./

Critical points and the first derivative test

If a function has a relative extreme value at a point (c, f(c)), the function must change its behavior
at c regarding whether it is increasing or decreasing before or after the point.

Figure 3.3: From left to right, a function with a relative maximum where its derivative is zero; a function
with a relative maximum where its derivative is undefined; a function with neither a maximum nor a
minimum at a point where its derivative is zero; a function with a relative minimum where its derivative is
zero; and a function with a relative minimum where its derivative is undefined.

For example, if a continuous function has a relative maximum at c, such as those pictured in



154 3.1. USING DERIVATIVES TO IDENTIFY EXTREME VALUES OF A FUNCTION

the two leftmost functions in Figure 3.3, then it is both necessary and sufficient that the function
change from being increasing just before c to decreasing just after c. In the same way, a continu-
ous function has a relative minimum at c if and only if the function changes from decreasing to
increasing at c. See, for instance, the two functions pictured at right in Figure 3.3. There are only
two possible ways for these changes in behavior to occur: either f ′(c) = 0 or f ′(c) is undefined.

Because these values of c are so important, we call them critical values. More specifically, we
say that a function f has a critical value at x = c provided that f ′(c) = 0 or f ′(c) is undefined.
Critical values provide us with the only possible locations where the function f may have relative
extremes. Note that not every critical value produces a maximum or minimum; in the middle
graph of Figure 3.3, the function pictured there has a horizontal tangent line at the noted point,
but the function is increasing before and increasing after, so the critical value does not yield a
location where the function is greater than every value nearby, nor less than every value nearby.

The first derivative test summarizes how sign changes in the first derivative indicate the pres-
ence of a local maximum or minimum for a given function.

First Derivative Test: If p is a critical value of a continuous function f that is differentiable
near p (except possibly at x = p), then f has a relative maximum at p if and only if f ′ changes
sign from positive to negative at p, and f has a relative minimum at p if and only if f ′ changes
sign from negative to positive at p.

We consider an example to show one way the first derivative test can be used to identify the
relative extreme values of a function.

Example 3.1. Let f be a function whose derivative is given by the formula f ′(x) = e−2x(3−x)(x+
1)2. Determine all critical values of f and decide whether a relative maximum, relative minimum,
or neither occurs at each.

Solution. Since we already have f ′(x) written in factored form, it is straightforward to find the
critical values of f . Since f ′(x) is defined for all values of x, we need only determine where
f ′(x) = 0. From the equation

e−2x(3− x)(x+ 1)2 = 0

and the zero product property, it follows that x = 3 and x = −1 are critical values of f . (Note
particularly that there is no value of x that makes e−2x = 0.)

Next, to apply the first derivative test, we’d like to know the sign of f ′(x) at values near the
critical values. Because the critical values are the only locations at which f ′ can change sign, it
follows that the sign of the derivative is the same on each of the intervals created by the critical
values: for instance, the sign of f ′ must be the same for every value of x < −1. We create a
first derivative sign chart to summarize the sign of f ′ on the relevant intervals along with the
corresponding behavior of f .

The first derivative sign chart in Figure 3.4 comes from thinking about the sign of each of the
terms in the factored form of f ′(x) at one selected point in the interval under consideration. For
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sign(f ′)

behav(f)

+ + +

+

INC −1

+ ++

+

INC 3

+−+

−

DEC

f ′(x) = e−2x(3− x)(x+ 1)2

Figure 3.4: The first derivative sign chart for a function f whose derivative is given by the formula f ′(x) =
e−2x(3− x)(x+ 1)2.

instance, for x < −1, we could consider x = −2 and determine the sign of e−2x, (3−x), and (x+1)2

at the value x = −2. We note that both e−2x and (x+ 1)2 are positive regardless of the value of x,
while (3− x) is also positive at x = −2. Hence, each of the three terms in f ′ is positive, which we
indicate by writing “+++.” Taking the product of three positive terms obviously results in a value
that is positive, which we denote by the “+” in the interval to the left of x = −1 indicating the
overall sign of f ′. And, since f ′ is positive on that interval, we further know that f is increasing,
which we summarize by writing “INC” to represent the corresponding behavior of f . In a similar
way, we find that f ′ is positive and f is increasing on −1 < x < 3, and f ′ is negative and f is
decreasing for x > 3.

Now, by the first derivative test, to find relative extremes of f we look for critical value at
which f ′ changes sign. In this example, f ′ only changes sign at x = 3, where f ′ changes from
positive to negative, and thus f has a relative maximum at x = 3. While f has a critical value
at x = −1, since f is increasing both before and after x = −1, f has neither a minimum nor a
maximum at x = −1.

Activity 3.1.

Suppose that g(x) is a function continuous for every value of x 6= 2 whose first derivative is

g′(x) =
(x+ 4)(x− 1)2

x− 2
. Further, assume that it is known that g has a vertical asymptote at

x = 2.

(a) Determine all critical values of g.

(b) By developing a carefully labeled first derivative sign chart, decide whether g has as a
local maximum, local minimum, or neither at each critical value.

(c) Does g have a global maximum? global minimum? Justify your claims.
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(d) What is the value of lim
x→∞

g′(x)? What does the value of this limit tell you about the
long-term behavior of g?

(e) Sketch a possible graph of y = g(x).

C

The second derivative test

Recall that the second derivative of a function tells us several important things about the behavior
of the function itself. For instance, if f ′′ is positive on an interval, then we know that f ′ is increas-
ing on that interval and, consequently, that f is concave up, which also tells us that throughout
the interval the tangent line to y = f(x) lies below the curve at every point. In this situation where
we know that f ′(p) = 0, it turns out that the sign of the second derivative determines whether f
has a local minimum or local maximum at the critical value p.

Figure 3.5: Four possible graphs of a function f with a horizontal tangent line at a critical value.

In Figure 3.5, we see the four possibilities for a function f that has a critical point p at which
f ′(p) = 0, provided f ′′(p) is not zero on an interval including p (except possibly at p). On either
side of the critical point, f ′′ can be either positive or negative, and hence f can be either concave up
or concave down. In the first two graphs, f does not change concavity at p, and in those situations,
f has either a local minimum or local maximum. In particular, if f ′(p) = 0 and f ′′(p) < 0, then
we know f is concave down at p with a horizontal tangent line, and this guarantees f has a local
maximum there. This fact, along with the corresponding statement for when f ′′(p) is positive, is
stated in the second derivative test.

Second Derivative Test: If p is a critical value of a continuous function f such that f ′(p) = 0
and f ′′(p) 6= 0, then f has a relative maximum at p if and only if f ′′(p) < 0, and f has a relative
minimum at p if and only if f ′′(p) > 0.

In the event that f ′′(p) = 0, the second derivative test is inconclusive. That is, the test doesn’t
provide us any information. This is because if f ′′(p) = 0, it is possible that f has a local minimum,
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local maximum, or neither.1

Just as a first derivative sign chart reveals all of the increasing and decreasing behavior of a
function, we can construct a second derivative sign chart that demonstrates all of the important
information involving concavity.

Example 3.2. Let f(x) be a function whose first derivative is f ′(x) = 3x4 − 9x2. Construct both
first and second derivative sign charts for f , fully discuss where f is increasing and decreasing
and concave up and concave down, identify all relative extreme values, and sketch a possible
graph of f .

Solution. Since we know f ′(x) = 3x4 − 9x2, we can find the critical values of f by solving 3x4 −
9x2 = 0. Factoring, we observe that

0 = 3x2(x2 − 3) = 3x2(x+
√

3)(x−
√

3),

so that x = 0,±
√

3 are the three critical values of f . It then follows that the first derivative sign
chart for f is given in Figure 3.6. Thus, f is increasing on the intervals (−∞,−

√
3) and (

√
3,∞),

sign(f ′)

behav(f)

+−−
+

INC −
√
3

+ +−
−

DEC 0

++−
−

DEC
√
3

+ ++

+

INC

f ′(x) = 3x2(x+
√
3)(x−

√
3)

Figure 3.6: The first derivative sign chart for f when f ′(x) = 3x4 − 9x2 = 3x2(x2 − 3).

while f is decreasing on (−
√

3, 0) and (0,
√

3). Note particularly that by the first derivative test,
this information tells us that f has a local maximum at x = −

√
3 and a local minimum at x =

√
3.

While f also has a critical value at x = 0, neither a maximum nor minimum occurs there since f ′

does not change sign at x = 0.

Next, we move on to investigate concavity. Differentiating f ′(x) = 3x4 − 9x2, we see that
f ′′(x) = 12x3 − 18x. Since we are interested in knowing the intervals on which f ′′ is positive and
negative, we first find where f ′′(x) = 0. Observe that

0 = 12x3 − 18x = 12x

(
x2 − 3

2

)
= 12x

(
x+

√
3

2

)(
x−

√
3

2

)
,

1Consider the functions f(x) = x4, g(x) = −x4, and h(x) = x3 at the critical point p = 0.
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which implies that x = 0,±
√

3
2 . Building a sign chart for f ′′ in the exact same way we do so for f ,

we see the result shown in Figure 3.7. Therefore, f is concave down on the intervals (−∞,−
√

3
2)

sign(f ′′)

behav(f)

−−−
−

CCD −
√

3
2

−+−
+

CCU 0

++−
−

CCD
√

3
2

+++

+

CCU

f ′′(x) = 12x
(
x+

√
3
2

)(
x−

√
3
2

)

Figure 3.7: The second derivative sign chart for f when f ′′(x) = 12x3 − 18x = 12x2
(
x2 −

√
3
2

)
.

and (0,
√

3
2), and concave up on (0,

√
3
2) and (

√
3
2 ,∞).

Putting all of the above information together, we now see a complete and accurate possible
graph of f in Figure 3.8. The point A = (−

√
3, f(−

√
3) is a local maximum, as f is increasing prior

−
√
3 −

√
1.5

√
3

√
1.5

A

E

D

B

C

f

Figure 3.8: A possible graph of the function f in Example 3.2.

to A and decreasing after; similarly, the point E = (
√

3, f(
√

3) is a local minimum. Note, too, that
f is concave down at A and concave up at B, which is consistent both with our second derivative
sign chart and the second derivative test. At points B and D, concavity changes, as we saw in
the results of the second derivative sign chart in Figure 3.7. Finally, at point C, f has a critical
value with a horizontal tangent line, but neither a maximum nor a minimum occurs there since f



3.1. USING DERIVATIVES TO IDENTIFY EXTREME VALUES OF A FUNCTION 159

is decreasing both before and after C. It is also the case that concavity changes at C.

While we completely understand where f is increasing and decreasing, where f is concave up
and concave down, and where f has relative extremes, we do not know any specific information
about the y-coordinates of points on the curve. For instance, while we know that f has a local
maximum at x = −

√
3, we don’t know the value of that maximum because we do not know

f(−
√

3). Any vertical translation of our sketch of f in Figure 3.8 would satisfy the given criteria
for f .

Points B, C, and D in Figure 3.8 are locations at which the concavity of f changes. We give a
special name to any such point: if p is a value in the domain of a continuous function f at which f
changes concavity, then we say that (p, f(p)) is an inflection point of f . Just as we look for locations
where f changes from increasing to decreasing at points where f ′(p) = 0 or f ′(p) is undefined, so
too we find where f ′′(p) = 0 or f ′′(p) is undefined to see if there are points of inflection at these
locations.

It is important at this point in our study to remind ourselves of the big picture that derivatives
help to paint: the sign of the first derivative f ′ tells us whether the function f is increasing or
decreasing, while the sign of the second derivative f ′′ tells us how the function f is increasing or
decreasing.

Activity 3.2.

Suppose that g is a function whose second derivative, g′′, is given by the following graph.

1 2

1

2g′′

Figure 3.9: The graph of y = g′′(x).

(a) Find all points of inflection of g.

(b) Fully describe the concavity of g by making an appropriate sign chart.

(c) Suppose you are given that g′(−1.67857351) = 0. Is there is a local maximum, local
minimum, or neither (for the function g) at this critical value of g, or is it impossible to
say? Why?
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(d) Assuming that g′′(x) is a polynomial (and that all important behavior of g′′ is seen in
the graph above, what degree polynomial do you think g(x) is? Why?

C

As we will see in more detail in the following section, derivatives also help us to understand
families of functions that differ only by changing one or more parameters. For instance, we might
be interested in understanding the behavior of all functions of the form f(x) = a(x − h)2 + k
where a, h, and k are numbers that may vary. In the following activity, we investigate a particular
example where the value of a single parameter has considerable impact on how the graph appears.

Activity 3.3.

Consider the family of functions given by h(x) = x2 + cos(kx), where k is an arbitrary positive
real number.

(a) Use a graphing utility to sketch the graph of h for several different k-values, including
k = 1, 3, 5, 10. Plot h(x) = x2 +cos(3x) on the axes provided below. What is the smallest

-2 2

4

8

12

Figure 3.10: Axes for plotting y = h(x).

value of k at which you think you can see (just by looking at the graph) at least one
inflection point on the graph of h?

(b) Explain why the graph of h has no inflection points if k <
√

2, but infinitely many
inflection points if k ≥

√
2.

(c) Explain why, no matter the value of k, h can only have a finite number of critical values.

C

Summary

In this section, we encountered the following important ideas:

• The critical values of a continuous function f are the values of p for which f ′(p) = 0 or f ′(p)
does not exist. These values are important because they identify horizontal tangent lines or
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corner points on the graph, which are the only possible locations at which a local maximum or
local minimum can occur.

• Given a differentiable function f , whenever f ′ is positive, f is increasing; whenever f ′ is nega-
tive, f is decreasing. The first derivative test tells us that at any point where f changes from in-
creasing to decreasing, f has a local maximum, while conversely at any point where f changes
from decreasing to increasing f has a local minimum.

• Given a twice differentiable function f , if we have a horizontal tangent line at x = p and f ′′(p)
is nonzero, then the fact that f ′′ tells us the concavity of f will determine whether f has a
maximum or minimum at x = p. In particular, if f ′(p) = 0 and f ′′(p) < 0, then f is concave
down at p and f has a local maximum there, while if f ′(p) = 0 and f ′′(p) > 0, then f has a local
minimum at p. If f ′(p) = 0 and f ′′(p) = 0, then the second derivative does not tell us whether
f has a local extreme at p or not.

Exercises

1. This problem concerns a function about which the following information is known:

• f is a differentiable function defined at every real number x

• f(0) = −1/2

• y = f ′(x) has its graph given at center in Figure 3.11

1

x

1

2

x

f ′

1

x

Figure 3.11: At center, a graph of y = f ′(x); at left, axes for plotting y = f(x); at right, axes for plotting
y = f ′′(x).

(a) Construct a first derivative sign chart for f . Clearly identify all critical numbers of f ,
where f is increasing and decreasing, and where f has local extrema.

(b) On the right-hand axes, sketch an approximate graph of y = f ′′(x).

(c) Construct a second derivative sign chart for f . Clearly identify where f is concave up
and concave down, as well as all inflection points.
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(d) On the left-hand axes, sketch a possible graph of y = f(x).

2. Suppose that g is a differentiable function and g′(2) = 0. In addition, suppose that on 1 < x < 2
and 2 < x < 3 it is known that g′(x) is positive.

(a) Does g have a local maximum, local minimum, or neither at x = 2? Why?

(b) Suppose that g′′(x) exists for every x such that 1 < x < 3. Reasoning graphically,
describe the behavior of g′′(x) for x-values near 2.

(c) Besides being a critical value of g, what is special about the value x = 2 in terms of the
behavior of the graph of g?

3. Suppose that h is a differentiable function whose first derivative is given by the graph in Fig-
ure 3.12.

h′

Figure 3.12: The graph of y = h′(x).

(a) How many real number solutions can the equation h(x) = 0 have? Why?

(b) If h(x) = 0 has two distinct real solutions, what can you say about the signs of the two
solutions? Why?

(c) Assume that limx→∞ h′(x) = 3, as appears to be indicated in Figure 3.12. How will the
graph of y = h(x) appear as x→∞? Why?

(d) Describe the concavity of y = h(x) as fully as you can from the provided information.

4. Let p be a function whose second derivative is p′′(x) = (x+ 1)(x− 2)e−x.

(a) Construct a second derivative sign chart for p and determine all inflection points of p.

(b) Suppose you also know that x =
√

5−1
2 is a critical value of p. Does p have a local

minimum, local maximum, or neither at x =
√

5−1
2 ? Why?
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(c) If the point (2, 12
e2

) lies on the graph of y = p(x) and p′(2) = − 5
e2

, find the equation of
the tangent line to y = p(x) at the point where x = 2. Does the tangent line lie above
the curve, below the curve, or neither at this value? Why?
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3.2 Using derivatives to describe families of functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• Given a family of functions that depends on one or more parameters, how does the shape
of the graph of a typical function in the family depend on the value of the parameters?

• How can we construct first and second derivative sign charts of functions that depend on
one or more parameters while allowing those parameters to remain arbitrary constants?

Introduction

Mathematicians are often interested in making general observations, say by describing patterns
that hold in a large number of cases. For example, think about the Pythagorean Theorem: it
doesn’t tell us something about a single right triangle, but rather a fact about every right triangle,
thus providing key information about every member of the right triangle family. In the next part of
our studies, we would like to use calculus to help us make general observations about families of
functions that depend on one or more parameters. People who use applied mathematics, such as
engineers and economists, often encounter the same types of functions in various settings where
only small changes to certain constants occur. These constants are called parameters.

c c+ 2π
b

d

d+ a

f(t) = a sin(b(t− c)) + d

Figure 3.13: The graph of f(t) = a sin(b(t− c)) + d based on parameters a, b, c, and d.

We are already familiar with certain families of functions. For example, f(t) = a sin(b(t−c))+d
is a stretched and shifted version of the sine function with amplitude a, period 2π

b , phase shift c,
and vertical shift d. We understand from experience with trigonometric functions that a affects
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the size of the oscillation, b the rapidity of oscillation, and c where the oscillation starts, as shown
in Figure 3.13, while d affects the vertical positioning of the graph.

In addition, there are several basic situations that we already understand completely. For
instance, every function of the form y = mx + b is a line with slope m and y-intercept (0, b).
Note that this form allows us to consider every possible line through two parameters. Further, we
understand that the value of b affects the line’s steepness and whether the line rises or falls from
left to right, while the value of b situates the line vertically on the coordinate axes.

For other less familiar families of functions, we would like to use calculus to understand and
classify where key behavior occurs: where members of the family are increasing or decreasing,
concave up or concave down, where relative extremes occur, and more, all in terms of the param-
eters involved. To get started, we revisit a common collection of functions to see how calculus
confirms things we already know.

Preview Activity 3.2. Let a, h, and k be arbitrary real numbers with a 6= 0, and let f be the function
given by the rule f(x) = a(x− h)2 + k.

(a) What familiar type of function is f? What information do you know about f just by looking
at its form? (Think about the roles of a, h, and k.)

(b) Next we use some calculus to develop familiar ideas from a different perspective. To start,
treat a, h, and k as constants and compute f ′(x).

(c) Find all critical values of f . (These will depend on at least one of a, h, and k.)

(d) Assume that a < 0. Construct a first derivative sign chart for f .

(e) Based on the information you’ve found above, classify the critical values of f as maxima
or minima.

./

Describing families of functions in terms of parameters

Given a family of functions that depends on one or more parameters, our goal is to describe the
key characteristics of the overall behavior of each member of the familiy in terms of those param-
eters. By finding the first and second derivatives and constructing first and second derivative sign
charts (each of which may depend on one or more of the parameters), we can often make broad
conclusions about how each member of the family will appear. The fundamental steps for this
analysis are essentially identical to the work we did in Section 3.1, as we demonstrate through the
following example.

Example 3.3. Consider the two-parameter family of functions given by g(x) = axe−bx, where a
and b are positive real numbers. Fully describe the behavior of a typical member of the family
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in terms of a and b, including the location of all critical values, where g is increasing, decreasing,
concave up, and concave down, and the long term behavior of g.

Solution. We begin by computing g′(x). By the product rule,

g′(x) = ax
d

dx

[
e−bx

]
+ e−bx

d

dx
[ax],

and thus by applying the chain rule and constant multiple rule, we find that

g′(x) = axe−bx(−b) + e−bx(a).

To find the critical values of g, we solve the equation g′(x) = 0. Here, it is especially helpful to
factor g′(x). We thus observe that setting the derivative equal to zero implies

0 = ae−bx(−bx+ 1).

Since we are given that a 6= 0 and we know that e−bx 6= 0 for all values of x, the only way the
preceding equation can hold is when −bx + 1 = 0. Solving for x, we find that x = 1

b , and this is
therefore the only critical value of g.

Now, recall that we have shown g′(x) = ae−bx(1− bx) and that the only critical number of g is
x = 1

b . This enables us to construct the first derivative sign chart for g that is shown in Figure 3.14.

sign(g′)

behav(g)

++

+

INC 1
b

+−
−

DEC

g′(x) = ae−bx(1− bx)

Figure 3.14: The first derivative sign chart for g(x) = axe−bx.

Note particularly that in g′(x) = ae−bx(1 − bx), the term ae−bx is always positive, so the sign
depends on the linear term (1 − bx), which is zero when x = 1

b . Note that this line has negative
slope (−b), so (1 − bx) is positive for x < 1

b and negative for x > 1
b . Hence we can not only

conclude that g is always increasing for x < 1
b and decreasing for x > 1

b , but also that g has a
global maximum at (1

b , g(1
b )) and no local minimum.

We turn next to analyzing the concavity of g. With g′(x) = −abxe−bx + ae−bx, we differentiate
to find that

g′′(x) = −abxe−bx(−b) + e−bx(−ab) + ae−bx(−b).



3.2. USING DERIVATIVES TO DESCRIBE FAMILIES OF FUNCTIONS 167

sign(g′′)

behav(g)

+−
−

CCD 2
b

++

+

CCU

g′′(x) = abe−bx(bx− 2)

Figure 3.15: The second derivative sign chart for g(x) = axe−bx.

Combining like terms and factoring, we now have

g′′(x) = ab2xe−bx − 2abe−bx = abe−bx(bx− 2).

Similar to our work with the first derivative, we observe that abe−bx is always positive, and thus
the sign of g′′ depends on the sign of (bx− 2), which is zero when x = 2

b . Since (bx− 2) represents
a line with positive slope (b), the value of (bx−2) is negative for x < 2

b and positive for x > 2
b , and

thus the sign chart for g′′ is given by the one shown in Figure 3.15. Thus, g is concave down for all
x < 2

b and concave up for all x > 2
b .

Finally, we analyze the long term behavior of g by considering two limits. First, we note that

lim
x→∞

g(x) = lim
x→∞

axe−bx = lim
x→∞

ax

ebx
.

Since this limit has indeterminate form ∞
∞ , we can apply L’Hopital’s Rule and thus find that

limx→∞ g(x) = 0. In the other direction,

lim
x→−∞

g(x) = lim
x→−∞

axe−bx = −∞,

since ax → −∞ and e−bx → ∞ as x → −∞. Hence, as we move left on its graph, g decreases
without bound, while as we move to the right, g(x)→ 0.

All of the above information now allows us to produce the graph of a typical member of this
family of functions without using a graphing utility (and without choosing particular values for a
and b), as shown in Figure 3.16.

We note that the value of b controls the horizontal location of the global maximum and the
inflection point, as neither depends on a. The value of a affects the vertical stretch of the graph.
For example, the global maximum occurs at the point (1

b , g(1
b )) = (1

b ,
a
b e
−1), so the larger the value

of a, the greater the value of the global maximum.
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1
b

global max
a
b e

−1

2
b

inflection pt

g(x) = axe−bx

Figure 3.16: The graph of g(x) = axe−bx.

The kind of work we’ve completed in Example 3.3 can often be replicated for other families of
functions that depend on parameters. Normally we are most interested in determining all critical
values, a first derivative sign chart, a second derivative sign chart, and some analysis of the limit of
the function as x→∞. Throughout, we strive to work with the parameters as arbitrary constants.
If stuck, it is always possible to experiment with some particular values of the parameters present
to reduce the algebraic complexity of our work. The following sequence of activities offers several
key examples where we see that the values of different parameters substantially affect the behavior
of individual functions within a given family.

Activity 3.4.

Consider the family of functions defined by p(x) = x3−ax, where a 6= 0 is an arbitrary constant.

(a) Find p′(x) and determine the critical values of p. How many critical values does p have?

(b) Construct a first derivative sign chart for p. What can you say about the overall behavior
of p if the constant a is positive? Why? What if the constant a is negative? In each case,
describe the relative extremes of p.

(c) Find p′′(x) and construct a second derivative sign chart for p. What does this tell you
about the concavity of p? What role does a play in determining the concavity of p?

(d) Without using a graphing utility, sketch and label typical graphs of p(x) for the cases
where a > 0 and a < 0. Label all inflection points and local extrema.

(e) Finally, use a graphing utility to test your observations above by entering and plotting
the function p(x) = x3−ax for at least four different values of a. Write several sentences
to describe your overall conclusions about how the behavior of p depends on a.

C

Activity 3.5.
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Consider the two-parameter family of functions of the form h(x) = a(1− e−bx), where a and b
are positive real numbers.

(a) Find the first derivative and the critical values of h. Use these to construct a first deriva-
tive sign chart and determine for which values of x the function h is increasing and
decreasing.

(b) Find the second derivative and build a second derivative sign chart. For which values
of x is a function in this family concave up? concave down?

(c) What is the value of lim
x→∞

a(1− e−bx)? lim
x→−∞

a(1− e−bx)?

(d) How does changing the value of b affect the shape of the curve?

(e) Without using a graphing utility, sketch the graph of a typical member of this family.
Write several sentences to describe the overall behavior of a typical function h and how
this behavior depends on a and b.

C

Activity 3.6.

Let L(t) =
A

1 + ce−kt
, where A, c, and k are all positive real numbers.

(a) Observe that we can equivalently write L(t) = A(1 + ce−kt)−1. Find L′(t) and explain
why L has no critical values. Is L always increasing or always decreasing? Why?

(b) Given the fact that

L′′(t) = Ack2e−kt
ce−kt − 1

(1 + ce−kt)3
,

find all values of t such that L′′(t) = 0 and hence construct a second derivative sign
chart. For which values of t is a function in this family concave up? concave down?

(c) What is the value of lim
t→∞

A

1 + ce−kt
? lim
t→−∞

A

1 + ce−kt
?

(d) Find the value of L(x) at the inflection point found in (b).

(e) Without using a graphing utility, sketch the graph of a typical member of this family.
Write several sentences to describe the overall behavior of a typical function h and how
this behavior depends on a and b.

(f) Explain why it is reasonable to think that the function L(t) models the growth of a
population over time in a setting where the largest possible population the surrounding
environment can support is A.

C

Summary

In this section, we encountered the following important ideas:
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• Given a family of functions that depends on one or more parameters, by investigating how
critical values and locations where the second derivative is zero depend on the values of these
parameters, we can often accurately describe the shape of the function in terms of the parame-
ters.

• In particular, just as we can created first and second derivative sign charts for a single function,
we often can do so for entire families of functions where critical values and possible inflection
points depend on arbitrary constants. These sign charts then reveal where members of the fam-
ily are increasing or decreasing, concave up or concave down, and help us to identify relative
extremes and inflection points.

Exercises

1. Consider the one-parameter family of functions given by p(x) = x3 − ax2, where a > 0.

(a) Sketch a plot of a typical member of the family, using the fact that each is a cubic poly-
nomial with a repeated zero at x = 0 and another zero at x = a.

(b) Find all critical values of p.

(c) Compute p′′ and find all values for which p′′(x) = 0. Hence construct a second deriva-
tive sign chart for p.

(d) Describe how the location of the critical values and the inflection point of p change as a
changes. That is, if the value of a is increased, what happens to the critical values and
inflection point?

2. Let q(x) =
e−x

x− c be a one-parameter family of functions where c > 0.

(a) Explain why q has a vertical asymptote at x = c.

(b) Determine lim
x→∞

q(x) and lim
x→−∞

q(x).

(c) Compute q′(x) and find all critical values of q.

(d) Construct a first derivative sign chart for q and determine whether each critical value
results in a local minimum, local maximum, or neither.

(e) Sketch a typical member of this family of functions with important behaviors clearly
labeled.

3. Let E(x) = e−
(x−m)2

2s2 , where m is any real number and s is a positive real number.

(a) Compute E′(x) and hence find all critical values of E.

(b) Construct a first derivative sign chart for E and classify each critical value as a local
minimum, local maximum, or neither.
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(c) It can be shown that E′′(x) is given by the formula

E′′(x) = e−
(x−m)2

2s2

(
(x−m)2 − s2

s4

)
.

Find all values of x for which E′′(x) = 0.

(d) Determine lim
x→∞

E(x) and lim
x→−∞

E(x).

(e) Construct a labeled graph of a typical function E that clearly shows how important
points on the graph of y = E(x) depend on m and s.
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3.3 Global Optimization

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What are the differences between finding relative extreme values and global extreme values
of a function?

• How is the process of finding the global maximum or minimum of a function over the
function’s entire domain different from determining the global maximum or minimum on
a restricted domain?

• For a function that is guaranteed to have both a global maximum and global minimum on a
closed, bounded interval, what are the possible points at which these extreme values occur?

Introduction

We have seen that we can use the first derivative of a function to determine where the function
is increasing or decreasing, and the second derivative to know where the function is concave
up or concave down. Each of these approaches provides us with key information that helps us
determine the overall shape and behavior of the graph, as well as whether the function has a
relative minimum or relative maximum at a given critical value. Remember that the difference
between a relative maximum and a global maximum is that there is a relative minimum of f at
x = p if f(p) ≥ f(x) for all x near p, while there is a global maximum at p if f(p) ≥ f(x) for all x
in the domain of f . For instance, in Figure 3.17, we see a function f that has a global maximum at

f

relative max

a

relative min

b

global max

c

Figure 3.17: A function f with a global maximum, but no global minimum.

x = c and a relative maximum at x = a, since f(c) is greater than f(x) for every value of x, while
f(a) is only greater than the value of f(x) for x near a. Since the function appears to decrease
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without bound, f has no global minimum, though clearly f has a relative minimum at x = b.

Our emphasis in this section is on finding the global extreme values of a function (if they exist).
In so doing, we will either be interested in the behavior of the function over its entire domain or
on some restricted portion. The former situation is familiar and similar to work that we did in the
two preceding sections of the text. We explore this through a particular example in the following
preview activity.

Preview Activity 3.3. Let f(x) = 2 +
3

1 + (x+ 1)2
.

(a) Determine all of the critical values of f .

(b) Construct a first derivative sign chart for f and thus determine all intervals on which f is
increasing or decreasing.

(c) Does f have a global maximum? If so, why, and what is its value and where is the maxi-
mum attained? If not, explain why.

(d) Determine lim
x→∞

f(x) and lim
x→−∞

f(x).

(e) Explain why f(x) > 2 for every value of x.

(f) Does f have a global minimum? If so, why, and what is its value and where is the mini-
mum attained? If not, explain why.

./

Global Optimization

For the functions in Figure 3.17 and Preview Activity 3.3, we were interested in finding the global
minimum and global maximum on the entire domain, which turned out to be (−∞,∞) for each.
At other times, our perspective on a function might be more focused due to some restriction on its
domain. For example, rather than considering f(x) = 2 + 3

1+(x+1)2
for every value of x, perhaps

instead we are only interested in those x for which 0 ≤ x ≤ 4, and we would like to know which
values of x in the interval [0, 4] produce the largest possible and smallest possible values of f . We
are accustomed to critical values playing a key role in determining the location of extreme values
of a function; now, by restricting the domain to an interval, it makes sense that the endpoints of
the interval will also be important to consider, as we see in the following activity. When limiting
ourselves to a particular interval, we will often refer to the absolute maximum or minimum value,
rather than the global maximum or minimum.

Activity 3.7.

Let g(x) = 1
3x

3 − 2x+ 2.

(a) Find all critical values of g that lie in the interval −2 ≤ x ≤ 3.



174 3.3. GLOBAL OPTIMIZATION

(b) Use a graphing utility to construct the graph of g on the interval −2 ≤ x ≤ 3.

(c) From the graph, determine the x-values at which the global minimum and global max-
imum of g occur on the interval [−2, 3].

(d) How do your answers change if we instead consider the interval −2 ≤ x ≤ 2?

(e) What if we instead consider the interval −2 ≤ x ≤ 1?

C

In Activity 3.7, we saw how the absolute maximum and absolute minimum of a function on a
closed, bounded interval [a, b], depend not only on the critical values of the function, but also on
the selected values of a and b. These observations demonstrate several important facts that hold
much more generally. First, we state an important result called the Extreme Value Theorem.

The Extreme Value Theorem: If f is a continuous function on a closed interval [a, b], then f
attains both an absolute minimum and absolute maximum on [a, b]. That is, for some value
xm such that a ≤ xm ≤ b, it follows that f(xm) ≤ f(x) for all x in [a, b]. Similarly, there is a
value xM in [a, b] such that f(xM ) = M for all x in [a, b]. Letting m = f(xm) and M = f(xM ),
it follows that m ≤ f(x) ≤M for all x in [a, b].

The Extreme Value Theorem tells us that provided a function is continuous, on any closed
interval [a, b] the function has to achieve both an absolute minimum and an absolute maximum.
Note, however, that this result does not tell us where these extreme values occur, but rather only
that they must exist. As seen in the examples of Activity 3.7, it is apparent that the only possible
locations for relative extremes are either the endpoints of the interval or at a critical value (the
latter being where a relative miniumum or maximum could occur, which is a potential location
for an absolute extreme). Thus, we have the following approach to finding the absolute maximum
and minimum of a continuous function f on the interval [a, b]:

• find all critical values of f that lie in the interval;

• evaluate the function f at each critical value in the interval and at each endpoint of the
interval;

• from among the noted function values, the smallest is the absolute minimum of f on the
interval, while the largest is the absolute maximum.

Activity 3.8.

Find the exact absolute maximum and minimum of each function on the stated interval.

(a) h(x) = xe−x, [0, 3]

(b) p(t) = sin(t) + cos(t), [−π
2 ,

π
2 ]

(c) q(x) = x2

x−2 , [3, 7]

(d) f(x) = 4− e−(x−2)2 , (−∞,∞)
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C

One of the big lessons in finding absolute extreme values is the realization that the interval we
choose has nearly the same impact on the problem as the function under consideration. Consider,
for instance, the function pictured in Figure 3.18. In sequence, from left to right, as we see the

-2 3

2

g

-2 2

2

g

-2 1

2

g

Figure 3.18: A function g considered on three different intervals.

interval under consideration change from [−2, 3] to [−2, 2] to [−2, 1], we move from having two
critical values in the interval with the absolute minimum at one critical value and the absolute
maximum at the right endpoint, to still having both critical numbers in the interval but then with
the absolute minimum and maximum at the two critical values, to finally having just one critical
value in the interval with the absolute maximum at one critical value and the absolute minimum
at one endpoint. It is particularly essential to always remember to only consider the critical values
that lie within the interval.

Moving towards applications

In Section 3.4, we will focus almost exclusively on applied optimization problems: problems
where we seek to find the absolute maximum or minimum value of a function that represents
some physical situation. We conclude this current section with an example of one such problem
because it highlights the role that a closed, bounded domain can play in finding absolute extrema.
In addition, these problems often involve considerable preliminary work to develop the function
which is to be optimized, and this example demonstrates that process.

Example 3.4. A 20 cm piece of wire is cut into two pieces. One piece is used to form a square and
the other an equilateral triangle. How should the wire be cut to maximize the total area enclosed
by the square and triangle? to minimize the area?
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Solution. We begin by constructing a picture that exemplifies the given situation. The primary
variable in the problem is where we decide to cut the wire. We thus label that point x, and note
that the remaining portion of the wire then has length 20− x As shown in Figure 3.19, we see that

x 20− x

x
3

20−x
4

Figure 3.19: A 20 cm piece of wire cut into two pieces, one of which forms an equilateral triangle, the other
which yields a square.

the x cm of the wire that are used to form the equilateral triangle result in a triangle with three
sides of length x

3 . For the remaining 20− x cm of wire, the square that results will have each side
of length 20−x

4 .

At this point, we note that there are obvious restrictions on x: in particular, 0 ≤ x ≤ 20. In the
extreme cases, all of the wire is being used to make just one figure. For instance, if x = 0, then all
20 cm of wire are used to make a square that is 5× 5.

Now, our overall goal is to find the absolute minimum and absolute maximum areas that can
be enclosed. We note that the area of the triangle is A4 = 1

2bh = 1
2 · x3 · x

√
3

6 , since the height of
an equilateral triangle is

√
3 times half the length of the base. Further, the area of the square is

A� = s2 =
(

20−x
4

)2. Therefore, the total area function is

A(x) =

√
3x2

36
+

(
20− x

4

)2

.

Again, note that we are only considering this function on the restricted domain [0, 20] and we seek
its absolute minimum and absolute maximum.

Differentiating A(x), we have

A′(x) =

√
3x

18
+ 2

(
20− x

4

)(
−1

4

)
=

√
3

18
x+

1

8
x− 5

2
.

Setting A′(x) = 0, it follows that x = 180
4
√

3+9
≈ 11.3007 is the only critical value of A, and we note

that this lies within the interval [0, 20].

Evaluating A at the critical value and endpoints, we see that

• A
(

180

4
√

3 + 9

)
=

√
3( 180

4
√

3+9
)2

4
+

(
20− 180

4
√

3+9

4

)2

≈ 10.8741



3.3. GLOBAL OPTIMIZATION 177

• A(0) = 25

• A(20) =

√
3

36
(400) =

100

9

√
3 ≈ 19.2450

Thus, the absolute minimum occurs when x ≈ 11.3007 and results in the minimum area of ap-
proximately 10.8741 square centimeters, while the absolute maximum occurs when we invest all
of the wire in the square (and none in the triangle), resulting in 25 square centimeters of area.
These results are confirmed by a plot of y = A(x) on the interval [0, 20], as shown in Figure 3.20.

5 10 15 20

5

10

15

20

25

y = A(x)

Figure 3.20: A plot of the area function from Example 3.4.

Activity 3.9.

A piece of cardboard that is 10×15 (each measured in inches) is being made into a box without
a top. To do so, squares are cut from each corner of the box and the remaining sides are folded
up. If the box needs to be at least 1 inch deep and no more than 3 inches deep, what is the
maximum possible volume of the box? what is the minimum volume? Justify your answers
using calculus.

(a) Draw a labeled diagram that shows the given information. What variable should we
introduce to represent the choice we make in creating the box? Label the diagram ap-
propriately with the variable, and write a sentence to state what the variable represents.

(b) Determine a formula for the function V (that depends on the variable in (a)) that tells
us the volume of the box.

(c) What is the domain of the function V ? That is, what values of x make sense for input?
Are there additional restrictions provided in the problem?

(d) Determine all critical values of the function V .
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(e) Evaluate V at each of the endpoints of the domain and at any critical values that lie in
the domain.

(f) What is the maximum possible volume of the box? the minimum?

C

The approaches shown in Example 3.4 and experienced in Activity 3.9 include standard steps
that we undertake in almost every applied optimization problem: we draw a picture to demon-
strate the situation, introduce one or more variables to represent quantities that are changing,
work to find a function that models the quantity to be optimized, and then decide an appropriate
domain for that function. Once that work is done, we are in the familiar situation of finding the
absolute minimum and maximum of a function over a particular domain, at which time we apply
the calculus ideas that we have been studying to this point in Chapter 3.

Summary

In this section, we encountered the following important ideas:

• To find relative extreme values of a function, we normally use a first derivative sign chart and
classify all of the function’s critical values. If instead we are interested in absolute extreme val-
ues, we first decide whether we are considering the entire domain of the function or a particular
interval.

• In the case of finding global extremes over the function’s entire domain, we again use a first
or second derivative sign chart in an effort to make overall conclusions about whether or not
the function can have a absolute maximum or minimum. If we are working to find absolute
extremes on a restricted interval, then we first identify all critical values of the function that lie
in the interval.

• For a continuous function on a closed, bounded interval, the only possible points at which
absolute extreme values occur are the critical values and the endpoints. Thus, to find said
absolute extremes, we simply evaluate the function at each endpoint and each critical value in
the interval, and then we compare the results to decide which is largest (the absolute maximum)
and which is smallest (the absolute minimum).

Exercises

1. Based on the given information about each function, decide whether the function has global
maximum, a global minimum, neither, both, or that it is not possible to say without more
information. Assume that each function is twice differentiable and defined for all real numbers,
unless noted otherwise. In each case, write one sentence to explain your conclusion.

(a) f is a function such that f ′′(x) < 0 for every x.

(b) g is a function with two critical values a and b (where a < b), and g′(x) < 0 for x < a,
g′(x) < 0 for a < x < b, and g′(x) > 0 for x > b.
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(c) h is a function with two critical values a and b (where a < b), and h′(x) < 0 for x < a,
h′(x) > 0 for a < x < b, and h′(x) < 0 for x > b. In addition, limx→∞ h(x) = 0 and
limx→−∞ h(x) = 0.

(d) p is a function differentiable everywhere except at x = a and p′′(x) > 0 for x < a and
p′′(x) < 0 for x > a.

2. For each family of functions that depends on one or more parameters, determine the function’s
absolute maximum and absolute minimum on the given interval.

(a) p(x) = x3 − a2x, [0, a]

(b) r(x) = axe−bx, [1
b , b]

(c) w(x) = a(1− e−bx), [b, 3b]

(d) s(x) = sin(kx), [ π3k ,
5π
6k ]

3. For each of the functions described below (each continuous on [a, b]), state the location of the
function’s absolute maximum and absolute minimum on the interval [a, b], or say there is not
enough information provided to make a conclusion. Assume that any critical values mentioned
in the problem statement represent all of the critical numbers the function has in [a, b]. In each
case, write one sentence to explain your answer.

(a) f ′(x) ≤ 0 for all x in [a, b]

(b) g has a critical value at c such that a < c < b and g′(x) > 0 for x < c and g′(x) < 0 for
x > c

(c) h(a) = h(b) and h′′(x) < 0 for all x in [a, b]

(d) p(a) > 0, p(b) < 0, and for the critical value c such that a < c < b, p′(x) < 0 for x < c
and p′(x) > 0 for x > c

4. Let s(t) = 3 sin(2(t − π
6 )) + 5. Find the exact absolute maximum and minimum of s on the

provided intervals by testing the endpoints and finding and evaluating all relevant critical
values of s.

(a) [π6 ,
7π
6 ]

(b) [0, π2 ]

(c) [0, 2π]

(d) [π3 ,
5π
6 ]
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3.4 Applied Optimization

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• In a setting where a situation is described for which optimal parameters are sought, how
do we develop a function that models the situation and use calculus to find the desired
maximum or minimum?

Introduction

Near the conclusion of Section 3.3, we considered two examples of optimization problems where
determining the function to be optimized was part of a broader question. In Example 3.4, we
sought to use a single piece of wire to build two geometric figures (an equilateral triangle and
square) and to understand how various choices for how to cut the wire led to different values
of the area enclosed. One of our conclusions was that in order to maximize the total combined
area enclosed by the triangle and square, all of the wire must be used to make a square. In the
subsequent Activity 3.9, we investigated how the volume of a box constructed from a piece of
cardboard by removing squares from each corner and folding up the sides depends on the size of
the squares removed.

Both of these problems exemplify situations where there is not a function explicitly provided
to optimize. Rather, we first worked to understand the given information in the problem, draw-
ing a figure and introducing variables, and then sought to develop a formula for a function that
models the quantity (area or volume, in the two examples, respectively) to be optimized. Once the
function was established, we then considered what domain was appropriate on which to pursue
the desired absolute minimum or maximum (or both). At this point in the problem, we are finally
ready to apply the ideas of calculus to determine and justify the absolute minimum or maximum.
Thus, what is primarily different about problems of this type is that the problem-solver must do
considerable work to introduce variables and develop the correct function and domain to repre-
sent the described situation.

Throughout what follows in the current section, the primary emphasis is on the reader solv-
ing problems. Initially, some substantial guidance is provided, with the problems progressing to
require greater independence as we move along.

Preview Activity 3.4. According to U.S. postal regulations, the girth plus the length of a parcel
sent by mail may not exceed 108 inches, where by “girth” we mean the perimeter of the smallest
end. What is the largest possible volume of a rectangular parcel with a square end that can be sent
by mail? What are the dimensions of the package of largest volume?

(a) Let x represent the length of one side of the square end and y the length of the longer side.
Label these quantities appropriately on the image shown in Figure 3.21.
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Figure 3.21: A rectangular parcel with a square end.

(b) What is the quantity to be optimized in this problem? Find a formula for this quantity in
terms of x and y.

(c) The problem statement tells us that the parcel’s girth plus length may not exceed 108
inches. In order to maximize volume, we assume that we will actually need the girth
plus length to equal 108 inches. What equation does this produce involving x and y?

(d) Solve the equation you found in (c) for one of x or y (whichever is easier).

(e) Now use your work in (b) and (d) to determine a formula for the volume of the parcel so
that this formula is a function of a single variable.

(f) Over what domain should we consider this function? Note that both x and y must be
positive; how does the constraint that girth plus length is 108 inches produce intervals of
possible values for x and y?

(g) Find the absolute maximum of the volume of the parcel on the domain you established
in (f) and hence also determine the dimensions of the box of greatest volume. Justify that
you’ve found the maximum using calculus.

./

More applied optimization problems

Many of the steps in Preview Activity 3.4 are ones that we will execute in any applied optimization
problem. We briefly summarize those here to provide an overview of our approach in subsequent
questions.

• Draw a picture and introduce variables. It is essential to first understand what quantities
are allowed to vary in the problem and then to represent those values with variables. Con-
structing a figure with the variables labeled is almost always an essential first step. Some-
times drawing several diagrams can be especially helpful to get a sense of the situation. A
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nice example of this can be seen at http://gvsu.edu/s/99, where the choice of where to
bend a piece of wire into the shape of a rectangle determines both the rectangle’s shape and
area.

• Identify the quantity to be optimized as well as any key relationships among the vari-
able quantities. Essentially this step involves writing equations that involve the variables
that have been introduced: one to represent the quantity whose minimum or maximum is
sought, and possibly others that show how multiple variables in the problem may be inter-
related.

• Determine a function of a single variable that models the quantity to be optimized; this may
involve using other relationships among variables to eliminate one or more variables in the
function formula. For example, in Preview Activity 3.4, we initially found that V = x2y,
but then the additional relationship that 4x + y = 108 (girth plus length equals 108 inches)
allows us to relate x and y and thus observe equivalently that y = 108− 4x. Substituting for
y in the volume equation yields V (x) = x2(108− 4x), and thus we have written the volume
as a function of the single variable x.

• Decide the domain on which to consider the function being optimized. Often the physical
constraints of the problem will limit the possible values that the independent variable can
take on. Thinking back to the diagram describing the overall situation and any relationships
among variables in the problem often helps identify the smallest and largest values of the
input variable.

• Use calculus to identify the absolute maximum and/or minimum of the quantity being opti-
mized. This always involves finding the critical values of the function first. Then, depending
on the domain, we either construct a first derivative sign chart (for an open or unbounded
interval) or evaluate the function at the endpoints and critical values (for a closed, bounded
interval), using ideas we’ve studied so far in Chapter 3.

• Finally, we make certain we have answered the question: does the question seek the absolute
maximum of a quantity, or the values of the variables that produce the maximum? That is,
finding the absolute maximum volume of a parcel is different from finding the dimensions
of the parcel that produce the maximum.

Activity 3.10.

A soup can in the shape of a right circular cylinder is to be made from two materials. The
material for the side of the can costs $0.015 per square inch and the material for the lids costs
$0.027 per square inch. Suppose that we desire to construct a can that has a volume of 16 cubic
inches. What dimensions minimize the cost of the can?

(a) Draw a picture of the can and label its dimensions with appropriate variables.

(b) Use your variables to determine expressions for the volume, surface area, and cost of
the can.

http://gvsu.edu/s/99
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(c) Determine the total cost function as a function of a single variable. What is the domain
on which you should consider this function?

(d) Find the absolute minimum cost and the dimensions that produce this value.

C

Familiarity with common geometric formulas is particularly helpful in problems like the one
in Activity 3.10. Sometimes those involve perimeter, area, volume, or surface area. At other times,
the constraints of a problem introduce right triangles (where the Pythagorean Theorem applies)
or other functions whose formulas provide relationships among variables present.

Activity 3.11.

A hiker starting at a point P on a straight road walks east towards pointQ, which is on the road
and 3 kilometers from point P . Two kilometers due north of point Q is a cabin. The hiker will
walk down the road for a while, at a pace of 8 kilometers per hour. At some point Z between
P and Q, the hiker leaves the road and makes a straight line towards the cabin through the
woods, hiking at a pace of 3 kph, as pictured in Figure 3.22. In order to minimize the time to
go from P to Z to the cabin, where should the hiker turn into the forest?

3

2

P QZ

cabin

Figure 3.22: A hiker walks from P to Z to the cabin, as pictured.

C

In more geometric problems, we often use curves or functions to provide natural constraints.
For instance, we could investigate which isosceles triangle that circumscribes a unit circle has the
smallest area, which you can explore for yourself at http://gvsu.edu/s/9b. Or similarly, for
a region bounded by a parabola, we might seek the rectangle of largest area that fits beneath the
curve, as shown at http://gvsu.edu/s/9c. The next activity is similar to the latter problem.

Activity 3.12.

Consider the region in the x-y plane that is bounded by the x-axis and the function f(x) =
25 − x2. Construct a rectangle whose base lies on the x-axis and is centered at the origin, and
whose sides extend vertically until they intersect the curve y = 25 − x2. Which such rectangle
has the maximum possible area? Which such rectangle has the greatest perimeter? Which has
the greatest combined perimeter and area? (Challenge: answer the same questions in terms of

http://gvsu.edu/s/9b
http://gvsu.edu/s/9c
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positive parameters a and b for the function f(x) = b− ax2.)

C

Activity 3.13.

A trough is being constructed by bending a 4× 24 (measured in feet) rectangular piece of sheet
metal. Two symmetric folds 2 feet apart will be made parallel to the longest side of the rectangle
so that the trough has cross-sections in the shape of a trapezoid, as pictured in Figure 3.23. At
what angle should the folds be made to produce the trough of maximum volume?

2

1 1

θ

Figure 3.23: A cross-section of the trough formed by folding to an angle of θ.

C

Summary

In this section, we encountered the following important ideas:

• While there is no single algorithm that works in every situation where optimization is used, in
most of the problems we consider, the following steps are helpful: draw a picture and introduce
variables; identify the quantity to be optimized and find relationships among the variables;
determine a function of a single variable that models the quantity to be optimized; decide the
domain on which to consider the function being optimized; use calculus to identify the absolute
maximum and/or minimum of the quantity being optimized.

Exercises

1. A rectangular box with a square bottom and closed top is to be made from two materials. The
material for the side costs $1.50 per square foot and the material for the bottom costs $3.00
per square foot. If you are willing to spend $15 on the box, what is the largest volume it can
contain? Justify your answer completely using calculus.

2. A farmer wants to start raising cows, horses, goats, and sheep, and desires to have a rectangular
pasture for the animals to graze in. However, no two different kinds of animals can graze
together. In order to minimize the amount of fencing she will need, she has decided to enclose
a large rectangular area and then divide it into four equally sized pens, or grazing areas. She
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has decided to purchase 7500 ft of fencing. What is the maximum possible area that each of the
four pens will enclose?

3. Two vertical towers of heights 60 ft and 80 ft stand on level ground, with their bases 100 ft
apart. A cable that is stretched from the top of one pole to some point on the ground between
the poles, and then to the top of the other pole. What is the minimum possible length of cable
required? Justify your answer completely using calculus.

4. A company is designing propane tanks that are cylindrical with hemispherical ends. Assume
that the company wants tanks that will hold 1000 cubic meters of gas, and that the ends are
more expensive to make, costing $5 per square foot, while the cylindrical barrel between the
ends costs $2 per square foot. Use calculus to determine the minimum cost to construct such a
tank.
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3.5 Related Rates

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• If two quantities that are related, such as the radius and volume of a spherical balloon, are
both changing as implicit functions of time, how are their rates of change related? That
is, how does the relationship between the values of the quantities affect the relationship
between their respective derivatives with respect to time?

Introduction

In most of our applications of the derivative so far, we have worked in settings where one quantity
(often called y) depends explicitly on another (say x), and in some way we have been interested
in the instantaneous rate at which y changes with respect to x, leading us to compute dy

dx . These
settings emphasize how the derivative enables us to quantify how the quantity y is changing as x
changes at a given x-value.

We are next going to consider situations where multiple quantities are related to one another
and changing, but where each quantity can be considered an implicit function of the variable t,
which represents time. Through knowing how the quantities are related, we will be interested in
determining how their respective rates of change with respect to time are related. For example,
suppose that air is being pumped into a spherical balloon in such a way that its volume increases
at a constant rate of 20 cubic inches per second. It makes sense that since the balloon’s volume
and radius are related, by knowing how fast the volume is changing, we ought to be able to relate
this rate to how fast the radius is changing. More specifically, can we find how fast the radius of
the balloon is increasing at the moment the balloon’s diameter is 12 inches?

The following preview activity leads you through the steps to answer this question.

Preview Activity 3.5. A spherical balloon is being inflated at a constant rate of 20 cubic inches per
second. How fast is the radius of the balloon changing at the instant the balloon’s diameter is 12
inches? Is the radius changing more rapidly when d = 12 or when d = 16? Why?

(a) Draw several spheres with different radii, and observe that as volume changes, the radius,
diameter, and surface area of the balloon also change.

(b) Recall that the volume of a sphere of radius r is V = 4
3πr

3. Note well that in the setting of
this problem, both V and r are changing as time t changes, and thus both V and r may be
viewed as implicit functions of t, with respective derivatives dV

dt and dr
dt .

Differentiate both sides of the equation V = 4
3πr

3 with respect to t (using the chain rule on
the right) to find a formula for dV

dt that depends on both r and dr
dt .

(c) At this point in the problem, by differentiating we have “related the rates” of change of
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V and r. Recall that we are given in the problem that the balloon is being inflated at a
constant rate of 20 cubic inches per second. Is this rate the value of drdt or dV

dt ? Why?

(d) From part (c), we know the value of dVdt at every value of t. Next, observe that when the di-
ameter of the balloon is 12, we know the value of the radius. In the equation dV

dt = 4πr2 dr
dt ,

substitute these values for the relevant quantities and solve for the remaining unknown
quantity, which is dr

dt . How fast is the radius changing at the instant d = 12?

(e) How is the situation different when d = 16? When is the radius changing more rapidly,
when d = 12 or when d = 16?

./

Related Rates Problems

In problems where two or more quantities can be related to one another, and all of the variables
involved can be viewed as implicit functions of time, t, we are often interested in how the rates
of change of the individual quantities with respect to time are themselves related; we call these
related rates problems. Often these problems involve identifying one or more key underlying ge-
ometric relationships to relate the variables involved. Once we have an equation establishing the
fundamental relationship among variables, we differentiate implicitly with respect to time to find
connections among the rates of change.

For example, consider the situation where sand is being dumped by a conveyor belt on a pile
so that the sand forms a right circular cone, as pictured in Figure 3.24. As sand falls from the

r

h

Figure 3.24: A conical pile of sand.

conveyor belt onto the top of the pile, obviously several features of the sand pile will change: the
volume of the pile will grow, the height will increase, and the radius will get bigger, too. All of
these quantities are related to one another, and the rate at which each is changing is related to the
rate at which sand falls from the conveyor.

The first key steps in any related rates problem involve identifying which variables are chang-
ing and how they are related. In the current problem involving a conical pile of sand, we observe
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that the radius and height of the pile are related to the volume of the pile by the standard equation
for the volume of a cone,

V =
1

3
πr2h.

Viewing each of V , r, and h as functions of t, we can differentiate implicitly to determine an
equation that relates their respective rates of change. Taking the derivative of each side of the
equation with respect to t,

d

dt
[V ] =

d

dt

[
1

3
πr2h

]
.

On the left, d
dt [V ] is simply dV

dt . On the right, the situation is more complicated, as both r and h are
implicit functions of t, hence we have to use the product and chain rules. Doing so, we find that

dV

dt
=

d

dt

[
1

3
πr2h

]

=
1

3
πr2 d

dt
[h] +

1

3
πh

d

dt
[r2]

=
1

3
πr2dh

dt
+

1

3
πh2r

dr

dt

Note particularly how we are using ideas from Section 2.7 on implicit differentiation. There we
found that when y is an implicit function of x, d

dx [y2] = 2y dydx . The exact same thing is occurring
here when we compute d

dt [r
2] = 2r drdt .

With our arrival at the equation

dV

dt
=

1

3
πr2dh

dt
+

2

3
πrh

dr

dt
,

we have now related the rates of change of V , h, and r. If we are given sufficient information, we
may then find the value of one or more of these rates of change at one or more points in time. Say,
for instance, that we know the following: (a) sand falls from the conveyor in such a way that the
height of the pile is always half the radius, and (b) sand falls from the conveyor belt at a constant
rate of 10 cubic feet per minute. With this information given, we can answer questions such as:
how fast is the height of the sandpile changing at the moment the radius is 4 feet?

The information that the height is always half the radius tells us that for all values of t, h = 1
2r.

Differentiating with respect to t, it follows that dh
dt = 1

2
dr
dt . These relationships enable us to relate

dV
dt exclusively to just one of r or h. Substituting the expressions involving r and dr

dt for h and dh
dt ,

we now have that
dV

dt
=

1

3
πr2 · 1

2

dr

dt
+

2

3
πr · 1

2
r · dr

dt
. (3.1)

Since sand falls from the conveyor at the constant rate of 10 cubic feet per minute, this tells us the
value of dVdt , the rate at which the volume of the sand pile changes. In particular, dVdt = 10 ft3/min.
Furthermore, since we are interested in how fast the height of the pile is changing at the instant
r = 4, we use the value r = 4 along with dV

dt = 10 in Equation (3.1), and hence find that

10 =
1

3
π42 · 1

2

dr

dt

∣∣∣∣
r=4

+
2

3
π4 · 1

2
4 · dr

dt

∣∣∣∣
r=4

=
8

3
π
dr

dt

∣∣∣∣
r=4

+
16

3
π
dr

dt

∣∣∣∣
r=4

.
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With only the value of dr
dt

∣∣
r=4

remaining unknown, we solve for dr
dt

∣∣
r=4

and find that 10 = 8π dr
dt

∣∣
r=4

,
so that

dr

dt

∣∣∣∣
r=4

=
10

8π
≈ 0.39789

feet per second. Because we were interested in how fast the height of the pile was changing at this
instant, we want to know dh

dt when r = 4. Since dh
dt = 1

2
dr
dt for all values of t, it follows

dh

dt

∣∣∣∣
r=4

=
5

8π
≈ 0.19894 ft/min.

Note particularly how we distinguish between the notations dr
dt and dr

dt

∣∣
r=4

. The former repre-
sents the rate of change of r with respect to t at an arbitrary value of t, while the latter is the rate
of change of r with respect to t at a particular moment, in fact the moment r = 4. While we don’t
know the exact value of t, because information is provided about the value of r, it is important to
distinguish that we are using this more specific data.

The relationship between h and r, with h = 1
2r for all values of t, enables us to transition easily

between questions involving r and h. Indeed, had we known this information at the problem’s
outset, we could have immediately simplified our work. Using h = 1

2r, it follows that since
V = 1

3πr
2h, we can write V solely in terms of r to have

V =
1

3
πr2

(
1

2
h

)
=

1

6
πr3.

From this last equation, differentiating with respect to t implies

dV

dt
=

1

2
πr2,

from which the same conclusions made earlier about drdt and dh
dt can be made.

Our work with the sandpile problem above is similar in many ways to our approach in Preview
Activity 3.5, and these steps are typical of most related rates problems. In certain ways, they
also resemble work we do in applied optimization problems, and here we summarize the main
approach for consideration in subsequent problems.

• Identify the quantities in the problem that are changing and choose clearly defined variable
names for them. Draw one or more figures that clearly represent the situation.

• Determine all rates of change that are known or given and identify the rate(s) of change to
be found.

• Find an equation that relates the variables whose rates of change are known to those vari-
ables whose rates of change are to be found.

• Differentiate implicitly with respect to t to relate the rates of change of the involved quanti-
ties.
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• Evaluate the derivatives and variables at the information relevant to the instant at which a
certain rate of change is sought. Use proper notation to identify when a derivative is being
evaluated at a particular instant, such as dr

dt

∣∣
r=4

.

In the first step of identifying changing quantities and drawing a picture, it is important to
think about the dynamic ways in which the involved quantities change. Sometimes a sequence
of pictures can be helpful; for some already-drawn pictures that can be easily modified as applets
built in Geogebra, see the following links2 which represent

• how a circular oil slick’s area grows as its radius increases http://gvsu.edu/s/9n;

• how the location of the base of a ladder and its height along a wall change as the ladder
slides http://gvsu.edu/s/9o;

• how the water level changes in a conical tank as it fills with water at a constant rate
http://gvsu.edu/s/9p (compare the problem in Activity 3.14);

• how a skateboarder’s shadow changes as he moves past a lamppost
http://gvsu.edu/s/9q.

Drawing well-labeled diagrams and envisioning how different parts of the figure change is a key
part of understanding related rates problems and being successful at solving them.

Activity 3.14.

A water tank has the shape of an inverted circular cone (point down) with a base of radius
6 feet and a depth of 8 feet. Suppose that water is being pumped into the tank at a constant
instantaneous rate of 4 cubic feet per minute.

(a) Draw a picture of the conical tank, including a sketch of the water level at a point in
time when the tank is not yet full. Introduce variables that measure the radius of the
water’s surface and the water’s depth in the tank, and label them on your figure.

(b) Say that r is the radius and h the depth of the water at a given time, t. What equation
relates the radius and height of the water, and why?

(c) Determine an equation that relates the volume of water in the tank at time t to the depth
h of the water at that time.

(d) Through differentiation, find an equation that relates the instantaneous rate of change
of water volume with respect to time to the instantaneous rate of change of water depth
at time t.

(e) Find the instantaneous rate at which the water level is rising when the water in the tank
is 3 feet deep.

(f) When is the water rising most rapidly: at h = 3, h = 4, or h = 5?

2We again refer to the work of Prof. Marc Renault of Shippensburg University, found at http://gvsu.edu/s/5p.

http://gvsu.edu/s/9n
http://gvsu.edu/s/9o
http://gvsu.edu/s/9p
http://gvsu.edu/s/9q
http://gvsu.edu/s/5p


3.5. RELATED RATES 191

C

Recognizing familiar geometric configurations is one way that we relate the changing quanti-
ties in a given problem. For instance, while the problem in Activity 3.14 is centered on a conical
tank, one of the most important observations is that there are two key right triangles present. In
another setting, a right triangle might be indicative of an opportunity to take advantage of the
Pythagorean Theorem to relate the legs of the triangle. But in the conical tank, the fact that the
water at any time fills a portion of the tank in such a way that the ratio of radius to depth is con-
stant turns out to be the most important relationship with which to work. That enables us to write
r in terms of h and reduce the overall problem to one where the volume of water depends simply
on h, and hence to subsequently relate dV

dt and dh
dt . In other situations where a changing angle is

involved, a right triangle may offer the opportunity to find relationships among various parts of
the triangle using trigonometric functions.

Activity 3.15.

A television camera is positioned 4000 feet from the base of a rocket launching pad. The angle
of elevation of the camera has to change at the correct rate in order to keep the rocket in sight. In
addition, the auto-focus of the camera has to take into account the increasing distance between
the camera and the rocket. We assume that the rocket rises vertically. (A similar problem is
discussed and pictured dynamically at http://gvsu.edu/s/9t. Exploring the applet at the
link will be helpful to you in answering the questions that follow.)

(a) Draw a figure that summarizes the given situation. What parts of the picture are chang-
ing? What parts are constant? Introduce appropriate variables to represent the quanti-
ties that are changing.

(b) Find an equation that relates the camera’s angle of elevation to the height of the rocket,
and then find an equation that relates the instantaneous rate of change of the camera’s
elevation angle to the instantaneous rate of change of the rocket’s height (where all rates
of change are with respect to time).

(c) Find an equation that relates the distance from the camera to the rocket to the rocket’s
height, as well as an equation that relates the instantaneous rate of change of distance
from the camera to the rocket to the instantaneous rate of change of the rocket’s height
(where all rates of change are with respect to time).

(d) Suppose that the rocket’s speed is 600 ft/sec at the instant it has risen 3000 feet. How
fast is the distance from the television camera to the rocket changing at that moment? If
the camera is following the rocket, how fast is the camera’s angle of elevation changing
at that same moment?

(e) If from an elevation of 3000 feet onward the rocket continues to rise at 600 feet/sec, will
the rate of change of distance with respect to time be greater when the elevation is 4000
feet than it was at 3000 feet, or less? Why?

C

In addition to being able to find instantaneous rates of change at particular points in time,

http://gvsu.edu/s/9t
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we are often able to make more general observations about how particular rates themselves will
change over time. For instance, when a conical tank (point down) is filling with water at a constant
rate, we naturally intuit that the depth of the water should increase more slowly over time. Note
how carefully we need to speak: we mean to say that while the depth, h, of the water is increasing,
its rate of change dh

dt is decreasing (both as a function of t and as a function of h). These observa-
tions may often be made by taking the general equation that relates the various rates and solving
for one of them, and doing this without substituting any particular values for known variables or
rates. For instance, in the conical tank problem in Activity 3.14, we established that

dV

dt
=

1

16
πh2dh

dt
,

and hence
dh

dt
=

16

πh2

dV

dt
.

Provided that dV
dt is constant, it is immediately apparent that as h gets larger, dhdt will get smaller,

while always remaining positive. Hence, the depth of the water is increasing at a decreasing rate.

Activity 3.16.

As pictured in the applet at http://gvsu.edu/s/9q, a skateboarder who is 6 feet tall rides
under a 15 foot tall lamppost at a constant rate of 3 feet per second. We are interested in
understanding how fast his shadow is changing at various points in time.

(a) Draw an appropriate right triangle that represents a snapshot in time of the skate-
boarder, lamppost, and his shadow. Let x denote the horizontal distance from the base
of the lamppost to the skateboarder and s represent the length of his shadow. Label
these quantities, as well as the skateboarder’s height and the lamppost’s height on the
diagram.

(b) Observe that the skateboarder and the lamppost represent parallel line segments in the
diagram, and thus similar triangles are present. Use similar triangles to establish an
equation that relates x and s.

(c) Use your work in (b) to find an equation that relates dx
dt and ds

dt .

(d) At what rate is the length of the skateboarder’s shadow increasing at the instant the
skateboarder is 8 feet from the lamppost?

(e) As the skateboarder’s distance from the lamppost increases, is his shadow’s length in-
creasing at an increasing rate, increasing at a decreasing rate, or increasing at a constant
rate?

(f) Which is moving more rapidly: the skateboarder or the tip of his shadow? Explain, and
justify your answer.

C

As we progress further into related rates problems, less direction will be provided. In the first
three activities of this section, we have been provided with guided instruction to build a solution

http://gvsu.edu/s/9q
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in a step by step way. For the closing activity and the following exercises, most of the detailed
work is left to the reader.

Activity 3.17.

A baseball diamond is 90′ square. A batter hits a ball along the third base line runs to first base.
At what rate is the distance between the ball and first base changing when the ball is halfway
to third base, if at that instant the ball is traveling 100 feet/sec? At what rate is the distance
between the ball and the runner changing at the same instant, if at the same instant the runner
is 1/8 of the way to first base running at 30 feet/sec?

C

Summary

In this section, we encountered the following important ideas:

• When two or more related quantities are changing as implicit functions of time, their rates
of change can be related by implicitly differentiating the equation that relates the quantities
themselves. For instance, if the sides of a right triangle are all changing as functions of time,
say having lengths x, y, and z, then these quantities are related by the Pythagorean Theorem:
x2 + y2 = z2. It follows by implicitly differentiating with respect to t that their rates are related
by the equation

2x
dx

dt
+ 2y

dy

dt
= 2z

dz

dt
,

so that if we know the values of x, y, and z at a particular time, as well as two of the three rates,
we can deduce the value of the third.

Exercises

1. A sailboat is sitting at rest near its dock. A rope attached to the bow of the boat is drawn in
over a pulley that stands on a post on the end of the dock that is 5 feet higher than the bow. If
the rope is being pulled in at a rate of 2 feet per second, how fast is the boat approaching the
dock when the length of rope from bow to pulley is 13 feet?

2. A baseball diamond is a square with sides 90 feet long. Suppose a baseball player is advancing
from second to third base at the rate of 24 feet per second, and an umpire is standing on home
plate. Let θ be the angle between the third baseline and the line of sight from the umpire to the
runner. How fast is θ changing when the runner is 30 feet from third base?

3. Sand is being dumped off a conveyer belt onto a pile in such a way that the pile forms in the
shape of a cone whose radius is always equal to its height. Assuming that the sand is being
dumped at a rate of 10 cubic feet per minute, how fast is the height of the pile changing when
there are 1000 cubic feet on the pile?

4. A swimming pool is 60 feet long and 25 feet wide. Its depth varies uniformly from 3 feet at the
shallow end to 15 feet at the deep end, as shown in the Figure 3.25. Suppose the pool has been



194 3.5. RELATED RATES

15

60
25 3

Figure 3.25: The swimming pool described in Exercise 4.

emptied and is now being filled with water at a rate of 800 cubic feet per minute. At what rate
is the depth of water (measured at the deepest point of the pool) increasing when it is 5 feet
deep at that end? Over time, describe how the depth of the water will increase: at an increasing
rate, at a decreasing rate, or at a constant rate. Explain.



Chapter 4

The Definite Integral

4.1 Determining distance traveled from velocity

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• If we know the velocity of a moving body at every point in a given interval, can we deter-
mine the distance the object has traveled on the time interval?

• How is the problem of finding distance traveled related to finding the area under a certain
curve?

• What does it mean to antidifferentiate a function and why is this process relevant to finding
distance traveled?

• If velocity is negative, how does this impact the problem of finding distance traveled?

Introduction

In the very first section of the text, we considered a situation where a moving object had a known
position at time t. In particular, we stipulated that a tennis ball tossed into the air had its height
s (in feet) at time t (in seconds) given by s(t) = 64 − 16(t − 1)2. From this starting point, we
investigated the average velocity of the ball on a given interval [a, b], computed by the difference
quotient s(b)−s(a)

b−a , and eventually found that we could determine the exact instantaneous velocity
of the ball at time t by taking the derivative of the position function,

s′(t) = lim
h→0

s(t+ h)− s(t)
h

.

Thus, given a differentiable position function, we are able to know the exact velocity of the moving
object at any point in time.

195
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Moreover, from this foundational problem involving position and velocity we have learned a
great deal. Given a differentiable function f , we are now able to find its derivative and use this
derivative to determine the function’s instantaneous rate of change at any point in the domain,
as well as to find where the function is increasing or decreasing, is concave up or concave down,
and has relative extremes. The vast majority of the problems and applications we have consid-
ered have involved the situation where a particular function is known and we seek information
that relies on knowing the function’s instantaneous rate of change. That is, we have typically pro-
ceeded from a function f to its derivative, f ′, and then used the meaning of the derivative to help
us answer important questions.

In a much smaller number of situations so far, we have encountered the reverse situation where
we instead know the derivative, f ′, and have tried to deduce information about f . It is this partic-
ular problem that will be the focus of our attention in most of Chapter 4: if we know the instanta-
neous rate of change of a function, are we able to determine the function itself? To begin, we start
with a more focused question: if we know the instantaneous velocity of an object moving along a
straight line path, can we determine its corresponding position function?

Preview Activity 4.1. Suppose that a person is taking a walk along a long straight path and walks
at a constant rate of 3 miles per hour.

(a) On the left-hand axes provided in Figure 4.1, sketch a labeled graph of the velocity function
v(t) = 3. Note that while the scale on the two sets of axes is the same, the units on the right-

1 2

4

8
mph

hrs

1 2

4

8
miles

hrs

Figure 4.1: At left, axes for plotting y = v(t); at right, for plotting y = s(t).

hand axes differ from those on the left. The right-hand axes will be used in question (d).

(b) How far did the person travel during the two hours? How is this distance related to the
area of a certain region under the graph of y = v(t)?

(c) Find an algebraic formula, s(t), for the position of the person at time t, assuming that
s(0) = 0. Explain your thinking.
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(d) On the right-hand axes provided in Figure 4.1, sketch a labeled graph of the position func-
tion y = s(t).

(e) For what values of t is the position function s increasing? Explain why this is the case
using relevant information about the velocity function v.

./

Area under the graph of the velocity function

In Preview Activity 4.1, we encountered a fundamental fact: when a moving object’s velocity is
constant (and positive), the area under the velocity curve over a given interval tells us the distance
the object traveled. As seen at left in Figure 4.2, if we consider an object moving at 2 miles per hour

1 2 3

1

3
mph

hrs

v(t) = 2

A1

1 2 3

1

3
mph

hrs

y = v(t)

A2

Figure 4.2: At left, a constant velocity function; at right, a non-constant velocity function.

over the time interval [1, 1.5], then the area A1 of the shaded region under y = v(t) on [1, 1.5] is

A1 = 2
miles
hour

· 1

2
hours = 1 mile.

This principle holds in general simply due to the fact that distance equals rate times time, provided
the rate is constant. Thus, if v(t) is constant on the interval [a, b], then the distance traveled on [a, b]
is the area A that is given by

A = v(a)(b− a) = v(a)4t,
where 4t is the change in t over the interval. Note, too, that we could use any value of v(t)
on the interval [a, b], since the velocity is constant; we simply chose v(a), the value at the inter-
val’s left endpoint. For several examples where the velocity function is piecewise constant, see
http://gvsu.edu/s/9T.1

1Marc Renault, calculus applets.

http://gvsu.edu/s/9T
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The situation is obviously more complicated when the velocity function is not constant. At
the same time, on relatively small intervals on which v(t) does not vary much, the area principle
allows us to estimate the distance the moving object travels on that time interval. For instance, for
the non-constant velocity function shown at right in Figure 4.2, we see that on the interval [1, 1.5],
velocity varies from v(1) = 2.5 down to v(1.5) ≈ 2.1. Hence, one estimate for distance traveled is
the area of the pictured rectangle,

A2 = v(1)4t = 2.5
miles
hour

· 1

2
hours = 1.25 miles.

Because v is decreasing on [1, 1.5] and the rectangle lies above the curve, clearly A2 = 1.25 is an
over-estimate of the actual distance traveled.

If we want to estimate the area under the non-constant velocity function on a wider interval,
say [0, 3], it becomes apparent that one rectangle probably will not give a good approximation.
Instead, we could use the six rectangles pictured in Figure 4.3, find the area of each rectangle, and

1 2 3

1

3
mph

hrs

y = v(t)

Figure 4.3: Using six rectangles to estimate the area under y = v(t) on [0, 3].

add up the total. Obviously there are choices to make and issues to understand: how many rectan-
gles should we use? where should we evaluate the function to decide the rectangle’s height? what
happens if velocity is sometimes negative? can we attain the exact area under any non-constant
curve? These questions and more are ones we will study in what follows; for now it suffices to
realize that the simple idea of the area of a rectangle gives us a powerful tool for estimating both
distance traveled from a velocity function as well as the area under an arbitrary curve. To explore
the setting of multiple rectangles to approximate area under a non-constant velocity function, see
the applet found at http://gvsu.edu/s/9U.2

Activity 4.1.

Suppose that a person is walking in such a way that her velocity varies slightly according to
the information given in the table below and graph given in Figure 4.4.

2Marc Renault, calculus applets.

http://gvsu.edu/s/9U
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t 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

v(t) 1.5000 1.7891 1.9375 1.9922 2.0000 2.0078 2.0625 2.2109 2.5000

1 2

1

2

3
mph

hrs

y = v(t)

Figure 4.4: The graph of y = v(t).

(a) Using the grid, graph, and given data appropriately, estimate the distance traveled by
the walker during the two hour interval from t = 0 to t = 2. You should use time in-
tervals of width4t = 0.5, choosing a way to use the function consistently to determine
the height of each rectangle in order to approximate distance traveled.

(b) How could you get a better approximation of the distance traveled on [0, 2]? Explain,
and then find this new estimate.

(c) Now suppose that you know that v is given by v(t) = 0.5t3−1.5t2+1.5t+1.5. Remember
that v is the derivative of the walker’s position function, s. Find a formula for s so that
s′ = v.

(d) Based on your work in (c), what is the value of s(2)− s(0)? What is the meaning of this
quantity?

C

Two approaches: area and antidifferentiation

When the velocity of a moving object is positive, the object’s position is always increasing. While
we will soon consider situations where velocity is negative and think about the ramifications of
this condition on distance traveled, for now we continue to assume that we are working with a
positive velocity function. In that setting, we have established that whenever v is actually constant,
the exact distance traveled on an interval is the area under the velocity curve; furthermore, we
have observed that when v is not constant, we can estimate the total distance traveled by finding
the areas of rectangles that help to approximate the area under the velocity curve on the given
interval. Hence, we see the importance of the problem of finding the area between a curve and the
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horizontal axis: besides being an interesting geometric question, in the setting of the curve being
the (positive) velocity of a moving object, the area under the curve over an interval tells us the
exact distance traveled on the interval. We can estimate this area any time we have a graph of the
velocity function or a table of data that tells us some relevant values of the function.

In Activity 4.1, we also encountered an alternate approach to finding the distance traveled. In
particular, if we know a formula for the instantaneous velocity, y = v(t), of the moving body at
time t, then we realize that v must be the derivative of some corresponding position function s.
If we can find a formula for s from the formula for v, it follows that we know the position of the
object at time t. In addition, under the assumption that velocity is positive, the change in position
over a given interval then tells us the distance traveled on that interval.

For a simple example, consider the situation from Preview Activity 4.1, where a person is
walking along a straight line and has velocity function v(t) = 3 mph. As pictured in Figure 4.5,

1 2
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v(t) = 3

A = 3 · 1.25 = 3.75

1 2
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hrss(0.25) = 0.75

s(1.5) = 4.5

s(t) = 3t

Figure 4.5: The velocity function v(t) = 3 and corresponding position function s(t) = 3t.

we see the already noted relationship between area and distance traveled on the left-hand graph of
the velocity function. In addition, because the velocity is constant at 3, we know that if3 s(t) = 3t,
then s′(t) = 3, so s(t) = 3t is a function whose derivative is v(t). Furthermore, we now observe
that s(1.5) = 4.5 and s(0.25) = 0.75, which are the respective locations of the person at times
t = 0.25 and t = 1.5, and therefore

s(1.5)− s(0.25) = 4.5− 0.75 = 3.75 miles.

This is not only the change in position on [0.25, 1.5], but also precisely the distance traveled on
[0.25, 1.5], which can also be computed by finding the area under the velocity curve over the same
interval. There are profound ideas and connections present in this example that we will spend
much of the remainder of Chapter 4 studying and exploring.

For now, it is most important to observe that if we are given a formula for a velocity function
v, it can be very helpful to find a function s that satisfies s = v′. In this context, we say that s

3Here we are making the implicit assumption that s(0) = 0; we will further discuss the different possibilities for
values of s(0) in subsequent study.
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is an antiderivative of v. More generally, just as we say that f ′ is the derivative of f for a given
function f , if we are given a function g and G is a function such that G′ = g, we say that G is
an antiderivative of g. For example, if g(x) = 3x2 + 2x, an antiderivative of g is G(x) = x3 + x2,
since G′(x) = g(x). Note that we say “an” antiderivative of g rather than “the” antiderivative
of g because H(x) = x3 + x2 + 5 is also a function whose derivative is g, and thus H is another
antiderivative of g.

Activity 4.2.

A ball is tossed vertically in such a way that its velocity function is given by v(t) = 32 − 32t,
where t is measured in seconds and v in feet per second. Assume that this function is valid for
0 ≤ t ≤ 2.

(a) For what values of t is the velocity of the ball positive? What does this tell you about
the motion of the ball on this interval of time values?

(b) Find an antiderivative, s, of v that satisfies s(0) = 0.

(c) Compute the value of s(1)− s(1
2). What is the meaning of the value you find?

(d) Using the graph of y = v(t) provided in Figure 4.6, find the exact area of the region
under the velocity curve between t = 1

2 and t = 1. What is the meaning of the value
you find?

(e) Answer the same questions as in (c) and (d) but instead using the interval [0, 1].

(f) What is the value of s(2) − s(0)? What does this result tell you about the flight of the
ball? How is this value connected to the provided graph of y = v(t)? Explain.
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v(t) = 32− 32t

Figure 4.6: The graph of y = v(t).

C
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When velocity is negative

Most of our work in this section has occurred under the assumption that velocity is positive. This
hypothesis guarantees that the movement of the object under consideration is always in a single
direction, and hence ensures that the moving body’s change in position is the same as the distance
it travels on a given interval. As we saw in Activity 4.2, there are natural settings in which a
moving object’s velocity is negative; we would like to understand this scenario fully as well.

Consider a simple example where a person goes for a walk on a beach along a stretch of very
straight shoreline that runs east-west. We can naturally assume that their initial position is s(0) =
0, and further stipulate that their position function increases as they move east from their starting
location. For instance, a position of s = 1 mile represents being one mile east of the start location,
while s = −1 tells us the person is one mile west of where they began walking on the beach.
Now suppose the person walks in the following manner. From the outset at t = 0, the person
walks due east at a constant rate of 3 mph for 1.5 hours. After 1.5 hours, the person stops abruptly
and begins walking due west at the constant rate of 4 mph and does so for 0.5 hours. Then, after
another abrupt stop and start, the person resumes walking at a constant rate of 3 mph to the east
for one more hour. What is the total distance the person traveled on the time interval t = 0 to
t = 3? What is the person’s total change in position over that time?

On one hand, these are elementary questions to answer because the velocity involved is con-
stant on each interval. From t = 0 to t = 1.5, the person traveled

D[0,1.5] = 3 miles per hour · 1.5 hours = 4.5 miles.

Similarly, on t = 1.5 to t = 2, having a different rate, the distance traveled is

D[1.5,2] = 4 miles per hour · 0.5 hours = 2 miles.

Finally, similar calculations reveal that in the final hour, the person walked

D[2,3] = 3 miles per hour · 1 hours = 3 miles,

so the total distance traveled is

D = D[0,1.5] +D[1.5,2] +D[2,3] = 4.5 + 2 + 3 = 9.5 miles.

Since the velocity on 1.5 < t < 2 is actually v = −4, being negative to indication motion in the
westward direction, this tells us that the person first walked 4.5 miles east, then 2 miles west,
followed by 3 more miles east. Thus, the walker’s total change in position is

change in position = 4.5− 2 + 3 = 5.5 miles.

While we have been able to answer these questions fairly easily, it is also important to think
about this problem graphically in order that we can generalize our solution to the more compli-
cated setting when velocity is not constant, as well as to note the particular impact that negative
velocity has. In Figure 4.7, we see how the distances we computed above can be viewed as areas:
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Figure 4.7: At left, the velocity function of the person walking; at right, the corresponding position function.

A1 = 4.5 comes from taking rate times time (3 · 1.5), as do A2 and A3 for the second and third
rectangles. The big new issue is that while A2 is an area (and is therefore positive), because this
area involves an interval on which the velocity function is negative, its area has a negative sign
associated with it. This helps us to distinguish between distance traveled and change in position.

The distance traveled is the sum of the areas,

D = A1 +A2 +A3 = 4.5 + 2 + 3 = 9.5 miles.

But the change in position has to account for the sign associated with the area, where those above
the t-axis are considered positive while those below the t-axis are viewed as negative, so that

s(3)− s(0) = (+4.5) + (−2) + (+3) = 5.5 miles,

assigning the “−2” to the area in the interval [1.5, 2] because there velocity is negative and the
person is walking in the “negative” direction. In other words, the person walks 4.5 miles in the
positive direction, followed by two miles in the negative direction, and then 3 more miles in the
positive direction. This affect of velocity being negative is also seen in the graph of the function
y = s(t), which has a negative slope (specifically, its slope is −4) on the interval 1.5 < t < 2 since
the velocity is −4 on that interval, which shows the person’s position function is decreasing due
to the fact that she is walking east, rather than west. On the intervals where she is walking west,
the velocity function is positive and the slope of the position function s is therefore also positive.

To summarize, we see that if velocity is sometimes negative, this makes the moving object’s
change in position different from its distance traveled. By viewing the intervals on which velocity
is positive and negative separately, we may compute the distance traveled on each such interval,
and then depending on whether we desire total distance traveled or total change in position,
we may account for negative velocities that account for negative change in position, while still
contributing positively to total distance traveled. We close this section with one additional activity
that further explores the effects of negative velocity on the problem of finding change in position
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and total distance traveled.

Activity 4.3.

Suppose that an object moving along a straight line path has its velocity v (in meters per sec-
ond) at time t (in seconds) given by the piecewise linear function whose graph is pictured in
Figure 4.8. We view movement to the right as being in the positive direction (with positive ve-
locity), while movement to the left is in the negative direction. Suppose further that the object’s

2 4 6 8

-4

-2

2

4
m/sec

sec

Figure 4.8: The velocity function of a moving object.

initial position at time t = 0 is s(0) = 1.

(a) Determine the total distance traveled and the total change in position on the time inter-
val 0 ≤ t ≤ 2. What is the object’s position at t = 2?

(b) On what time intervals is the moving object’s position function increasing? Why? On
what intervals is the object’s position decreasing? Why?

(c) What is the object’s position at t = 8? How many total meters has it traveled to get to
this point (including distance in both directions)? Is this different from the object’s total
change in position on t = 0 to t = 8?

(d) Find the exact position of the object at t = 1, 2, 3, . . . , 8 and use this data to sketch an
accurate graph of y = s(t). How can you use the provided information about y = v(t)
to determine the concavity of s on each relevant interval?

C

Summary

In this section, we encountered the following important ideas:

• If we know the velocity of a moving body at every point in a given interval and the velocity is
positive throughout, we can estimate the object’s distance traveled and in some circumstances
determine this value exactly.
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• In particular, when velocity is positive on an interval, we can find the total distance traveled by
finding the area under the velocity curve and above the t-axis on the given time interval. We
may only be able to estimate this area, depending on the shape of the velocity curve.

• The antiderivative of a function f is a new function F whose derivative is f . That is, F is an
antiderivative of f provided that F ′ = f . In the context of velocity and position, if we know
a velocity function v, an antiderivative of v is a position function s that satisfies s′ = v. If v
is positive on a given interval, say [a, b], then the change in position, s(b) − s(a), measures the
distance the moving object traveled on [a, b].

• In the setting where velocity is sometimes negative, this means that the object is sometimes
traveling in the opposite direction (depending on whether velocity is positive or negative), and
thus involves the object backtracking. To determine distance traveled, we have to think about
the problem separately on intervals where velocity is positive and negative and account for the
change in position on each such interval.

Exercises

1. Along the eastern shore of Lake Michigan from Lake Macatawa (near Holland) to Grand Haven,
there is a bike bath that runs almost directly north-south. For the purposes of this problem, as-
sume the road is completely straight, and that the function s(t) tracks the position of the biker
along this path in miles north of Pigeon Lake, which lies roughly halfway between the ends of
the bike path.

Suppose that the biker’s velocity function is given by the graph in Figure 4.9 on the time inter-
val 0 ≤ t ≤ 4 (where t is measured in hours), and that s(0) = 1.
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Figure 4.9: The graph of the biker’s velocity, y = v(t), at left. At right, axes to plot an approximate sketch of
y = s(t).

(a) Approximately how far north of Pigeon Lake was the cyclist when she was the greatest
distance away from Pigeon Lake? At what time did this occur?
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(b) What is the cyclist’s total change in position on the time interval 0 ≤ t ≤ 2? At t = 2,
was she north or south of Pigeon Lake?

(c) What is the total distance the biker traveled on 0 ≤ t ≤ 4? At the end of the ride, how
close was she to the point at which she started?

(d) Sketch an approximate graph of y = s(t), the position function of the cyclist, on the
interval 0 ≤ t ≤ 4. Label at least four important points on the graph of s.

2. A toy rocket is launched vertically from the ground on a day with no wind. The rocket’s vertical
velocity at time t (in seconds) is given by v(t) = 500− 32t feet/sec.

(a) At what time after the rocket is launched does the rocket’s velocity equal zero? Call this
time value a. What happens to the rocket at t = a?

(b) Find the value of the total area enclosed by y = v(t) and the t-axis on the interval
0 ≤ t ≤ a. What does this area represent in terms of the physical setting of the problem?

(c) Find an antiderivative s of the function v. That is, find a function s such that s′(t) = v(t).

(d) Compute the value of s(a) − s(0). What does this number represent in terms of the
physical setting of the problem?

(e) Compute s(5)− s(1). What does this number tell you about the rocket’s flight?

3. An object moving along a horizontal axis has its instantaneous velocity at time t in seconds
given by the function v pictured in Figure 4.10, where v is measured in feet/sec. Assume that

1 2 3 4 5 6 7

-1

1
y = v(t)

Figure 4.10: The graph of y = v(t), the velocity function of a moving object.

the curves that make up the parts of the graph of y = v(t) are either portions of straight lines
or portions of circles.

(a) Determine the exact total distance the object traveled on 0 ≤ t ≤ 2.

(b) What is the value and meaning of s(5)− s(2), where y = s(t) is the position function of
the moving object?

(c) On which time interval did the object travel the greatest distance: [0, 2], [2, 4], or [5, 7]?
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(d) On which time interval(s) is the position function s increasing? At which point(s) does
s achieve a relative maximum?

4. Filters at a water treatment plant become dirtier over time and thus become less effective;
they are replaced every 30 days. During one 30-day period, the rate at which pollution passes
through the filters into a nearby lake (in units of particulate matter per day) is measured every
6 days and is given in the following table. The time t is measured in days since the filters were
replaced.

Day, t 0 6 12 18 24 30
Rate of pollution in units per day, p(t) 7 8 10 13 18 35

(a) Plot the given data on a set of axes with time on the horizontal axis and the rate of
pollution on the vertical axis.

(b) Explain why the amount of pollution that entered the lake during this 30-day period
would be given exactly by the area bounded by y = p(t) and the t-axis on the time
interval [0, 30].

(c) Estimate the total amount of pollution entering the lake during this 30-day period.
Carefully explain how you determined your estimate.
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4.2 Riemann Sums

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How can we use a Riemann sum to estimate the area between a given curve and the hori-
zontal axis over a particular interval?

• What are the differences among left, right, middle, and random Riemann sums?

• What is sigma notation and how does this enable us to write Riemann sums in an abbrevi-
ated form?

Introduction

In Section 4.1, we learned that if we have a moving object with velocity function v, whenever v(t)
is positive, the area between y = v(t) and the t-axis over a given time interval tells us the distance
traveled by the object over that time period; in addition, if v(t) is sometimes negative and we
view the area of any region below the t-axis as having an associated negative sign, then the sum
of these signed areas over a given interval tells us the moving object’s change in position over the
time interval. For instance, for the velocity function given in Figure 4.11, if the areas of shaded

y = v(t)

a b

A1

A2

A3

Figure 4.11: A velocity function that is sometimes negative.

regions are A1, A2, and A3 as labeled, then the total distance D traveled by the moving object on
[a, b] is

D = A1 +A2 +A3,

while the total change in the object’s position on [a, b] is

s(b)− s(a) = A1 −A2 +A3.
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Because the motion is in the negative direction on the interval where v(t) < 0, we subtract A2

when determining the object’s total change in position.

Of course, finding D and s(b) − s(a) for the situation given in Figure 4.11 presumes that we
can actually find the areas represented by A1, A2, and A3. In most of our work in Section 4.1, such
as in Activities 4.2 and 4.3, we worked with velocity functions that were either constant or linear,
so that by finding the areas of rectangles and triangles, we could find the area bounded by the
velocity function and the horizontal axis exactly. But when the curve that bounds a region is not
one for which we have a known formula for area, we are unable to find this area exactly. Indeed,
this is one of our biggest goals in Chapter 4: to learn how to find the exact area bounded between
a curve and the horizontal axis for as many different types of functions as possible.

To begin, we expand on the ideas in Activity 4.1, where we encountered a nonlinear velocity
function and approximated the area under the curve using four and eight rectangles, respectively.
In the following preview activity, we focus on three different options for deciding how to find the
heights of the rectangles we will use.

Preview Activity 4.2. A person walking along a straight path has her velocity in miles per hour
at time t given by the function v(t) = 0.5t3 − 1.5t2 + 1.5t+ 1.5, for times in the interval 0 ≤ t ≤ 2.
The graph of this function is also given in each of the three diagrams in Figure 4.12. Note that in
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Figure 4.12: Three approaches to estimating the area under y = v(t) on the interval [0, 2].

each diagram, we use four rectangles to estimate the area under y = v(t) on the interval [0, 2], but
the method by which the four rectangles’ respective heights are decided varies among the three
individual graphs.

(a) How are the heights of rectangles in the left-most diagram being chosen? Explain, and
hence determine the value of

S = A1 +A2 +A3 +A4

by evaluating the function y = v(t) at appropriately chosen values and observing the



210 4.2. RIEMANN SUMS

width of each rectangle. Note, for example, that

A3 = v(1) · 1

2
= 2 · 1

2
= 1.

(b) Explain how the heights of rectangles are being chosen in the middle diagram and find the
value of

T = B1 +B2 +B3 +B4.

(c) Likewise, determine the pattern of how heights of rectangles are chosen in the right-most
diagram and determine

U = C1 + C2 + C3 + C4.

(d) Of the estimates S, T , and U , which do you think is the best approximation of D, the total
distance the person traveled on [0, 2]? Why?

./

Sigma Notation

It is apparent from several different problems we have considered that sums of areas of rectangles
is one of the main ways to approximate the area under a curve over a given interval. Intuitively,
we expect that using a larger number of thinner rectangles will provide a way to improve the
estimates we are computing. As such, we anticipate dealing with sums with a large number of
terms. To do so, we introduce the use of so-called sigma notation, named for the Greek letter Σ,
which is the capital letter S in the Greek alphabet.

For example, say we are interested in the sum

1 + 2 + 3 + · · ·+ 100,

which is the sum of the first 100 natural numbers. Sigma notation provides a shorthand notation
that recognizes the general pattern in the terms of the sum. It is equivalent to write

100∑

k=1

k = 1 + 2 + 3 + · · ·+ 100.

We read the symbol
100∑

k=1

k as “the sum from k equals 1 to 100 of k.” The variable k is usually called

the index of summation, and the letter that is used for this variable is immaterial. Each sum in
sigma notation involves a function of the index; for example,

10∑

k=1

(k2 + 2k) = (12 + 2 · 1) + (22 + 2 · 2) + (32 + 2 · 3) + · · ·+ (102 + 2 · 10),
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and more generally,
n∑

k=1

f(k) = f(1) + f(2) + · · ·+ f(n).

Sigma notation allows us the flexibility to easily vary the function being used to track the pattern
in the sum, as well as to adjust the number of terms in the sum simply by changing the value of n.
We test our understanding of this new notation in the following activity.

Activity 4.4.

For each sum written in sigma notation, write the sum long-hand and evaluate the sum to find
its value. For each sum written in expanded form, write the sum in sigma notation.

(a)
5∑

k=1

(k2 + 2)

(b)
6∑

i=3

(2i− 1)

(c) 3 + 7 + 11 + 15 + · · ·+ 27

(d) 4 + 8 + 16 + 32 · · ·+ 256

(e)
6∑

i=1

1

2i

C

Riemann Sums

When a moving body has a positive velocity function y = v(t) on a given interval [a, b], we know
that the area under the curve over the interval is the total distance the body travels on [a, b]. While
this is the fundamental motivating force behind our interest in the area bounded by a function, we
are also interested more generally in being able to find the exact area bounded by y = f(x) on an
interval [a, b], regardless of the meaning or context of the function f . For now, we continue to focus
on determining an accurate estimate of this area through the use of a sum of the areas of rectangles,
doing so in the setting where f(x) ≥ 0 on [a, b]. Throughout, unless otherwise indicated, we also
assume that f is continuous on [a, b].

The first choice we make in any such approximation is the number of rectangles. If we say
that the total number of rectangles is n, and we desire n rectangles of equal width to subdivide
the interval [a, b], then each rectangle must have width 4x = b−a

n . We observe further that x1 =
x0 +4x, x2 = x0 + 24x, and thus in general xi = a+ i4x, as pictured in Figure 4.13.

We use each subinterval [xi, xi+1] as the base of a rectangle, and next must choose how to
decide the height of the rectangle that will be used to approximate the area under y = f(x) on the
subinterval. There are three standard choices: use the left endpoint of each subinterval, the right
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x0
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x1 x2 · · · xi xi+1

△x

· · · xn−1 xn

b

Figure 4.13: Subdividing the interval [a, b] into n subintervals of equal length4x.

endpoint of each subinterval, or the midpoint of each. These are precisely the options encountered
in Preview Activity 4.2 and seen in Figure 4.12. We next explore how these choices can be reflected
in sigma notation.

If we now consider an arbitrary positive function f on [a, b] with the interval subdivided as
shown in Figure 4.13, and choose to use left endpoints, then on each interval of the form [xi, xi+1],
the area of the rectangle formed is given by

Ai+1 = f(xi) · 4x,

as seen in Figure 4.14. If we let Ln denote the sum of the areas of rectangles whose heights are

x0 x1 x2 xi xi+1 xn−1 xn

A1 A2 · · · Ai+1 · · ·

y = f(x)

An

Figure 4.14: Subdividing the interval [a, b] into n subintervals of equal length 4x and approximating the
area under y = f(x) over [a, b] using left rectangles.

given by the function value at each respective left endpoint, then we see that

Ln = A1 +A2 + · · ·+Ai+1 + · · ·+An

= f(x0) · 4x+ f(x1) · 4x+ · · ·+ f(xi) · 4x+ · · ·+ f(xn−1) · 4x.

In the more compact sigma notation, we have

Ln =
n−1∑

i=0

f(xi)4x.
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Note particularly that since the index of summation begins at 0 and ends at n−1, there are indeed
n terms in this sum. We call Ln the left Riemann sum for the function f on the interval [a, b].

There are now two fundamental issues to explore: the number of rectangles we choose to
use and the selection of the pattern by which we identify the height of each rectangle. It is best
to explore these choices dynamically, and the applet4 found at http://gvsu.edu/s/a9 is a
particularly useful one. There we see the image shown in Figure 4.15, but with the opportunity to

Figure 4.15: A snapshot of the applet found at http://gvsu.edu/s/a9.

adjust the slider bars for the left endpoint and the number of subintervals. By moving the sliders,
we can see how the heights of the rectangles change as we consider left endpoints, midpoints,
and right endpoints, as well as the impact that a larger number of narrower rectangles has on the
approximation of the exact area bounded by the function and the horizontal axis.

To see how the Riemann sums for right endpoints and midpoints are constructed, we consider
Figure 4.16. For the sum with right endpoints, we see that the area of the rectangle on an arbitrary
interval [xi, xi+1] is given by

Bi+1 = f(xi+1) · 4x,
so that the sum of all such areas of rectangles is given by

Rn = B1 +B2 + · · ·+Bi+1 + · · ·+Bn

= f(x1) · 4x+ f(x2) · 4x+ · · ·+ f(xi+1) · 4x+ · · ·+ f(xn) · 4x

=

n∑

i=1

f(xi)4x.

We call Rn the right Riemann sum for the function f on the interval [a, b]. For the sum that uses
midpoints, we introduce the notation

xi+1 =
xi + xi+1

2

4Marc Renault, Geogebra Calculus Applets.

http://gvsu.edu/s/a9
http://gvsu.edu/s/a9
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x0 x1 x2 xi xi+1 xn−1 xn

B1 B2 · · · Bi+1 · · ·

y = f(x)

Bn

x0 x1 x2 xi xi+1 xn−1 xn

C1 C2 · · · Ci+1 · · ·

y = f(x)

Cn

Figure 4.16: Riemann sums using right endpoints and midpoints.

so that xi+1 is the midpoint of the interval [xi, xi+1]. For instance, for the rectangle with area C1 in
Figure 4.16, we now have

C1 = f(x1) · 4x.
Hence, the sum of all the areas of rectangles that use midpoints is

Mn = C1 + C2 + · · ·+ Ci+1 + · · ·+ Cn

= f(x1) · 4x+ f(x2) · 4x+ · · ·+ f(xi+1) · 4x+ · · ·+ f(xn) · 4x

=
n∑

i=1

f(xi)4x,

and we say that Mn is the middle Riemann sum for f on [a, b].

When f(x) ≥ 0 on [a, b], each of the Riemann sums Ln, Rn, and Mn provides an estimate of the
area under the curve y = f(x) over the interval [a, b]; momentarily, we will discuss the meaning
of Riemann sums in the setting when f is sometimes negative. We also recall that in the context
of a nonnegative velocity function y = v(t), the corresponding Riemann sums are approximating
the distance traveled on [a, b] by the moving object with velocity function v.

There is a more general way to think of Riemann sums, and that is to not restrict the choice of
where the function is evaluated to determine the respective rectangle heights. That is, rather than
saying we’ll always choose left endpoints, or always choose midpoints, we simply say that a point
x∗i+1 will be selected at random in the interval [xi, xi+1] (so that xi ≤ x∗i+1 ≤ xi+1), which makes
the Riemann sum given by

f(x∗1) · 4x+ f(x∗2) · 4x+ · · ·+ f(x∗i+1) · 4x+ · · ·+ f(x∗n) · 4x =
n∑

i=1

f(x∗i )4x.

At http://gvsu.edu/s/a9, the applet noted earlier and referenced in Figure 4.15, by uncheck-
ing the “relative” box at the top left, and instead checking “random,” we can easily explore the

http://gvsu.edu/s/a9
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effect of using random point locations in subintervals on a given Riemann sum. In computational
practice, we most often use Ln, Rn, or Mn, while the random Riemann sum is useful in theoret-
ical discussions. In the following activity, we investigate several different Riemann sums for a
particular velocity function.

Activity 4.5.

Suppose that an object moving along a straight line path has its position in feet at time t in
seconds given by v(t) = 2

9(t− 3)2 + 2.

(a) Carefully sketch the region whose exact area will tell you the value of the distance the
object traveled on the time interval 2 ≤ t ≤ 5.

(b) Estimate the distance traveled on [2, 5] by computing L4, R4, and M4.

(c) Does averaging L4 and R4 result in the same value as M4? If not, what do you think the
average of L4 and R4 measures?

(d) For this question, think about an arbitrary function f , rather than the particular function
v given above. If f is positive and increasing on [a, b], will Ln over-estimate or under-
estimate the exact area under f on [a, b]? Will Rn over- or under-estimate the exact area
under f on [a, b]? Explain.

C

When the function is sometimes negative

For a Riemann sum such as

Ln =
n−1∑

i=0

f(xi)4x,

we can of course compute the sum even when f takes on negative values. We know that when f
is positive on [a, b], the corresponding left Riemann sum Ln estimates the area bounded by f and
the horizontal axis over the interval. For a function such as the one pictured in Figure 4.17, where
in the first figure a left Riemann sum is being taken with 12 subintervals over [a, d], we observe
that the function is negative on the interval b ≤ x ≤ c, and so for the four left endpoints that fall
in [b, c], the terms f(xi)4x have negative function values. This means that those four terms in the
Riemann sum produce an estimate of the opposite of the area bounded by y = f(x) and the x-axis
on [b, c].

In Figure 4.17, we also see evidence that by increasing the number of rectangles used in a
Riemann sum, it appears that the approximation of the area (or the opposite of the area) bounded
by a curve appears to improve. For instance, in the middle graph, we use 24 left rectangles, and
from the shaded areas, it appears that we have decreased the error from the approximation that
uses 12. When we proceed to Section 4.3, we will discuss the natural idea of letting the number of
rectangles in the sum increase without bound.

For now, it is most important for us to observe that, in general, any Riemann sum of a contin-
uous function f on an interval [a, b] approximates the difference between the area that lies above
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y = f(x)

a b c d

y = f(x)

a b c d
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Figure 4.17: At left and center, two left Riemann sums for a function f that is sometimes negative; at right,
the areas bounded by f on the interval [a, d].

the horizontal axis on [a, b] and under f and the area that lies below the horizontal axis on [a, b]
and above f . In the notation of Figure 4.17, we may say that

L24 ≈ A1 −A2 +A3,

where L24 is the left Riemann sum using 24 subintervals shown in the middle graph, and A1 and
A3 are the areas of the regions where f is positive on the interval of interest, while A2 is the area
of the region where f is negative. We will also call the quantity A1 − A2 + A3 the net signed area
bounded by f over the interval [a, d], where by the phrase “signed area” we indicate that we are
attaching a minus sign to the areas of regions that fall below the horizontal axis.

Finally, we recall from the introduction to this present section that in the context where the
function f represents the velocity of a moving object, the total sum of the areas bounded by the
curve tells us the total distance traveled over the relevant time interval, while the total net signed
area bounded by the curve computes the object’s change in position on the interval.

Activity 4.6.

Suppose that an object moving along a straight line path has its velocity v (in feet per second)
at time t (in seconds) given by

v(t) =
1

2
t2 − 3t+

7

2
.

(a) Compute M5, the middle Riemann sum, for v on the time interval [1, 5]. Be sure to
clearly identify the value of 4t as well as the locations of t0, t1, · · · , t5. In addition,
provide a careful sketch of the function and the corresponding rectangles that are being
used in the sum.

(b) Building on your work in (a), estimate the total change in position of the object on the
interval [1, 5].



4.2. RIEMANN SUMS 217

(c) Building on your work in (a) and (b), estimate the total distance traveled by the object
on [1, 5].

(d) Use appropriate computing technology5 to computeM10 andM20. What exact value do
you think the middle sum eventually approaches as n increases without bound? What
does that number represent in the physical context of the overall problem?

C

Summary

In this section, we encountered the following important ideas:

• A Riemann sum is simply a sum of products of the form f(x∗i )4x that estimates the area be-
tween a positive function and the horizontal axis over a given interval. If the function is some-
times negative on the interval, the Riemann sum estimates the difference between the areas that
lie above the horizontal axis and those that lie below the axis.

• The three most common types of Riemann sums are left, right, and middle sums, plus we can
also work with a more general, random Riemann sum. The only difference among these sums
is the location of the point at which the function is evaluated to determine the height of the
rectangle whose area is being computed in the sum. For a left Riemann sum, we evaluate the
function at the left endpoint of each subinterval, while for right and middle sums, we use right
endpoints and midpoints, respectively.

• The left, right, and middle Riemann sums are denoted Ln, Rn, and Mn, with formulas

Ln = f(x0)4x+ f(x1)4x+ · · ·+ f(xn−1)4x =

n−1∑

i=0

f(xi)4x,

Rn = f(x1)4x+ f(x2)4x+ · · ·+ f(xn)4x =
n∑

i=1

f(xi)4x,

Mn = f(x1)4x+ f(x2)4x+ · · ·+ f(xn)4x =
n∑

i=1

f(xi)4x,

where x0 = a, xi = a + i4x, and xn = b, using 4x = b−a
n . For the midpoint sum, xi =

(xi−1 + xi)/2.

Exercises

1. Consider the function f(x) = 3x+ 4.
5For instance, consider the applet at http://gvsu.edu/s/a9 and change the function and adjust the locations of

the blue points that represent the interval endpoints a and b.

http://gvsu.edu/s/a9
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(a) Compute M4 for y = f(x) on the interval [2, 5]. Be sure to clearly identify the value of
4x, as well as the locations of x0, x1, . . . , x4. Include a careful sketch of the function and
the corresponding rectangles being used in the sum.

(b) Use a familiar geometric formula to determine the exact value of the area of the region
bounded by y = f(x) and the x-axis on [2, 5].

(c) Explain why the values you computed in (a) and (b) turn out to be the same. Will this
be true if we use a number different than n = 4 and compute Mn? Will L4 or R4 have
the same value as the exact area of the region found in (b)?

(d) Describe the collection of functions g for which it will always be the case that

Mn =

∫ b

a
g(x) dx,

regardless of the value of n.

2. Let S be the sum given by

S = ((1.4)2 + 1) · 0.4 + ((1.8)2 + 1) · 0.4 + ((2.2)2 + 1) · 0.4 + ((2.6)2 + 1) · 0.4 + ((3.0)2 + 1) · 0.4.

(a) Assume that S is a right Riemann sum. For what function f and what interval [a, b] is
S ≈

∫ b
a f(x) dx? Why?

(b) How does your answer to (a) change if S is a left Riemann sum? a middle Riemann
sum?

(c) Suppose that S really is a right Riemann sum. What is geometric quantity does S ap-
proximate?

(d) Use sigma notation to write a new sum R that is the right Riemann sum for the same
function, but that uses twice as many subintervals as S.

3. A car traveling along a straight road is braking and its velocity is measured at several different
points in time, as given in the following table.

seconds, t 0 0.3 0.6 0.9 1.2 1.5 1.8
Velocity in ft/sec, v(t) 100 88 74 59 40 19 0

(a) Plot the given data on a set of axes with time on the horizontal axis and the velocity on
the vertical axis.

(b) Estimate the total distance traveled during the car the time brakes using a middle Rie-
mann sum with 3 subintervals.

(c) Estimate the total distance traveled on [0, 1.8] by computing L6, R6, and 1
2(L6 +R6).

(d) Assuming that v(t) is always decreasing on [0, 1.8], what is the maximum possible dis-
tance the car traveled before it stopped? Why?
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4. The rate at which pollution escapes a scrubbing process at a manufacturing plant increases
over time as filters and other technologies become less effective. For this particular example,
assume that the rate of pollution (in tons per week) is given by the function r that is pictured
in Figure 4.18.

1 2 3 4

1

2

3

4

y = r(t)

weeks

tons/weektons/week

Figure 4.18: The rate, r(t), of pollution in tons per week.

(a) Use the graph to estimate the value of M4 on the interval [0, 4].

(b) What is the meaning of M4 in terms of the pollution discharged by the plant?

(c) Suppose that r(t) = 0.5e0.5t. Use this formula for r to compute L5 on [0, 4].

(d) Determine an upper bound on the total amount of pollution that can escape the plant
during the pictured four week time period that is accurate within an error of at most
one ton of pollution.
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4.3 The Definite Integral

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How does increasing the number of subintervals affect the accuracy of the approximation
generated by a Riemann sum?

• What is the definition of the definite integral of a function f over the interval [a, b]?

• What does the definite integral measure exactly, and what are some of the key properties of
the definite integral?

Introduction

In Figure 4.17, which is repeated below as Figure 4.19, we see visual evidence that increasing the
number of rectangles in a Riemann sum improves the accuracy of the approximation of the net
signed area that is bounded by the given function on the interval under consideration. We thus

y = f(x)

a b c d

y = f(x)

a b c d

y = f(x)

A1

A2

A3

a b c d

Figure 4.19: At left and center, two left Riemann sums for a function f that is sometimes negative; at right,
the exact areas bounded by f on the interval [a, d].

explore the natural idea of allowing the number of rectangles to increase without bound in an
effort to compute the exact net signed area bounded by a function on an interval. In addition,
it is important to think about the differences among left, right, and middle Riemann sums and
the different results they generate as the value of n increases. As we have done throughout our
investigations with area, we begin with functions that are exclusively positive on the interval
under consideration.
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Preview Activity 4.3. Consider the applet found at http://gvsu.edu/s/aw6. There, you will
initially see the situation shown in Figure 4.20. Observe that we can change the window in which

Figure 4.20: A left Riemann sum with 5 subintervals for the function f(x) = 3
1+x2 on the interval [−5, 5].

The value of the sum is L5 = 7.43076923.

the function is viewed, as well as the function itself. Set the minimum and maximum values of x
and y so that we view the function on the window where 1 ≤ x ≤ 4 and −1 ≤ y ≤ 12, where the
function is f(x) = 2x + 1 (note that you need to enter “2*x+1” as the function’s formula). You
should see the updated figure shown in Figure 4.21. Note that the value of the Riemann sum of

Figure 4.21: A left Riemann sum with 5 subintervals for the function f(x) = 2x + 1 on the interval [1, 4].
The value of the sum is L5 = 16.2.

our choice is displayed in the upper left corner of the window. Further, by updating the value in

6David Eck of Hobart and William Smith Colleges, author of Java Components for Mathematics,
http://gvsu.edu/s/av.

http://gvsu.edu/s/aw
http://gvsu.edu/s/av
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the “Intervals” window and/or the “Method”, we can see the different value of the Riemann sum
that arises by clicking the “Compute!” button.

(a) Update the applet so that the function being considered is f(x) = 2x+1 on [1, 4], as directed
above. For this function on this interval, compute Ln, Mn, Rn for n = 10, n = 100, and
n = 1000. What do you conjecture is the exact area bounded by f(x) = 2x + 1 and the
x-axis on [1, 4]?

(b) Use basic geometry to determine the exact area bounded by f(x) = 2x + 1 and the x-axis
on [1, 4].

(c) Based on your work in (a) and (b), what do you observe occurs when we increase the
number of subintervals used in the Riemann sum?

(d) Update the applet to consider the function f(x) = x2 +1 on the interval [1, 4] (note that you
will want to increase the maximum value of y to at least 17, and you need to enter “xˆ2 +
1” for the function formula). Use the applet to compute Ln, Mn, Rn for n = 10, n = 100,
and n = 1000. What do you conjecture is the exact area bounded by f(x) = x2 + 1 and the
x-axis on [1, 4]?

(e) Why can we not compute the exact value of the area bounded by f(x) = x2 + 1 and the
x-axis on [1, 4] using a formula like we did in (b)?

./

The definition of the definite integral

In both examples in Preview Activity 4.4, we saw that as the number of rectangles got larger and
larger, the values of Ln, Mn, and Rn all grew closer and closer to the same value. It turns out
that this occurs for any continuous function on an interval [a, b], and even more generally for a
Riemann sum using any point x∗i+1 in the interval [xi, xi+1]. Said differently, as we let n → ∞, it
doesn’t really matter where we choose to evaluate the function within a given subinterval, because

lim
n→∞

Ln = lim
n→∞

Rn = lim
n→∞

Mn = lim
n→∞

n∑

i=1

f(x∗i )4x.

That these limits always exist (and share the same value) for a continuous7 function f allows us
to make the following definition.

7It turns out that a function need not be continuous in order to have a definite integral. For our purposes, we assume
that the functions we consider are continuous on the interval(s) of interest. It is straightforward to see that any function
that is piecewise continuous on an interval of interest will also have a well-defined definite integral.
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Definition 4.1. The definite integral of a continuous function f on the interval [a, b], denoted
∫ b

a
f(x) dx,

is the real number given by ∫ b

a
f(x) dx = lim

n→∞

n∑

i=1

f(x∗i )4x,

where4x = b−a
n , xi = a+ i4x (for i = 0, . . . , n), and x∗i satisfies xi−1 ≤ x∗i ≤ xi (for i = 1, . . . , n).

We call the symbol
∫

the integral sign, the values a and b the limits of integration, and the function
f the integrand. The process of determining the real number

∫ b
a f(x) dx is called evaluating the

definite integral. While we will come to understand that there are several different interpretations
of the value of the definite integral, for now the most important is that

∫ b
a f(x) dxmeasures the net

signed area bounded by y = f(x) and the x-axis on the interval [a, b]. For example, in the notation

y = f(x)

A1

A2

A3

a b c d

Figure 4.22: A continuous function f on the interval [a, d].

of the definite integral, if f is the function pictured in Figure 4.22 and A1, A2, and A3 are the exact
areas bounded by f and the x-axis on the respective intervals [a, b], [b, c], and [c, d], then

∫ b

a
f(x) dx = A1,

∫ c

b
f(x) dx = −A2,

∫ d

c
f(x) dx = A3,

and ∫ d

a
f(x) dx = A1 −A2 +A3.

We can also use definite integrals to express the change in position and distance traveled by a
moving object. In the setting of a velocity function v on an interval [a, b], it follows from our work
above and in preceding sections that the change in position, s(b)− s(a), is given by

s(b)− s(a) =

∫ b

a
v(t) dt.



224 4.3. THE DEFINITE INTEGRAL

If the velocity function is nonnegative on [a, b], then
∫ b
a v(t) dt tells us the distance the object trav-

eled. When velocity is sometimes negative on [a, b], the areas bounded by the function on intervals
where v does not change sign can be found using integrals, and the sum of these values will tell
us the distance the object traveled.

If we wish to compute the value of a definite integral using the definition, we have to take
the limit of a sum. While this is possible to do in select circumstances, it is also tedious and
time-consuming; moreover, computing these limits does not offer much additional insight into
the meaning or interpretation of the definite integral. Instead, in Section 4.4, we will learn the
Fundamental Theorem of Calculus, a result that provides a shortcut for evaluating a large class
of definite integrals. This will enable us to determine the exact net signed area bounded by a
continuous function and the x-axis in many circumstances, including examples such as∫ 4

1 (x2 + 1) dx, which we approximated by Riemann sums in Preview Activity 4.4.

For now, our goal is to understand the meaning and properties of the definite integral, rather
than how to actually compute its value using ideas in calculus. Thus, we temporarily rely on the
net signed area interpretation of the definite integral and observe that if a given curve produces
regions whose areas we can compute exactly through known area formulas, we can thus compute
the exact value of the integral. For instance, if we wish to evaluate the definite integral

1 4

3

9
f(x) = 2x+ 1

∫ 4

1
(2x+ 1) dx

Figure 4.23: The area bounded by f(x) = 2x+ 1 and the x-axis on the interval [1, 4].

∫ 4
1 (2x + 1) dx, we can observe that the region bounded by this function and the x-axis is the

trapezoid shown in Figure 4.23, and by the known formula for the area of a trapezoid, its area is
A = 1

2(3 + 9) · 3 = 18, so
∫ 4

1
(2x+ 1) dx = 18.

Activity 4.7.

Use known geometric formulas and the net signed area interpretation of the definite integral
to evaluate each of the definite integrals below.
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(a)
∫ 1

0
3x dx

(b)
∫ 4

−1
(2− 2x) dx

(c)
∫ 1

−1

√
1− x2 dx

(d)
∫ 4

−3
g(x) dx, where g is the function pictured in Figure 4.24. Assume that each portion

of g is either part of a line or part of a circle.

-3 -2 -1 1 2 3 4

-1

1
y = g(x)

Figure 4.24: A function g that is piecewise defined; each piece of the function is part of a circle or part of a
line.

C

Some properties of the definite integral

With the perspective that the definite integral of a function f over an interval [a, b] measures the net
signed area bounded by f and the x-axis over the interval, we naturally arrive at several different
standard properties of the definite integral. In addition, it is helpful to remember that the definite
integral is defined in terms of Riemann sums that fundamentally consist of the areas of rectangles.

If we consider the definite integral
∫ a
a f(x) dx for any real number a, it is evident that no area

is being bounded because the interval begins and ends with the same point. Hence,

If f is a continuous function and a is a real number, then
∫ a

a
f(x) dx = 0.

Next, we consider the results of subdividing a given interval. In Figure 4.25, we see that

∫ b

a
f(x) dx = A1,

∫ c

b
f(x) dx = A2, and

∫ c

a
f(x) dx = A1 +A2,
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y = f(x)

A1 A2

a b c

Figure 4.25: The area bounded by y = f(x) on the interval [a, c].

which is indicative of the following general rule.

If f is a continuous function and a, b, and c are real numbers, then
∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx.

While this rule is most apparent in the situation where a < b < c, it in fact holds in general for any
values of a, b, and c. This result is connected to another property of the definite integral, which
states that if we reverse the order of the limits of integration, we change the sign of the integral’s
value.

If f is a continuous function and a and b are real numbers, then
∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.

This result makes sense because if we integrate from a to b, then in the defining Riemann sum
4x = b−a

n , while if we integrate from b to a, 4x = a−b
n = − b−a

n , and this is the only change in the
sum used to define the integral.

There are two additional properties of the definite integral that we need to understand. Recall
that when we worked with derivative rules in Chapter 2, we found that both the Constant Multiple
Rule and the Sum Rule held. The Constant Multiple Rule tells us that if f is a differentiable
function and k is a constant, then

d

dx
[kf(x)] = kf ′(x),

and the Sum Rule states that if f and g are differentiable functions, then

d

dx
[f(x) + g(x)] = f ′(x) + g′(x).
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These rules are useful because they enable us to deal individually with the simplest parts of certain
functions and take advantage of the elementary operations of addition and multiplying by a con-
stant. They also tell us that the process of taking the derivative respects addition and multiplying
by constants in the simplest possible way.

It turns out that similar rules hold for the definite integral. First, let’s consider the situation
pictured in Figure 4.26, where we examine the effect of multiplying a function by a factor of 2

a xi

A = f(xi)△x

A

xi+1 b

y = f(x)

a xi

B

B = 2f(xi)△x

xi+1 b

y = 2f(x)

Figure 4.26: The areas bounded by y = f(x) and y = 2f(x) on [a, b].

on the area it bounds with the x-axis. Because multiplying the function by 2 doubles its height at
every x-value, we see that if we consider a typical rectangle from a Riemann sum, the difference in
area comes from the changed height of the rectangle: f(xi) for the original function, versus 2f(xi)
in the doubled function, in the case of left sum. Hence, in Figure 4.26, we see that for the pictured
rectangles with areas A and B, it follows B = 2A. As this will happen in every such rectangle,
regardless of the value of n and the type of sum we use, we see that in the limit, the area of the
red region bounded by y = 2f(x) will be twice that of the area of the blue region bounded by
y = f(x). As there is nothing special about the value 2 compared to an arbitrary constant k, it
turns out that the following general principle holds.

Constant Multiple Rule: If f is a continuous function and k is any real number then

∫ b

a
k · f(x) dx = k

∫ b

a
f(x) dx.

Finally, we see a similar situation geometrically with the sum of two functions f and g. In
particular, as shown in Figure 4.27, if we take the sum of two functions f and g, at every point in
the interval, the height of the function f + g is given by (f + g)(xi) = f(xi) + g(xi), which is the
sum of the individual function values of f and g (taken at left endpoints). Hence, for the pictured
rectangles with areas A, B, and C, it follows that C = A+B, and because this will occur for every
such rectangle, in the limit the area of the gray region will be the sum of the areas of the blue and
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a xi

A = f(xi)△x

A

xi+1 b

f

a xi

B = g(xi)△x

B

xi+1 b

g

a xi

C = (f(xi) + g(xi))△x

C

xi+1 b

f + g

Figure 4.27: The areas bounded by y = f(x) and y = g(x) on [a, b], as well as the area bounded by y =
f(x) + g(x).

red regions. Stated in terms of definite integrals, we have the following general rule.

Sum Rule: If f and g are continuous functions, then
∫ b

a
[f(x) + g(x)] dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

More generally, the Constant Multiple and Sum Rules can be combined to make the observa-
tion that for any continuous functions f and g and any constants c and k,

∫ b

a
[cf(x)± kg(x)] dx = c

∫ b

a
f(x) dx± k

∫ b

a
g(x) dx.

Activity 4.8.

Suppose that the following information is known about the functions f , g, x2, and x3:

•
∫ 2

0 f(x) dx = −3;
∫ 5

2 f(x) dx = 2

•
∫ 2

0 g(x) dx = 4;
∫ 5

2 g(x) dx = −1

•
∫ 2

0 x
2 dx = 8

3 ;
∫ 5

2 f(x) dx = 117
3

•
∫ 2

0 x
3 dx = 4;

∫ 5
2 x

3 dx = 609
4

Use the provided information and the rules discussed in the preceding section to evaluate each
of the following definite integrals.

(a)
∫ 2

5 f(x) dx

(b)
∫ 5

0 g(x) dx
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(c)
∫ 5

0 (f(x) + g(x)) dx

(d)
∫ 5

2 (3x2 − 4x3) dx

(e)
∫ 0

5 (2x3 − 7g(x)) dx

C

How the definite integral is connected to a function’s average value

One of the most valuable applications of the definite integral is that it provides a way to mean-
ingfully discuss the average value of a function, even for a function that takes on infinitely many
values. Recall that if we wish to take the average of n numbers y1, y2, . . ., yn, we do so by comput-
ing

Avg =
y1 + y2 + · · ·+ yn

n
.

Since integrals arise from Riemann sums in which we add n values of a function, it should
not be surprising that evaluating an integral is something like averaging the output values of a
function. Consider, for instance, the right Riemann sum Rn of a function f , which is given by

Rn = f(x1)4x+ f(x2)4x+ · · ·+ f(xn)4x = (f(x1) + f(x2) + · · ·+ f(xn))4x.

Since4x = b−a
n , we can thus write

Rn = (f(x1) + f(x2) + · · ·+ f(xn)) · b− a
n

= (b− a)
f(x1) + f(x2) + · · ·+ f(xn)

n
. (4.1)

Here, we see that the right Riemann sum with n subintervals is the length of the interval (b − a)
times the average of the n function values found at the right endpoints. And just as with our efforts
to compute area, we see that the larger the value of n we use, the more accurate our average of the
values of f will be. Indeed, we will define the average value of f on [a, b] to be

fAVG[a,b] = lim
n→∞

f(x1) + f(x2) + · · ·+ f(xn)

n
.

But we also know that for any continuous function f on [a, b], taking the limit of a Riemann sum

leads precisely to the definite integral. That is, lim
n→∞

Rn =

∫ b

a
f(x) dx, and thus taking the limit as

n→∞ in Equation (4.1), we have that

∫ b

a
f(x) dx = (b− a) · fAVG[a,b]. (4.2)
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Solving Equation (4.2) for fAVG[a,b], we have the following general principle.

Average value of a function: If f is a continuous function on [a, b], then its average value on
[a, b] is given by the formula

fAVG[a,b] =
1

b− a ·
∫ b

a
f(x) dx.

Observe that Equation (4.2) tells us another way to interpret the definite integral: the definite
integral of a function f from a to b is the length of the interval (b−a) times the average value of the
function on the interval. In addition, Equation (4.2) has a natural visual interpretation when the
function f is nonnegative on [a, b]. Consider Figure 4.28, where we see at left the shaded region

a b

∫ b

a
f(x) dx

y = f(x)

a

fAVG[a,b]

(b− a) · fAVG[a,b]

b

y = f(x)

a b

A1

A2

y = f(x)

Figure 4.28: A function y = f(x), the area it bounds, and its average value on [a, b].

whose area is
∫ b
a f(x) dx, at center the shaded rectangle whose dimensions are (b − a) by fAVG[a,b],

and at right these two figures superimposed. Specifically, note that in dark green we show the
horizontal line y = fAVG[a,b]. Thus, the area of the green rectangle is given by (b−a) ·fAVG[a,b], which
is precisely the value of

∫ b
a f(x) dx. Said differently, the area of the blue region in the left figure is

the same as that of the green rectangle in the center figure; this can also be seen by observing that
the areas A1 and A2 in the rightmost figure appear to be equal. Ultimately, the average value of
a function enables us to construct a rectangle whose area is the same as the value of the definite
integral of the function on the interval. The java applet8 at http://gvsu.edu/s/az provides
an opportunity to explore how the average value of the function changes as the interval changes,
through an image similar to that found in Figure 4.28.

Activity 4.9.

Suppose that v(t) =
√

4− (t− 2)2 tells us the instantaneous velocity of a moving object on the
interval 0 ≤ t ≤ 4, where t is measured in minutes and v is measured in meters per minute.

8David Austin, http://gvsu.edu/s/5r.

http://gvsu.edu/s/az
http://gvsu.edu/s/5r
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(a) Sketch an accurate graph of y = v(t). What kind of curve is y =
√

4− (t− 2)2?

(b) Evaluate
∫ 4

0 v(t) dt exactly.

(c) In terms of the physical problem of the moving object with velocity v(t), what is the
meaning of

∫ 4
0 v(t) dt? Include units on your answer.

(d) Determine the exact average value of v(t) on [0, 4]. Include units on your answer.

(e) Sketch a rectangle whose base is the line segment from t = 0 to t = 4 on the t-axis such
that the rectangle’s area is equal to the value of

∫ 4
0 v(t) dt. What is the rectangle’s exact

height?

(f) How can you use the average value you found in (d) to compute the total distance
traveled by the moving object over [0, 4]?

C

Summary

In this section, we encountered the following important ideas:

• Any Riemann sum of a continuous function f on an interval [a, b] provides an estimate of the
net signed area bounded by the function and the horizontal axis on the interval. Increasing the
number of subintervals in the Riemann sum improves the accuracy of this estimate, and letting
the number of subintervals increase without bound results in the values of the corresponding
Riemann sums approaching the exact value of the enclosed net signed area.

• When we take the just described limit of Riemann sums, we arrive at what we call the definite
integral of f over the interval [a, b]. In particular, the symbol

∫ b
a f(x) dx denotes the definite

integral of f over [a, b], and this quantity is defined by the equation

∫ b

a
f(x) dx = lim

n→∞

n∑

i=1

f(x∗i )4x,

where4x = b−a
n , xi = a+i4x (for i = 0, . . . , n), and x∗i satisfies xi−1 ≤ x∗i ≤ xi (for i = 1, . . . , n).

• The definite integral
∫ b
a f(x) dx measures the exact net signed area bounded by f and the hor-

izontal axis on [a, b]; in addition, the value of the definite integral is related to what we call
the average value of the function on [a, b]: fAVG[a,b] = 1

b−a ·
∫ b
a f(x) dx. In the setting where we

consider the integral of a velocity function v,
∫ b
a v(t) dt measures the exact change in position of

the moving object on [a, b]; when v is nonnegative,
∫ b
a v(t) dt is the object’s distance traveled on

[a, b].

• The definite integral is a sophisticated sum, and thus has some of the same natural properties
that finite sums have. Perhaps most important of these is how the definite integral respects
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sums and constant multiples of functions, which can be summarized by the rule

∫ b

a
[cf(x)± kg(x)] dx = c

∫ b

a
f(x) dx± k

∫ b

a
g(x) dx

where f and g are continuous functions on [a, b] and c and k are arbitrary constants.

Exercises

1. The velocity of an object moving along an axis is given by the piecewise linear function v that
is pictured in Figure 4.29. Assume that the object is moving to the right when its velocity is
positive, and moving to the left when its velocity is negative. Assume that the given velocity
function is valid for t = 0 to t = 4.

1 2 3 4

-2

-1

1

2
ft/sec

sec

y = v(t)

Figure 4.29: The velocity function of a moving object.

(a) Write an expression involving definite integrals whose value is the total change in po-
sition of the object on the interval [0, 4].

(b) Use the provided graph of v to determine the value of the total change in position on
[0, 4].

(c) Write an expression involving definite integrals whose value is the total distance trav-
eled by the object on [0, 4]. What is the exact value of the total distance traveled on
[0, 4]?

(d) What is the object’s exact average velocity on [0, 4]?

(e) Find an algebraic formula for the object’s position function on [0, 1.5] that satisfies
s(0) = 0.

2. Suppose that the velocity of a moving object is given by v(t) = t(t− 1)(t− 3), measured in feet
per second, and that this function is valid for 0 ≤ t ≤ 4.
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(a) Write an expression involving definite integrals whose value is the total change in po-
sition of the object on the interval [0, 4].

(b) Use appropriate technology (such as the applet9 found at http://gvsu.edu/s/aw)
to compute Riemann sums to estimate the object’s total change in position on [0, 4].
Work to ensure that your estimate is accurate to two decimal places, and explain how
you know this to be the case.

(c) Write an expression involving definite integrals whose value is the total distance trav-
eled by the object on [0, 4].

(d) Use appropriate technology to compute Riemann sums to estimate the object’s total
change in position on [0, 4]. Work to ensure that your estimate is accurate to two decimal
places, and explain how you know this to be the case.

(e) What is the object’s average velocity on [0, 4], accurate to two decimal places?

3. Consider the graphs of two functions f and g that are provided in Figure 4.30. Each piece of f
and g is either part of a straight line or part of a circle.

1 2 3 4

-2

-1

1

2
y = f(x)

1 2 3 4

-2

-1

1

2
y = g(x)

Figure 4.30: Two functions f and g.

(a) Determine the exact value of
∫ 1

0 [f(x) + g(x)] dx.

(b) Determine the exact value of
∫ 4

1 [2f(x)− 3g(x)] dx.

(c) Find the exact average value of h(x) = g(x)− f(x) on [0, 4].

(d) For what constant c does the following equation hold?
∫ 4

0
c dx =

∫ 4

0
[f(x) + g(x)] dx

4. Let f(x) = 3− x2 and g(x) = 2x2.
9David Eck, Hobart and William Smith Colleges, http://gvsu.edu/s/av.

http://gvsu.edu/s/aw
http://gvsu.edu/s/av
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(a) On the interval [−1, 1], sketch a labeled graph of y = f(x) and write a definite integral
whose value is the exact area bounded by y = f(x) on [−1, 1].

(b) On the interval [−1, 1], sketch a labeled graph of y = g(x) and write a definite integral
whose value is the exact area bounded by y = g(x) on [−1, 1].

(c) Write an expression involving a difference of definite integrals whose value is the exact
area that lies between y = f(x) and y = g(x) on [−1, 1].

(d) Explain why your expression in (c) has the same value as the single integral∫ 1
−1[f(x)− g(x)] dx.

(e) Explain why, in general, if p(x) ≥ q(x) for all x in [a, b], the exact area between y = p(x)
and y = q(x) is given by ∫ b

a
[p(x)− q(x)] dx.
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4.4 The Fundamental Theorem of Calculus

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How can we find the exact value of a definite integral without taking the limit of a Riemann
sum?

• What is the statement of the Fundamental Theorem of Calculus, and how do antiderivatives
of functions play a key role in applying the theorem?

• What is the meaning of the definite integral of a rate of change in contexts other than when
the rate of change represents velocity?

Introduction

Much of our work in Chapter 4 has been motivated by the velocity-distance problem: if we know
the instantaneous velocity function, v(t), for a moving object on a given time interval [a, b], can we
determine its exact distance traveled on [a, b]? In the vast majority of our discussion in Sections 4.1-
4.3, we have focused on the fact that this distance traveled is connected to the area bounded by
y = v(t) and the t-axis on [a, b]. In particular, for any nonnegative velocity function y = v(t) on
[a, b], we know that the exact area bounded by the velocity curve and the t-axis on the interval
tells us the total distance traveled, which is also the value of the definite integral

∫ b
a v(t) dt. In the

situation where velocity is sometimes negative, the total area bounded by the velocity function still
tells us distance traveled, while the net signed area that the function bounds tells us the object’s
change in position. Recall, for instance, the introduction to Section 4.2, where we observed that

y = v(t)

a b

A1

A2

A3

Figure 4.31: A velocity function that is sometimes negative.

for the velocity function in Figure 4.31, the total distance D traveled by the moving object on [a, b]
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is
D = A1 +A2 +A3,

while the total change in the object’s position on [a, b] is

s(b)− s(a) = A1 −A2 +A3.

While the areas A1, A2, and A3, which are each given by definite integrals, may be computed
through limits of Riemann sums (and in select special circumstances through familiar geometric
formulas), in the present section we turn our attention to an alternate approach, similar to the one
we encountered in Activity 4.2. To explore these ideas further, we consider the following preview
activity.

Preview Activity 4.4. A student with a third floor dormitory window 32 feet off the ground tosses
a water balloon straight up in the air with an initial velocity of 16 feet per second. It turns out that
the instantaneous velocity of the water balloon is given by the velocity function v(t) = −32t+ 16,
where v is measured in feet per second and t is measured in seconds.

(a) Let s(t) represent the height of the water balloon above the ground at time t, and note that
s is an antiderivative of v. That is, v is the derivative of s: s′(t) = v(t). Find a formula for
s(t) that satisfies the initial condition that the balloon is tossed from 32 feet above ground.
In other words, make your formula for s satisfy s(0) = 32.

(b) At what time does the water balloon reach its maximum height? At what time does the
water balloon land?

(c) Compute the three differences s(1
2) − s(0), s(2) − s(1

2), and s(2) − s(0). What do these
differences represent?

(d) What is the total vertical distance traveled by the water balloon from the time it is tossed
until the time it lands?

(e) Sketch a graph of the velocity function y = v(t) on the time interval [0, 2]. What is the total
net signed area bounded by y = v(t) and the t-axis on [0, 2]? Answer this question in two
ways: first by using your work above, and then by using a familiar geometric formula to
compute areas of certain relevant regions.

./

The Fundamental Theorem of Calculus

Consider the setting where we know the position function s(t) of an object moving along an axis,
as well as its corresponding velocity function v(t), and for the moment let us assume that v(t)
is positive on [a, b]. Then, as shown in Figure 4.32, we know two different perspectives on the
distance, D, the object travels: one is that D = s(b)− s(a), which is the object’s change in position.
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a b

D =
∫ b

a
v(t) dt

= s(b)− s(a)

y = v(t)

Figure 4.32: Finding the distance traveled when we know an object’s velocity function v.

The other is that the distance traveled is the area under the velocity curve, which is given by the
definite integral, so D =

∫ b
a v(t) dt.

Of course, since both of these expressions tell us the distance traveled, it follows that they are
equal, so

s(b)− s(a) =

∫ b

a
v(t) dt. (4.3)

Furthermore, we know that Equation (4.3) holds even when velocity is sometimes negative, since
s(b) − s(a) is the object’s change in position over [a, b], which is simultaneously measured by the
total net signed area on [a, b] given by

∫ b
a v(t) dt.

Perhaps the most powerful part of Equation (4.3) lies in the fact that we can compute the
integral’s value if we can find a formula for s. Remember, s and v are related by the fact that v
is the derivative of s, or equivalently that s is an antiderivative of v. For example, if we have an
object whose velocity is v(t) = 3t2 + 40 feet per second (which is always nonnegative), and wish
to know the distance traveled on the interval [1, 5], we have that

D =

∫ 5

1
v(t) dt

=

∫ 5

1
(3t2 + 40) dt

= s(5)− s(1),

where s is an antiderivative of v. We know that the derivative of t3 is 3t2 and that the derivative of
40t is 40, so it follows that if s(t) = t3 + 40t, then s is a function whose derivative is v(t) = s′(t) =
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3t2 + 40, and thus we have found an antiderivative of v. Therefore,

D =

∫ 5

1
3t2 + 40 dt

= s(5)− s(1)

= (53 + 40 · 5)− (13 + 40 · 1)

= 284 feet.

Note the key lesson of this example: to find the distance traveled, we needed to compute the area
under a curve, which is given by the definite integral. But to evaluate the integral, we found an
antiderivative, s, of the velocity function, and then computed the total change in s on the interval.
In particular, observe that we have found the exact area of the region shown in Figure 4.33, and
done so without a familiar formula (such as those for the area of a triangle or circle) and without
directly computing the limit of a Riemann sum.

1 3 5

20

40

60

80

100

120

140

D =
∫ 5

1
v(t) dt

= 284

y = v(t)

Figure 4.33: The exact area of the region enclosed by v(t) = 3t2 + 40 on [1, 5].

As we proceed to thinking about contexts other than just velocity and position, it turns out
to be advantageous to have a shorthand symbol for a function’s antiderivative. In the general
setting of a continuous function f , we will often denote an antiderivative of f by F , so that the
relationship between F and f is that F ′(x) = f(x) for all relevant x. Using the notation V in place
of s (so that V is an antiderivative of v) in Equation (4.3), we find it is equivalent to write that

V (b)− V (a) =

∫ b

a
v(t) dt. (4.4)

Now, in the general setting of wanting to evaluate the definite integral
∫ b
a f(x) dx for an arbitrary

continuous function f , we could certainly think of f as representing the velocity of some moving
object, and x as the variable that represents time. And again, Equations (4.3) and (4.4) hold for
any continuous velocity function, even when v is sometimes negative. This leads us to see that
Equation (4.4) tells us something even more important than the change in position of a moving
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object: it offers a shortcut route to evaluating any definite integral, provided that we can find an
antiderivative of the integrand. The Fundamental Theorem of Calculus (FTC) summarizes these
observations.

The Fundamental Theorem of Calculus: If f is a continuous function on [a, b], and F is any
antiderivative of f , then ∫ b

a
f(x) dx = F (b)− F (a).

A common alternate notation for F (b)− F (a) is

F (b)− F (a) = F (x)|ba ,

where we read the righthand side as “the function F evaluated from a to b.” In this notation, the
FTC says that ∫ b

a
f(x) dx = F (x)|ba .

The FTC opens the door to evaluating exactly a wide range of integrals. In particular, if we are
interested in a definite integral for which we can find an antiderivative F for the integrand f , then
we can evaluate the integral exactly. For instance since d

dx [1
3x

3] = x2, the FTC tells us that

∫ 1

0
x2 dx =

1

3
x3

∣∣∣∣
1

0

=
1

3
(1)3 − 1

3
(0)3

=
1

3
.

But finding an antiderivative can be far from simple; in fact, often finding a formula for an an-
tiderivative is very hard or even impossible. While we can differentiate just about any function,
even some relatively simple ones don’t have an elementary antiderivative. A significant portion
of integral calculus (which is the main focus of second semester college calculus) is devoted to
understanding the problem of finding antiderivatives.

Activity 4.10.

Use the Fundamental Theorem of Calculus to evaluate each of the following integrals exactly.
For each, sketch a graph of the integrand on the relevant interval and write one sentence that
explains the meaning of the value of the integral in terms of the (net signed) area bounded by
the curve.

(a)
∫ 4

−1
(2− 2x) dx

(b)
∫ π

2

0
sin(x) dx
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(c)
∫ 1

0
ex dx

(d)
∫ 1

−1
x5 dx

(e)
∫ 2

0
(3x3 − 2x2 − ex) dx

C

Basic antiderivatives

The general problem of finding an antiderivative is difficult. In part, this is due to the fact that we
are trying to undo the process of differentiating, and the undoing is much more difficult than the
doing. For example, while it is evident that an antiderivative of f(x) = sin(x) is F (x) = − cos(x)
and that an antiderivative of g(x) = x2 is G(x) = 1

3x
3, combinations of f and g can be far more

complicated. Consider such functions as

5 sin(x)− 4x2, x2 sin(x),
sin(x)

x2
, and sin(x2).

What is involved in trying to find an antiderivative for each? From our experience with derivative
rules, we know that while derivatives of sums and constant multiples of basic functions are simple
to execute, derivatives involving products, quotients, and composites of familiar functions are
much more complicated. Thus, it stands to reason that antidifferentiating products, quotients,
and composites of basic functions may be even more challenging. We defer our study of all but
the most elementary antiderivatives to later in the text.

We do note that each time we have a function for which we know its derivative, we have
a function-derivative pair, which also leads us to knowing the antiderivative of a function. For
instance, since we know that

d

dx
[− cos(x)] = sin(x),

it follows that F (x) = − cos(x) is an antiderivative of f(x) = sin(x). It is equivalent to say that
f(x) = sin(x) is the derivative of F (x) = − cos(x), and thus F and f together form the function-
derivative pair. Clearly, every basic derivative rule leads us to such a pair, and thus to a known
antiderivative. In Activity 4.11, we will construct a list of most of the basic antiderivatives we
know at this time. Furthermore, those rules will enable us to antidifferentiate sums and constant
multiples of basic functions. For example, if f(x) = 5 sin(x) − 4x2, note that since − cos(x) is an
antiderivative of sin(x) and 1

3x
3 is an antiderivative of x2, it follows that

F (x) = −5 cos(x)− 4

3
x3

is an antiderivative of f , by the sum and constant multiple rules for differentiation.
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Finally, before proceeding to build a list of common functions whose antiderivatives we know,
we revisit the fact that each function has more than one antiderivative. Because the derivative
of any constant is zero, any time we seek an arbitrary antiderivative, we may add a constant of
our choice. For instance, if we want to determine an antiderivative of g(x) = x2, we know that
G(x) = 1

3x
3 is one such function. But we could alternately have chosen G(x) = 1

3x
3 + 7, since in

this case as well, G′(x) = x2. In some contexts later on in calculus, it is important to discuss the
most general antiderivative of a function. If g(x) = x2, we say that the general antiderivative of g is

G(x) =
1

3
x3 + C,

where C represents an arbitrary real number constant. Regardless of the formula for g, including
+C in the formula for its antiderivative G results in the most general possible antiderivative.

Our primary current interest in antiderivatives is for use in evaluating definite integrals by the
Fundamental Theorem of Calculus. In that situation, the arbitrary constant C is irrelevant, and
thus we usually omit it. To see why, consider the definite integral

∫ 1

0
x2 dx.

For the integrand g(x) = x2, suppose we find and use the general antiderivative G(x) = 1
3x

3 + C.
Then, by the FTC,

∫ 1

0
x2 dx =

1

3
x3 + C

∣∣∣∣
1

0

=

(
1

3
(1)3 + C

)
−
(

1

3
(0)3 + C

)

=
1

3
+ C − 0− C

=
1

3
.

Specifically, we observe that the C-values appear as opposites in the evaluation of the integral
and thus do not affect the definite integral’s value. In the same way, the potential inclusion of +C
with the antiderivative has no bearing on any definite integral, and thus we generally choose to
omit this possible constant whenever we evaluate an integral using the Fundamental Theorem of
Calculus.

In the following activity, we work to build a list of basic functions whose antiderivatives we
already know.
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given function, f(x) antiderivative, F (x)

k, (k 6= 0)

xn, n 6= −1

1
x , x > 0

sin(x)

cos(x)

sec(x) tan(x)

csc(x) cot(x)

sec2(x)

csc2(x)

ex

ax (a > 1)

1
1+x2

1√
1−x2

Table 4.1: Familiar basic functions and their antiderivatives.

Activity 4.11.

Use your knowledge of derivatives of basic functions to complete the above table of antideriva-
tives. For each entry, your task is to find a function F whose derivative is the given function
f . When finished, use the FTC and the results in the table to evaluate the three given definite
integrals.

(a)
∫ 1

0

(
x3 − x− ex + 2

)
dx

(b)
∫ π/3

0
(2 sin(t)− 4 cos(t) + sec2(t)− π) dt

(c)
∫ 1

0
(
√
x− x2) dx

C

The total change theorem

As we use the Fundamental Theorem of Calculus to evaluate definite integrals, it is essential that
we remember and understand the meaning of the numbers we find. We briefly summarize three
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key interpretations to date.

• For a moving object with instantaneous velocity v(t), the object’s change in position on the
time interval [a, b] is given by

∫ b
a v(t) dt, and whenever v(t) ≥ 0 on [a, b],

∫ b
a v(t) dt tells us the

total distance traveled by the object on [a, b].

• For any continuous function f , its definite integral
∫ b
a f(x) dx represents the total net signed

area bounded by y = f(x) and the x-axis on [a, b], where regions that lie below the x-axis
have a minus sign associated with their area.

• The value of a definite integral is linked to the average value of a function: for a continuous
function f on [a, b], its average value fAVG[a,b] is given by

fAVG[a,b] =
1

b− a

∫ b

a
f(x) dx.

The Fundamental Theorem of Calculus now enables us to evaluate exactly (without taking a limit
of Riemann sums) any definite integral for which we are able to find an antiderivative of the
integrand.

A slight change in notational perspective allows us to gain even more insight into the meaning
of the definite integral. To begin, recall Equation (4.4), where we wrote the Fundamental Theorem
of Calculus for a velocity function v with antiderivative V as

V (b)− V (a) =

∫ b

a
v(t) dt.

If we instead replace V with s (which represents position) and replace v with s′ (since velocity is
the derivative of position), Equation (4.4) equivalently reads

s(b)− s(a) =

∫ b

a
s′(t) dt. (4.5)

In words, this version of the FTC tells us that the total change in the object’s position function on
a particular interval is given by the definite integral of the position function’s derivative over that
interval.

Of course, this result is not limited to only the setting of position and velocity. Writing the
result in terms of a more general function f , we have the Total Change Theorem.

The Total Change Theorem: If f is a continuously differentiable function on [a, b] with deriva-
tive f ′, then

f(b)− f(a) =

∫ b

a
f ′(x) dx. (4.6)

That is, the definite integral of the derivative of a function on [a, b] is the total change of the
function itself on [a, b].

The Total Change Theorem tells us more about the relationship between the graph of a function
and that of its derivative. Recall Figure 1.18, which provided one of the first times we saw that
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heights on the graph of the derivative function come from slopes on the graph of the function itself.
That observation occurred in the context where we knew f and were seeking f ′; if now instead
we think about knowing f ′ and seeking information about f , we can instead say the following:

differences in heights on f correspond to net signed areas bounded by f ′.

1 2
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y = f ′(x)
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1
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y = f(x)

(0, 0)

(1, 3)

(2, 4)

(3, 3)

(4, 0)

Figure 4.34: The graphs of f ′(x) = 4− 2x (at left) and an antiderivative f(x) = 4x− x2 at right. Differences
in heights on f correspond to net signed areas bounded by f ′.

To see why this is so, say we consider the difference f(1) − f(0). Note that this value is 3, in part
because f(1) = 3 and f(0) = 0, but also because the net signed area bounded by y = f ′(x) on
[0, 1] is 3. That is, f(1)− f(0) =

∫ 1
0 f
′(x) dx. A similar pattern holds throughout, including the fact

that since the total net signed area bounded by f ′ on [0, 4] is 0,
∫ 4

0 f
′(x) dx = 0, so it must be that

f(4)− f(0) = 0, so f(4) = f(0).

Beyond this general observation about area, the Total Change Theorem enables us to consider
interesting and important problems where we know the rate of change, and answer key questions
about the function whose rate of change we know.

Example 4.1. Suppose that pollutants are leaking out of an underground storage tank at a rate of
r(t) gallons/day, where t is measured in days. It is conjectured that r(t) is given by the formula
r(t) = 0.0069t3 − 0.125t2 + 11.079 over a certain 12-day period. The graph of y = r(t) is given in
Figure 4.35. What is the meaning of

∫ 10
4 r(t) dt and what is its value? What is the average rate at

which pollutants are leaving the tank on the time interval 4 ≤ t ≤ 10?

We know that since r(t) ≥ 0, the value of
∫ 10

4 r(t) dt is the area under the curve on the interval
[4, 10]. If we think about this area from the perspective of a Riemann sum, the rectangles will have
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Figure 4.35: The rate r(t) of pollution leaking from a tank, measured in gallons per day.

heights measured in gallons per day and widths measured in days, thus the area of each rectangle
will have units of

gallons
day

· days = gallons.

Thus, the definite integral tells us the total number of gallons of pollutant that leak from the tank
from day 4 to day 10. The Total Change Theorem tells us the same thing: if we let R(t) denote the
function that measures the total number of gallons of pollutant that have leaked from the tank up
to day t, then R′(t) = r(t), and

∫ 10

4
r(t) dt = R(10)−R(4),

which is the total change in the function that measures total gallons leaked over time, thus the
number of gallons that have leaked from day 4 to day 10.

To compute the exact value, we use the Fundamental Theorem of Calculus. Antidifferentiating
r(t) = 0.0069t3 − 0.125t2 + 11.079, we find that

∫ 10

4
(0.0069t3 − 0.125t2 + 11.079) dt =

(
0.0069 · 1

4
t4 − 0.125 · 1

3
t3 + 11.079t

)∣∣∣∣
10

4

=

(
0.0069 · 1

4
(10)4 − 0.125 · 1

3
(10)3 + 11.079(10)

)
−

(
0.0069 · 1

4
(4)4 − 0.125 · 1

3
(4)3 + 11.079(4)

)

≈ 44.282.

Thus, approximately 44.282 gallons of pollutant leaked over the six day time period.
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To find the average rate at which pollutant leaked from the tank over 4 ≤ t ≤ 10, we want to
compute the average value of r on [4, 10]. Thus,

rAVG[4,10] =
1

10− 4

∫ 10

4
r(t) dt ≈ 44.282

6
= 7.380,

which has its units measured in gallons per day.

Activity 4.12.

During a 30-minute workout, a person riding an exercise machine burns calories at a rate of
c calories per minute, where the function y = c(t) is given in Figure 4.36. On the interval
0 ≤ t ≤ 10, the formula for c is c(t) = −0.05t2 + t + 10, while on 20 ≤ t ≤ 30, its formula is
c(t) = −0.05t2 + 2t− 5.

10 20 30

5

10

15
cal/min

min

y = c(t)

Figure 4.36: The rate c(t) at which a person exercising burns calories, measured in calories per minute.

(a) What is the exact total number of calories the person burns during the first 10 minutes
of her workout?

(b) Let C(t) be an antiderivative of c(t). What is the meaning of C(30)−C(0) in the context
of the person exercising? Include units on your answer.

(c) Determine the exact average rate at which the person burned calories during the 30-
minute workout.

(d) At what time(s), if any, is the instantaneous rate at which the person is burning calories
equal to the average rate at which she burns calories, on the time interval 0 ≤ t ≤ 30?

C

Summary

In this section, we encountered the following important ideas:
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• We can find the exact value of a definite integral without taking the limit of a Riemann sum or
using a familiar area formula by finding the antiderivative of the integrand, and hence applying
the Fundamental Theorem of Calculus.

• The Fundamental Theorem of Calculus says that if f is a continuous function on [a, b] and F is
an antiderivative of f , then ∫ b

a
f(x) dx = F (b)− F (a).

Hence, if we can find an antiderivative for the integrand f , evaluating the definite integral
comes from simply computing the change in F on [a, b].

• A slightly different perspective on the FTC allows us to restate it as the Total Change Theorem,
which says that ∫ b

a
f ′(x) dx = f(b)− f(a),

for any continuously differentiable function f . This means that the definite integral of the
instantaneous rate of change of a function f on an interval [a, b] is equal to the total change in
the function f on [a, b].

Exercises

1. The instantaneous velocity (in meters per minute) of a moving object is given by the function
v as pictured in Figure 4.37. Assume that on the interval 0 ≤ t ≤ 4, v(t) is given by v(t) =
−1

4 t
3 + 3

2 t
2 + 1, and that on every other interval v is piecewise linear, as shown.

4 8 12 16 20 24

3

6

9

12

15
m/min

min

y = v(t)

Figure 4.37: The velocity function of a moving body.

(a) Determine the exact distance traveled by the object on the time interval 0 ≤ t ≤ 4.

(b) What is the object’s average velocity on [12, 24]?

(c) At what time is the object’s acceleration greatest?
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(d) Suppose that the velocity of the object is increased by a constant value c for all values
of t. What value of c will make the object’s total distance traveled on [12, 24] be 210
meters?

2. A function f is given piecewise by the formula

f(x) =




−x2 + 2x+ 1, if 0 ≤ x < 2
−x+ 3, if 2 ≤ x < 3
x2 − 8x+ 15, if 3 ≤ x ≤ 5

(a) Determine the exact value of the net signed area enclosed by f and the x-axis on the
interval [2, 5].

(b) Compute the exact average value of f on [0, 5].

(c) Find a formula for a function g on 5 ≤ x ≤ 7 so that if we extend the above definition
of f so that f(x) = g(x) if 5 ≤ x ≤ 7, it follows that

∫ 7
0 f(x) dx = 0.

3. When an aircraft attempts to climb as rapidly as possible, its climb rate (in feet per minute)
decreases as altitude increases, because the air is less dense at higher altitudes. Given below
is a table showing performance data for a certain single engine aircraft, giving its climb rate at
various altitudes, where c(h) denotes the climb rate of the airplane at an altitude h.

h (feet) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
c (ft/min) 925 875 830 780 730 685 635 585 535 490 440

Let a new function called m(h) measure the number of minutes required for a plane at altitude
h to climb the next foot of altitude.

(a) Determine a similar table of values for m(h) and explain how it is related to the table
above. Be sure to explain the units.

(b) Give a careful interpretation of a function whose derivative is m(h). Describe what the
input is and what the output is. Also, explain in plain English what the function tells
us.

(c) Determine a definite integral whose value tells us exactly the number of minutes re-
quired for the airplane to ascend to 10,000 feet of altitude. Clearly explain why the
value of this integral has the required meaning.

(d) Use the Riemann sum M5 to estimate the value of the integral you found in (c). Include
units on your result.

4. In Chapter 1, we showed that for an object moving along a straight line with position function
s(t), the object’s “average velocity on the interval [a, b]” is given by

AV[a,b] =
s(b)− s(a)

b− a .
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More recently in Chapter 4, we found that for an object moving along a straight line with
velocity function v(t), the object’s “average value of its velocity function on [a, b]” is

vAVG[a,b] =
1

b− a

∫ b

a
v(t) dt.

Are the “average velocity on the interval [a, b]” and the “average value of the velocity function
on [a, b]” the same thing? Why or why not? Explain.
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Chapter 5

Finding Antiderivatives and Evaluating
Integrals

5.1 Constructing Accurate Graphs of Antiderivatives

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• Given the graph of a function’s derivative, how can we construct a completely accurate
graph of the original function?

• How many antiderivatives does a given function have? What do those antiderivatives all
have in common?

• Given a function f , how does the rule A(x) =
∫ x

0 f(t) dt define a new function A?

Introduction

A recurring theme in our discussion of differential calculus has been the question “Given informa-
tion about the derivative of an unknown function f , how much information can we obtain about f
itself?” For instance, in Activity 1.22, we explored the situation where the graph of y = f ′(x) was
known (along with the value of f at a single point) and endeavored to sketch a possible graph of f
near the known point. In Example 3.1 – and indeed throughout Section 3.1 – we investigated how
the first derivative test enables us to use information regarding f ′ to determine where the original
function f is increasing and decreasing, as well as where f has relative extreme values. Further, if
we know a formula or graph of f ′, by computing f ′′ we can find where the original function f is
concave up and concave down. Thus, the combination of knowing f ′ and f ′′ enables us to fully
understand the shape of the graph of f .

251
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We returned to this question in even more detail in Section 4.1; there, we considered the situa-
tion where we knew the instantaneous velocity of a moving object and worked from that informa-
tion to determine as much information as possible about the object’s position function. We found
key connections between the net-signed area under the velocity function and the corresponding
change in position of the function; in Section 4.4, the Total Change Theorem further illuminated
these connections between f ′ and f in a more general setting, such as the one found in Figure 4.34,
showing that the total change in the value of f over an interval [a, b] is determined by the exact
net-signed area bounded by f ′ and the x-axis on the same interval.

In what follows, we explore these issues still further, with a particular emphasis on the situa-
tion where we possess an accurate graph of the derivative function along with a single value of
the function f . From that information, we desire to completely determine an accurate graph of
f that not only represents correctly where f is increasing, decreasing, concave up, and concave
down, but also accurate function values at any point of interest to us.

Preview Activity 5.1. Suppose that the following information is known about a function f : the
graph of its derivative, y = f ′(x), is given in Figure 5.1. Further, assume that f ′ is piecewise linear
(as pictured) and that for x ≤ 0 and x ≥ 6, f ′(x) = 0. Finally, it is given that f(0) = 1.

1 3 5

-3

-1

1

3
y = f ′(x)

1 3 5

-3

-1

1

3

Figure 5.1: At left, the graph of y = f ′(x); at right, axes for plotting y = f(x).

(a) On what interval(s) is f an increasing function? On what intervals is f decreasing?

(b) On what interval(s) is f concave up? concave down?

(c) At what point(s) does f have a relative minimum? a relative maximum?

(d) Recall that the Total Change Theorem tells us that

f(1)− f(0) =

∫ 1

0
f ′(x) dx.

What is the exact value of f(1)?
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(e) Use the given information and similar reasoning to that in (d) to determine the exact value
of f(2), f(3), f(4), f(5), and f(6).

(f) Based on your responses to all of the preceding questions, sketch a complete and accurate
graph of y = f(x) on the axes provided, being sure to indicate the behavior of f for x < 0
and x > 6.

./

Constructing the graph of an antiderivative

Preview Activity 5.1 demonstrates that when we can find the exact area under a given graph on
any given interval, it is possible to construct an accurate graph of the given function’s antideriva-
tive: that is, we can find a representation of a function whose derivative is the given one. While we
have considered this question at different points throughout our study, it is important to note here
that we now can determine not only the overall shape of the antiderivative, but also the actual
height of the antiderivative at any point of interest.

Indeed, this is one key consequence of the Fundamental Theorem of Calculus: if we know a
function f and wish to know information about its antiderivative, F , provided that we have some
starting point a for which we know the value of F (a), we can determine the value of F (b) via the
definite integral. In particular, since F (b)− F (a) =

∫ b
a f(x) dx, it follows that

F (b) = F (a) +

∫ b

a
f(x) dx. (5.1)

Moreover, in the discussion surrounding Figure 4.34, we made the observation that differences in
heights of a function correspond to net-signed areas bounded by its derivative. Rephrasing this in
terms of a given function f and its antiderivative F , we observe that on an interval [a, b],

differences in heights on the antiderivative (such as F (b)− F (a)) correspond to the net-signed
area bounded by the original function on the interval [a, b] (

∫ b
a f(x) dx).

For example, say that f(x) = x2 and that we are interested in an antiderivative of f that satisfies
F (1) = 2. Thinking of a = 1 and b = 2 in Equation (5.1), it follows from the Fundamental Theorem
of Calculus that

F (2) = F (1) +

∫ 2

1
x2 dx

= 1 +
1

3
x3

∣∣∣∣
2

1

= 1 +

(
8

3
− 1

3

)

=
10

3
.
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In this way, we see that if we are given a function f for which we can find the exact net-signed area
bounded by f on a given interval, along with one value of a corresponding antiderivative F , we
can find any other value of F that we seek, and in this way construct a completely accurate graph
of F . We have two main options for finding the exact net-signed area: using the Fundamental
Theorem of Calculus (which requires us to find an algebraic formula for an antiderivative of the
given function f ), or, in the case where f has nice geometric properties, finding net-signed areas
through the use of known area formulas.

Activity 5.1.

Suppose that the function y = f(x) is given by the graph shown in Figure 5.2, and that the
pieces of f are either portions of lines or portions of circles. In addition, let F be an antideriva-
tive of f and say that F (0) = −1. Finally, assume that for x ≤ 0 and x ≥ 7, f(x) = 0.

1 2 3 4 5 6 7

-1

1
y = f(x)

Figure 5.2: At left, the graph of y = f(x).

(a) On what interval(s) is F an increasing function? On what intervals is F decreasing?

(b) On what interval(s) is F concave up? concave down?

(c) At what point(s) does F have a relative minimum? a relative maximum?

(d) Use the given information to determine the exact value of F (x) for x = 1, 2, . . . , 7. In
addition, what are the values of F (−1) and F (8)?

(e) Based on your responses to all of the preceding questions, sketch a complete and accu-
rate graph of y = F (x) on the axes provided, being sure to indicate the behavior of F
for x < 0 and x > 7. Clearly indicate the scale on the vertical and horizontal axes of
your graph.

(f) What happens if we change one key piece of information: in particular, say that G
is an antiderivative of f and G(0) = 0. How (if at all) would your answers to the
preceding questions change? Sketch a graph of G on the same axes as the graph of F
you constructed in (e).

C
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Multiple antiderivatives of a single function

In the final question of Activity 5.1, we encountered a very important idea: a given function f
has more than one antiderivative. In addition, any antiderivative of f is determined uniquely by
identifying the value of the desired antiderivative at a single point. For example, suppose that f
is the function given at left in Figure 5.3, and we say that F is an antiderivative of f that satisfies

1 3 5

-3

-1

1

3
f

2 4

-2

2
F

G

H

Figure 5.3: At left, the graph of y = f(x). At right, three different antiderivatives of f .

F (0) = 1.

Then, using Equation 5.1, we can compute F (1) = 1.5, F (2) = 1.5, F (3) = −0.5, F (4) =
−2, F (5) = −0.5, and F (6) = 1, plus we can use the fact that F ′ = f to ascertain where F is
increasing and decreasing, concave up and concave down, and has relative extremes and inflection
points. Through work similar to what we encountered in Preview Activity 5.1 and Activity 5.1,
we ultimately find that the graph of F is the one given in blue in Figure 5.2.

If we instead chose to consider a function G that is an antiderivative of f but has the property
that G(0) = 3, then G will have the exact same shape as F (since both share the derivative f ), but
G will be shifted vertically away from the graph of F , as pictured in red in Figure 5.2. Note that
G(1)−G(0) =

∫ 1
0 f(x) dx = 0.5, just as F (1)−F (0) = 0.5,, but sinceG(0) = 3, G(1) = G(0)+0.5 =

3.5, whereas F (1) = F (0) + 0.5 = 1.5, since F (0) = 1. In the same way, if we assigned a different
initial value to the antiderivative, say H(0) = −1, we would get still another antiderivative, as
shown in magenta in Figure 5.2.

This example demonstrates an important fact that holds more generally:

If G and H are both antiderivatives of a function f , then the function G−H must be constant.

To see why this result holds, observe that ifG andH are both antiderivatives of f , thenG′ = f and
H ′ = f . Hence, d

dx [G(x)−H(x)] = G′(x)−H ′(x) = f(x)−f(x) = 0. Since the only way a function
can have derivative zero is by being a constant function, it follows that the function G −H must
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be constant.

Further, we now see that if a function has a single antiderivative, it must have infinitely many:
we can add any constant of our choice to the antiderivative and get another antiderivative. For this
reason, we sometimes refer to the general antiderivative of a function f . For example, if f(x) = x2, its
general antiderivative is F (x) = 1

3x
3 + C, where we include the “+C” to indicate that F includes

all of the possible antiderivatives of f . To identify a particular antiderivative of f , we must be
provided a single value of the antiderivative F (this value is often called an initial condition). In
the present example, suppose that condition is F (2) = 3; substituting the value of 2 for x in
F (x) = 1

3x
3 + C, we find that

3 =
1

3
(2)3 + C,

and thus C = 3− 8
3 = 1

3 . Therefore, the particular antiderivative in this case is F (x) = 1
3x

3 + 1
3 .

Activity 5.2.

For each of the following functions, sketch an accurate graph of the antiderivative that satisfies
the given initial condition. In addition, sketch the graph of two additional antiderivatives of
the given function, and state the corresponding initial conditions that each of them satisfy. If
possible, find an algebraic formula for the antiderivative that satisfies the initial condition.

(a) original function: g(x) = |x| − 1;
initial condition: G(−1) = 0;
interval for sketch: [−2, 2]

(b) original function: h(x) = sin(x);
initial condition: H(0) = 1;
interval for sketch: [0, 4π]

(c) original function: p(x) =





x2, if 0 < x ≤ 1

−(x− 2)2, if 1 < x < 2

0 otherwise

;

initial condition: P (0) = 1;
interval for sketch: [−1, 3]

C

Functions defined by integrals

In Equation (5.1), we found an important rule that enables us to compute the value of the an-
tiderivative F at a point b, provided that we know F (a) and can evaluate the definite integral
from a to b of f . Again, that rule is

F (b) = F (a) +

∫ b

a
f(x) dx.
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In several examples, we have used this formula to compute several different values of F (b) and
then plotted the points (b, F (b)) to assist us in generating an accurate graph of F . That suggests
that we may want to think of b, the upper limit of integration, as a variable itself. To that end, we
introduce the idea of an integral function, a function whose formula involves a definite integral.

Given a continuous function f , we define the corresponding integral function A according to
the rule

A(x) =

∫ x

a
f(t) dt. (5.2)

Note particularly that because we are using the variable x as the independent variable in the
function A, and x determines the other endpoint of the interval over which we integrate (starting
from a), we need to use a variable other than x as the variable of integration. A standard choice is
t, but any variable other than x is acceptable.

One way to think of the function A is as the “net-signed area from a up to x” function, where
we consider the region bounded by y = f(t) on the relevant interval. For example, in Figure 5.4,
we see a given function f pictured at left, and its corresponding area function (choosing a = 0),
A(x) =

∫ x
0 f(t) dt shown at right.

-1

1

y = f(t)

π 2π

x
1

3

π 2π

x

A(x)

Figure 5.4: At left, the graph of the given function f . At right, the area function A(x) =
∫ x
0
f(t) dt.

Note particularly that the functionAmeasures the net-signed area from t = 0 to t = x bounded
by the curve y = f(t); this value is then reported as the corresponding height on the graph of
y = A(x). It is even more natural to think of this relationship between f and A dynamically. At
http://gvsu.edu/s/cz, we find a java applet1 that brings the static picture in Figure 5.4 to life.
There, the user can move the red point on the function f and see how the corresponding height
changes at the light blue point on the graph of A.

The choice of a is somewhat arbitrary. In the activity that follows, we explore how the value of
a affects the graph of the integral function, as well as some additional related issues.

Activity 5.3.
1David Austin, Grand Valley State University

http://gvsu.edu/s/cz
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Suppose that g is given by the graph at left in Figure 5.5 and thatA is the corresponding integral
function defined by A(x) =

∫ x
1 g(t) dt.

1 3 5

-3

-1

1

3
g

1 3 5

-3

-1

1

3

Figure 5.5: At left, the graph of y = g(t); at right, axes for plotting y = A(x), where A is defined by the
formula A(x) =

∫ x
1
g(t) dt.

(a) On what interval(s) is A an increasing function? On what intervals is A decreasing?
Why?

(b) On what interval(s) do you think A is concave up? concave down? Why?

(c) At what point(s) does A have a relative minimum? a relative maximum?

(d) Use the given information to determine the exact values of A(0), A(1), A(2), A(3), A(4),
A(5), and A(6).

(e) Based on your responses to all of the preceding questions, sketch a complete and accu-
rate graph of y = A(x) on the axes provided, being sure to indicate the behavior of A
for x < 0 and x > 6.

(f) How would your graph of A change if A were instead defined by A(x) =
∫ x

2 f(t) dt?

C

Summary

In this section, we encountered the following important ideas:

• Given the graph of a function f , we can construct the graph of its antiderivative F provided
that (a) we know a starting value of F , say F (a), and (b) we can evaluate the integral

∫ b
a f(x) dx

exactly for relevant choices of a and b. For instance, if we wish to know F (3), we can compute
F (3) = F (a) +

∫ 3
a f(x) dx. When we combine this information about the function values of F

together with our understanding of how the behavior of F ′ = f affects the overall shape of F ,
we can develop a completely accurate graph of the antiderivative F .
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• Because the derivative of a constant is zero, if F is an antiderivative of f , it follows that
G(x) = F (x) + C will also be an antiderivative of f . Said differently, any two antideriva-
tives of a function f differ precisely by a constant. This shows that any function with at least
one antiderivative in fact has infinitely many, and the graphs of any two antiderivatives will
differ only by a vertical translation.

• Given a function f , the rule A(x) =
∫ x
a f(t) dt defines a new function A that measures the net-

signed area bounded by f on the interval [a, x]. We call the function A the integral function
corresponding to f .

Exercises

1. A moving particle has its velocity given by the quadratic function v pictured in Figure 5.6. In
addition, it is given that A1 = 7

6 and A2 = 16
3 , as well as that for the corresponding position

function s, s(0) = 0.5.

1 6

-3

3

v

A1

A2

t

2 4 6

-3

-1

1

3

t

s

Figure 5.6: At left, the given graph of v. At right, axes for plotting s.

(a) Use the given information to determine s(1), s(3), s(5), and s(6).

(b) On what interval(s) is s increasing? On what interval(s) is s decreasing?

(c) On what interval(s) is s concave up? On what interval(s) is s concave down?

(d) Sketch an accurate, labeled graph of s on the axes at right in Figure 5.6.

(e) Note that v(t) = −2 + 1
2(t− 3)2. Find a formula for s.

2. A person exercising on a treadmill experiences different levels of resistance and thus burns
calories at different rates, depending on the treadmill’s setting. In a particular workout, the
rate at which a person is burning calories is given by the piecewise constant function c pictured
in Figure 5.7. Note that the units on c are “calories per minute.”

(a) Let C be an antiderivative of c. What does the function C measure? What are its units?
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10 20 30

5

10

15
c

cal/min

min

10 20 30

Figure 5.7: At left, the given graph of c. At right, axes for plotting C.

(b) Assume thatC(0) = 0. Determine the exact value ofC(t) at the values t = 5, 10, 15, 20, 25, 30.

(c) Sketch an accurate graph of C on the axes provided at right in Figure 5.7. Be certain to
label the scale on the vertical axis.

(d) Determine a formula for C that does not involve an integral and is valid for 5 ≤ t ≤ 10.
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3. Consider the piecewise linear function f given in Figure 5.8. Let the functions A, B, and C be
defined by the rules A(x) =

∫ x
−1 f(t) dt, B(x) =

∫ x
0 f(t) dt, and C(x) =

∫ x
1 f(t) dt.

1 3 5
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-1
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1 3 5
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3

Figure 5.8: At left, the given graph of f . At right, axes for plotting A, B, and C.

(a) For the values x = −1, 0, 1, . . . , 6, make a table that lists corresponding values of A(x),
B(x), and C(x).

(b) On the axes provided in Figure 5.8, sketch the graphs of A, B, and C.

(c) How are the graphs of A, B, and C related?

(d) How would you best describe the relationship between the function A and the function
f?
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5.2 The Second Fundamental Theorem of Calculus

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How does the integral function A(x) =
∫ x

1 f(t) dt define an antiderivative of f?

• What is the statement of the Second Fundamental Theorem of Calculus?

• How do the First and Second Fundamental Theorems of Calculus enable us to formally see
how differentiation and integration are almost inverse processes?

Introduction

In Section 4.4, we learned the Fundamental Theorem of Calculus (FTC), which from here forward
will be referred to as the First Fundamental Theorem of Calculus, as in this section we develop
a corresponding result that follows it. In particular, recall that the First FTC tells us that if f is a
continuous function on [a, b] and F is any antiderivative of f (that is, F ′ = f ), then

∫ b

a
f(x) dx = F (b)− F (a).

We have typically used this result in two settings: (1) where f is a function whose graph we know
and for which we can compute the exact area bounded by f on a certain interval [a, b], we can
compute the change in an antiderivative F over the interval; and (2) where f is a function for
which it is easy to determine an algebraic formula for an antiderivative, we may evaluate the
integral exactly and hence determine the net-signed area bounded by the function on the interval.
For the former, see Preview Activity 5.1 or Activity 5.1. For the latter, we can easily evaluate
exactly integrals such as ∫ 4

1
x2 dx,

since we know that the function F (x) = 1
3x

3 is an antiderivative of f(x) = x2. Thus,

∫ 4

1
x2 dx =

1

3
x3

∣∣∣∣
4

1

=
1

3
(4)3 − 1

3
(1)3

= 21.

Here we see that the First FTC can be viewed from at least two perspectives: first, as a tool to
find the difference F (b) − F (a) for an antiderivative F of the integrand f . In this situation, we
need to be able to determine the value of the integral

∫ b
a f(x) dx exactly, perhaps through known

geometric formulas for area. It is possible that we may not have a formula for F itself. From a
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second perspective, the First FTC provides a way to find the exact value of a definite integral,
and hence a certain net-signed area exactly, by finding an antiderivative of the integrand and
evaluating its total change over the interval. In this latter case, we need to know a formula for the
antiderivative F , as this enables us to compute net-signed areas exactly through definite integrals,
as demonstrated in Figure 5.9.

10

20

1 2 3 4

f(x) = x2

∫ 4

1
x2 dx = 21

10

20

1 2 3 4

F (x) = 1
3x

3

(1, 13 )

(4, 643 )

F (4)− F (1) = 21

Figure 5.9: At left, the graph of f(x) = x2 on the interval [1, 4] and the area it bounds. At right, the
antiderivative function F (x) = 1

3x
3, whose total change on [1, 4] is the value of the definite integral at left.

We recall further that the value of a definite integral may have additional meaning depending
on context: change in position when the integrand is a velocity function, total pollutant leaked
from a tank when the integrand is the rate at which pollution is leaking, or other total changes
that correspond to a given rate function that is the integrand. In addition, the value of the definite
integral is always connected to the average value of a continuous function on a given interval:
fAVG[a,b] = 1

b−a
∫ b
a f(x) dx.

Next, remember that in the last part of Section 5.1, we studied integral functions of the form
A(x) =

∫ x
c f(t) dt. Figure 5.4 is a particularly important image to keep in mind as we work with

integral functions, and the corresponding java applet at http://gvsu.edu/s/cz is likewise
foundational to our understanding of the function A. In what follows, we use the First FTC to
gain additional understanding the function A(x) =

∫ x
c f(t) dt, where the integrand f is given

(either through a graph or a formula), and c is a constant. In particular, we investigate further the
special nature of the relationship between the functions A and f .

Preview Activity 5.2. Consider the function A defined by the rule

A(x) =

∫ x

1
f(t) dt,

where f(t) = 4− 2t.

(a) Compute A(1) and A(2) exactly.

http://gvsu.edu/s/cz
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(b) Use the First Fundamental Theorem of Calculus to find an equivalent formula for A(x)
that does not involve integrals. That is, use the first FTC to evaluate

∫ x
1 (4− 2t) dt.

(c) Observe that f is a linear function; what kind of function is A?

(d) Using the formula you found in (b) that does not involve integrals, compute A′(x).

(e) While we have defined f by the rule f(t) = 4− 2t, it is equivalent to say that f is given by
the rule f(x) = 4− 2x. What do you observe about the relationship between A and f?

./

The Second Fundamental Theorem of Calculus

The result of Preview Activity 5.2 is not particular to the function f(t) = 4 − 2t, nor to the choice
of “1” as the lower bound in the integral that defines the function A. For instance, if we let f(t) =
cos(t) − t and set A(x) =

∫ x
2 f(t) dt, then we can determine a formula for A without integrals by

the First FTC. Specifically,

A(x) =

∫ x

2
(cos(t)− t) dt

= sin(t)− 1

2
t2
∣∣∣∣
x

2

= sin(x)− 1

2
x2 − (sin(2)− 2) .

Differentiating A(x), since (sin(2)− 2) is constant, it follows that

A′(x) = cos(x)− x,

and thus we see that A′(x) = f(x). This tells us that for this particular choice of f , A is an an-
tiderivative of f . More specifically, since A(2) =

∫ 2
2 f(t) dt = 0, A is the only antiderivative of f

for which A(2) = 0.

In general, if f is any continuous function, F is any antiderivative of f , and we define the
function A by the rule

A(x) =

∫ x

c
f(t) dt,

where c is an arbitrary constant, then it follows from the First FTC that

A(x) = F (x)− F (c).

Since F (c) is constant and F is an antiderivative of f , we see

A′(x) = F ′(x) = f(x),
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and thus A is an antiderivative of f . In addition, A(c) =
∫ c
c f(t) dt = 0. This argument demon-

strates the truth of the Second Fundamental Theorem of Calculus, which we state as follows.

Theorem. (Second FTC) If f is a continuous function, c is a constant, and A(x) =
∫ x
c f(t) dt,

then A is the unique antiderivative of f that satisfies A(c) = 0.

Activity 5.4.

Suppose that f is the function given in Figure 5.10 and that f is a piecewise function whose
parts are either portions of lines or portions of circles, as pictured. In addition, let A be the

1 2 3 4 5 6 7

-1

1
y = f(x)

Figure 5.10: At left, the graph of y = f(x). At right, axes for sketching y = A(x).

function defined by the rule A(x) =
∫ x

2 f(t) dt.

(a) What does the Second FTC tell us about the relationship between A and f?

(b) Compute A(1) and A(3) exactly.

(c) Sketch a precise graph of y = A(x) on the axes at right that accurately reflects where A
is increasing and decreasing, where A is concave up and concave down, and the exact
values of A at x = 0, 1, . . . , 7.

(d) How is A similar to, but different from, the function F that you found in Activity 5.1?

(e) With as little additional work as possible, sketch precise graphs of the functions B(x) =∫ x
3 f(t) dt and C(x) =

∫ x
1 f(t) dt. Justify your results with at least one sentence of expla-

nation.

C

Understanding Integral Functions

The Second FTC provides us with a means to construct an antiderivative of any continuous func-
tion. In particular, if we are given a continuous function g and wish to find an antiderivative of G,
we can now say that

G(x) =

∫ x

c
g(t) dt
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provides the rule for such an antiderivative, and moreover that G(c) = 0. Note especially that we
know that G′(x) = g(x). We sometimes want to write this relationship between G and g from a
different notational perspective. In particular, observe that

d

dx

[∫ x

c
g(t) dt

]
= g(x). (5.3)

This result can be particularly useful when we’re given an integral function such as G and wish to
understand properties of its graph by recognizing that G′(x) = g(x), while not necessarily being
able to ever exactly evaluate the definite integral

∫ x
c g(t) dt. To see how this is the case, we consider

the following example.

Example 5.1. Investigate the behavior of the integral function

E(x) =

∫ x

0
e−t

2
dt.

Solution. E is closely related to the well known error function2, a function that is particularly
important in probability and statistics. It turns out that the function e−t

2
does not have an ele-

mentary antiderivative that we can express without integrals. That is, whereas a function such
as f(t) = 4 − 2t has elementary antiderivative F (t) = 4t − t2, we are unable to find a simple
formula for an antiderivative of e−t

2
that does not involve a definite integral. We will learn more

about finding algebraic formulas for antiderivatives without definite integrals in the sections that
follow.

Returning our attention to the function E, while we cannot evaluate E exactly for any value
other than x = 0, we still can gain a tremendous amount of information about the function E. To
begin, applying the rule in Equation (5.3) to E, it follows that

E′(x) =
d

dx

[∫ x

0
e−t

2
dt

]
= e−x

2
,

so we know a formula for the derivative ofE. Moreover, we know thatE(0) = 0. This information
is precisely the type we were given in problems such as the one in Activity 3.1 and others in
Section 3.1, where we were given information about the derivative of a function, but lacked a
formula for the function itself.

Here, using the first and second derivatives of E, along with the fact that E(0) = 0, we can
determine more information about the behavior of E. First, with E′(x) = e−x

2
, we note that for all

real numbers x, e−x
2
> 0, and thus E′(x) > 0 for all x. Thus E is an always increasing function.

Further, we note that as x→∞, E′(x) = e−x
2 → 0, hence the slope of the function E tends to zero

2The error function is defined by the rule erf(x) = 2√
π

∫ x
0
e−t

2

dt and has the key property that 0 ≤ erf(x) < 1 for all
x ≥ 0 and moreover that lim

x→∞
erf(x) = 1.
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as x→∞ (and similarly as x→ −∞). This tells us thatE has horizontal asymptotes as x increases
or decreases without bound.

In addition, we can observe that E′′(x) = −2xe−x
2
, and that E′′(0) = 0, while E′′(x) < 0 for

x > 0 and E′′(x) > 0 for x < 0. This information tells us that E is concave up for x < 0 and
concave down for x > 0 with a point of inflection at x = 0.

The only thing we lack at this point is a sense of how big E can get as x increases. If we use
a midpoint Riemann sum with 10 subintervals to estimate E(2), we see that E(2) ≈ 0.8822; a
similar calculation to estimate E(3) shows little change (E(3) ≈ 0.8862), so it appears that as x in-
creases without bound, E approaches a value just larger than 0.886. Putting all of this information
together (and using the symmetry of f(t) = e−t

2
), we see the results shown in Figure 5.13.

-1

1

-2 2

f(t) = e−t2

-1

1

-2 2

E(x) =
∫ x

0
e−t2dt

Figure 5.11: At left, the graph of f(t) = e−t
2

. At right, the integral function E(x) =
∫ x
0
e−t

2

dt, which is the
unique antiderivative of f that satisfies E(0) = 0.

Again, E is the antiderivative of f(t) = e−t
2

that satisfies E(0) = 0. Moreover, the values on
the graph of y = E(x) represent the net-signed area of the region bounded by f(t) = e−t

2
from 0

up to x. We see that the value of E increases rapidly near zero but then levels off x increases since
there is less and less additional accumulated area bounded by f(t) = e−t

2
as x increases.

Activity 5.5.

Suppose that f(t) = t
1+t2

and F (x) =
∫ x

0 f(t) dt.

(a) On the axes at left in Figure 5.12, plot a graph of f(t) = t
1+t2

on the interval −10 ≤ t ≤
10. Clearly label the vertical axes with appropriate scale.

(b) What is the key relationship between F and f , according to the Second FTC?

(c) Use the first derivative test to determine the intervals on which F is increasing and
decreasing.



268 5.2. THE SECOND FUNDAMENTAL THEOREM OF CALCULUS

Figure 5.12: Axes for plotting f and F .

(d) Use the second derivative test to determine the intervals on which F is concave up and
concave down. Note that f ′(t) can be simplified to be written in the form f ′(t) = 1−t2

(1+t2)2
.

(e) Using technology appropriately, estimate the values of F (5) and F (10) through appro-
priate Riemann sums.

(f) Sketch an accurate graph of y = F (x) on the righthand axes provided, and clearly label
the vertical axes with appropriate scale.

C

Differentiating an Integral Function

We have seen that the Second FTC enables us to construct an antiderivative F of any continuous
function f by defining F by the corresponding integral function F (x) =

∫ x
c f(t) dt. Said differently,

if we have a function of the form F (x) =
∫ x
c f(t) dt, then we know that F ′(x) = d

dx

[∫ x
c f(t) dt

]
=

f(x). This shows that integral functions, while perhaps having the most complicated formulas
of any functions we have encountered, are nonetheless particularly simple to differentiate. For
instance, if

F (x) =

∫ x

π
sin(t2) dt,

then by the Second FTC, we know immediately that

F ′(x) = sin(x2).

Stating this result more generally for an arbitrary function f , we know by the Second FTC that

d

dx

[∫ x

a
f(t) dt

]
= f(x).
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In words, the last equation essentially says that “the derivative of the integral function whose
integrand is f , is f .” In this sense, we see that if we first integrate the function f from t = a to
t = x, and then differentiate with respect to x, these two processes “undo” one another.

Taking a different approach, say we begin with a function f(t) and differentiate with respect
to t. What happens if we follow this by integrating the result from t = a to t = x? That is, what
can we say about the quantity ∫ x

a

d

dt
[f(t)] dt?

Here, we use the First FTC and note that f(t) is an antiderivative of d
dt [f(t)] . Applying this result

and evaluating the antiderivative function, we see that
∫ x

a

d

dt
[f(t)] dt = f(t)

∣∣∣∣
x

a

= f(x)− f(a).

Thus, we see that if we apply the processes of first differentiating f and then integrating the result
from a to x, we return to the function f , minus the constant value f(a). So in this situation, the
two processes almost undo one another, up to the constant f(a).

The observations made in the preceding two paragraphs demonstrate that differentiating and
integrating (where we integrate from a constant up to a variable) are almost inverse processes. In
one sense, this should not be surprising: integrating involves antidifferentiating, which reverses
the process of differentiating. On the other hand, we see that there is some subtlety involved, as
integrating the derivative of a function does not quite produce the function itself. This is con-
nected to a key fact we observed in Section 5.1, which is that any function has an entire family of
antiderivatives, and any two of those antiderivatives differ only by a constant.

Activity 5.6.

Evaluate each of the following derivatives and definite integrals. Clearly cite whether you use
the First or Second FTC in so doing.

(a)
d

dx

[∫ x

4
sin(t2) dt

]

(b)
∫ x

−2

d

dt

[
t4

1 + t4

]
dt

(c)
d

dx

[∫ 1

x
cos(t3) dt

]

(d)
∫ x

3

d

dt

[
ln(1 + t2)

]
dt

(e)
d

dx

[∫ x3

4
sin(t2) dt

]

(Hint: Let F (x) =
∫ x

4 sin(t2) dt and observe that this problem is asking you to evaluate
d
dx

[
F (x3)]

]
.
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C

Summary

In this section, we encountered the following important ideas:

• For a continuous function f , the integral function A(x) =
∫ x

1 f(t) dt defines an antiderivative of
f .

• The Second Fundamental Theorem of Calculus is the formal, more general statement of the
preceding fact: if f is a continuous function and c is any constant, then A(x) =

∫ x
c f(t) dt is the

unique antiderivative of f that satisfies A(c) = 0.

• Together, the First and Second FTC enable us to formally see how differentiation and integra-
tion are almost inverse processes through the observations that

∫ x

c

d

dt
[f(t)] dt = f(x)− f(c)

and
d

dx

[∫ x

c
f(t) dt

]
= f(x).

Exercises

1. Let g be the function pictured below at left, and let F be defined by F (x) =
∫ x

2 g(t) dt. Assume
that the shaded areas have values A1 = 4.3, A2 = 12.7, A3 = 0.4, and A4 = 1.8. Assume further
that the portion of A2 that lies between x = 0.5 and x = 2 is 5.4.

Sketch a carefully labeled graph of F on the axes provided, and include a written analysis of
how you know where g is zero, increasing, decreasing, CCU, and CCD.

1 2 3 4 5 6

-4

-2

2

4

6

A1

A2

A3

A4

y = g(t)

-1 1 2 3 4 5 6

-10

-5

5

10

15

Figure 5.13: At left, the graph of g. At right, axes for plotting F .
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2. The tide removes sand from the beach at a small ocean park at a rate modeled by the function

R(t) = 2 + 5 sin

(
4πt

25

)

A pumping station adds sand to the beach at rate modeled by the function

S(t) =
15t

1 + 3t

Both R(t) and S(t) are measured in cubic yards of sand per hour, t is measured in hours, and
the valid times are 0 ≤ t ≤ 6. At time t = 0, the beach holds 2500 cubic yards of sand.

(a) What definite integral measures how much sand will the tide remove during the time
period 0 ≤ t ≤ 6? Why?

(b) Write an expression for Y (x), the total number of cubic yards of sand on the beach at
time x. Carefully explain your thinking and reasoning.

(c) At what instantaneous rate is the total number of cubic yards of sand on the beach at
time t = 4 changing?

(d) Over the time interval 0 ≤ t ≤ 6, at what time t is the amount of sand on the beach
least? What is this minimum value? Explain and justify your answers fully.

3. When an aircraft attempts to climb as rapidly as possible, its climb rate (in feet per minute)
decreases as altitude increases, because the air is less dense at higher altitudes. Given below
is a table showing performance data for a certain single engine aircraft, giving its climb rate at
various altitudes, where c(h) denotes the climb rate of the airplane at an altitude h.

h (feet) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
c (ft/min) 925 875 830 780 730 685 635 585 535 490 440

Let a new function m, that also depends on h, (say y = m(h)) measure the number of minutes
required for a plane at altitude h to climb the next foot of altitude.

a. Determine a similar table of values for m(h) and explain how it is related to the table
above. Be sure to discuss the units on m.

b. Give a careful interpretation of a function whose derivative is m(h). Describe what the
input is and what the output is. Also, explain in plain English what the function tells us.

c. Determine a definite integral whose value tells us exactly the number of minutes required
for the airplane to ascend to 10,000 feet of altitude. Clearly explain why the value of this
integral has the required meaning.

d. Determine a formula for a functionM(h) whose value tells us the exact number of minutes
required for the airplane to ascend to h feet of altitude.
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e. Estimate the values of M(6000) and M(10000) as accurately as you can. Include units on
your results.
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5.3 Integration by Substitution

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How can we begin to find algebraic formulas for antiderivatives of more complicated alge-
braic functions?

• What is an indefinite integral and how is its notation used in discussing antiderivatives?

• How does the technique of u-substitution work to help us evaluate certain indefinite inte-
grals, and how does this process rely on identifying function-derivative pairs?

Introduction

In Section 4.4, we learned the key role that antiderivatives play in the the process of evaluating
definite integrals exactly. In particular, the Fundamental Theorem of Calculus tells us that if F is
any antiderivative of f , then ∫ b

a
f(x) dx = F (b)− F (a).

Furthermore, we realized that each elementary derivative rule developed in Chapter 2 leads to a
corresponding elementary antiderivative, as summarized in Table 4.1. Thus, if we wish to evaluate
an integral such as ∫ 1

0

(
x3 −√x+ 5x

)
dx,

it is straightforward to do so, since we can easily antidifferentiate f(x) = x3−√x+5x. In particular,
since a function F whose derivative is f is given by F (x) = 1

4x
4− 2

3x
3/2 + 1

ln(5)5x, the Fundamental
Theorem of Calculus tells us that

∫ 1

0

(
x3 −√x+ 5x

)
dx =

1

4
x4 − 2

3
x3/2 +

1

ln(5)
5x
∣∣∣∣
1

0

=

(
1

4
(1)4 − 2

3
(1)3/2 +

1

ln(5)
51

)
−
(

1

4
(0)4 − 2

3
(0)3/2 +

1

ln(5)
50

)

=
1

4
− 2

3
+

5

ln(5)
− 1

ln(5)

= − 5

12
+

4

ln(5)
.

Because an algebraic formula for an antiderivative of f enables us to evaluate the definite integral∫ b
a f(x) dx exactly, we see that we have a natural interest in being able to find such algebraic an-

tiderivatives. Note that we emphasize algebraic antiderivatives, as opposed to any antiderivative,
since we know by the Second Fundamental Theorem of Calculus that G(x) =

∫ x
a f(t) dt is indeed
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an antiderivative of the given function f , but one that still involves a definite integral. One of
our main goals in this section and the one following is to develop understanding, in select circum-
stances, of how to “undo” the process of differentiation in order to find an algebraic antiderivative
for a given function.

Preview Activity 5.3. In Section 2.5, we learned the Chain Rule and how it can be applied to find
the derivative of a composite function. In particular, if u is a differentiable function of x, and f is
a differentiable function of u(x), then

d

dx
[f(u(x))] = f ′(u(x)) · u′(x).

In words, we say that the derivative of a composite function c(x) = f(u(x)), where f is considered
the “outer” function and u the “inner” function, is “the derivative of the outer function, evaluated
at the inner function, times the derivative of the inner function.”

(a) For each of the following functions, use the Chain Rule to find the function’s derivative. Be
sure to label each derivative by name (e.g., the derivative of g(x) should be labeled g′(x)).

i. g(x) = e3x

ii. h(x) = sin(5x+ 1)

iii. p(x) = arctan(2x)

iv. q(x) = (2− 7x)4

v. r(x) = 34−11x

(b) For each of the following functions, use your work in (a) to help you determine the general
antiderivative3 of the function. Label each antiderivative by name (e.g., the antiderivative
of m should be called M ). In addition, check your work by computing the derivative of
each proposed antiderivative.

i. m(x) = e3x

ii. n(x) = cos(5x+ 1)

iii. s(x) = 1
1+4x2

iv. v(x) = (2− 7x)3

v. w(x) = 34−11x

3Recall that the general antiderivative of a function includes “+C” to reflect the entire family of functions that share
the same derivative.
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(c) Based on your experience in parts (a) and (b), conjecture an antiderivative for each of the
following functions. Test your conjectures by computing the derivative of each proposed
antiderivative.

i. a(x) = cos(πx)

ii. b(x) = (4x+ 7)11

iii. c(x) = xex
2

./

Reversing the Chain Rule: First Steps

In Preview Activity 5.3, we saw that it is usually straightforward to antidifferentiate a function of
the form

h(x) = f(u(x)),

whenever f is a familiar function whose antiderivative is known and u(x) is a linear function. For
example, if we consider

h(x) = (5x− 3)6,

in this context the outer function f is f(u) = u6, while the inner function is u(x) = 5x − 3. Since
the antiderivative of f is F (u) = 1

7u
7 + C, we see that the antiderivative of h is

H(x) =
1

7
(5x− 3)7 · 1

5
+ C =

1

35
(5x− 3)7 + C.

The inclusion of the constant 1
5 is essential precisely because the derivative of the inner function is

u′(x) = 5. Indeed, if we now compute H ′(x), we find by the Chain Rule (and Constant Multiple
Rule) that

H ′(x) =
1

35
· 7(5x− 3)6 · 5 = (5x− 3)6 = h(x),

and thus H is indeed the general antiderivative of h.

Hence, in the special case where the outer function is familiar and the inner function is linear,
we can antidifferentiate composite functions according to the following rule.

If h(x) = f(ax+b) and F is a known algebraic antiderivative of f , then the general antideriva-
tive of h is given by

H(x) =
1

a
F (ax+ b) + C.

When discussing antiderivatives, it is often useful to have shorthand notation that indicates
the instruction to find an antiderivative. Thus, in a similar way to how the notation

d

dx
[f(x)]
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represents the derivative of f(x) with respect to x, we use the notation of the indefinite integral,
∫
f(x) dx

to represent the general antiderivative of f with respect to x. For instance, returning to the ear-
lier example with h(x) = (5x − 3)6 above, we can rephrase the relationship between h and its
antiderivative H through the notation

∫
(5x− 3)6 dx =

1

35
(5x− 6)7 + C.

When we find an antiderivative, we will often say that we evaluate an indefinite integral; said dif-
ferently, the instruction to evaluate an indefinite integral means to find the general antiderivative.
Just as the notation d

dx [�] means “find the derivative with respect to x of �,” the notation
∫
� dx

means “find a function of x whose derivative is �.”

Activity 5.7.

Evaluate each of the following indefinite integrals. Check each antiderivative that you find by
differentiating.

(a)
∫

sin(8− 3x) dx

(b)
∫

sec2(4x) dx

(c)
∫

1
11x−9 dx

(d)
∫

csc(2x+ 1) cot(2x+ 1) dx

(e)
∫

1√
1−16x2

dx

(f)
∫

5−x dx

C

Reversing the Chain Rule: u-substitution

Of course, a natural question arises from our recent work: what happens when the inner function
is not a linear function? For example, can we find antiderivatives of such functions as

g(x) = xex
2

and h(x) = ex
2
?

It is important to explicitly remember that differentiation and antidifferentiation are essentially
inverse processes; that they are not quite inverse processes is due to the +C that arises when antid-
ifferentiating. This close relationship enables us to take any known derivative rule and translate it
to a corresponding rule for an indefinite integral. For example, since

d

dx

[
x5
]

= 5x4,



5.3. INTEGRATION BY SUBSTITUTION 277

we can equivalently write ∫
5x4 dx = x5 + C.

Recall that the Chain Rule states that

d

dx
[f(g(x))] = f ′(g(x)) · g′(x).

Restating this relationship in terms of an indefinite integral,
∫
f ′(g(x))g′(x) dx = f(g(x)) + C. (5.4)

Hence, Equation (5.4) tells us that if we can take a given function and view its algebraic structure
as f ′(g(x))g′(x) for some appropriate choices of f and g, then we can antidifferentiate the function
by reversing the Chain Rule. It is especially notable that both g(x) and g′(x) appear in the form of
f ′(g(x))g′(x); we will sometimes say that we seek to identify a function-derivative pair when trying
to apply the rule in Equation (5.4).

In the situation where we can identify a function-derivative pair, we will introduce a new
variable u to represent the function g(x). Observing that with u = g(x), it follows in Leibniz
notation that du

dx = g′(x), so that in terms of differentials4, du = g′(x) dx. Now converting the
indefinite integral of interest to a new one in terms of u, we have

∫
f ′(g(x))g′(x) dx =

∫
f ′(u) du.

Provided that f ′ is an elementary function whose antiderivative is known, we can now easily
evaluate the indefinite integral in u, and then go on to determine the desired overall antiderivative
of f ′(g(x))g′(x). We call this process u-substitution. To see u-substitution at work, we consider the
following example.

Example 5.2. Evaluate the indefinite integral
∫
x3 · sin(7x4 + 3) dx

and check the result by differentiating.

Solution. We can make two key algebraic observations stand regarding the integrand, x3·sin(7x4+
3). First, sin(7x4 + 3) is a composite function; as such, we know we’ll need a more sophisticated

4If we recall from the definition of the derivative that du
dx
≈ 4u
4x and use the fact that du

dx
= g′(x), then we see that

g′(x) ≈ 4u4x . Solving for 4u, 4u ≈ g′(x)4x. It is this last relationship that, when expressed in “differential” notation
enables us to write du = g′(x) dx in the change of variable formula.
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approach to antidifferentiating. Second, x3 is almost the derivative of (7x4 + 3); the only issue is
a missing constant. Thus, x3 and (7x4 + 3) are nearly a function-derivative pair. Furthermore, we
know the antiderivative of f(u) = sin(u). The combination of these observations suggests that we
can evaluate the given indefinite integral by reversing the chain rule through u-substitution.

Letting u represent the inner function of the composite function sin(7x4 + 3), we have

u = 7x4 + 3,

and thus du
dx = 28x3. In differential notation, it follows that du = 28x3 dx, and thus x3 dx = 1

28 du.
We make this last observation because the original indefinite integral may now be written

∫
sin(7x4 + 3) · x3 dx,

and so by substituting the expressions in u for x (specifically u for 7x4 + 3 and 1
28 du for x3 dx), it

follows that ∫
sin(7x4 + 3) · x3 dx =

∫
sin(u) · 1

28
du.

Now we may evaluate the original integral by first evaluating the easier integral in u, followed by
replacing u by the expression 7x4 + 3. Doing so, we find

∫
sin(7x4 + 3) · x3 dx =

∫
sin(u) · 1

28
du

=
1

28

∫
sin(u) du

=
1

28
(− cos(u)) + C

= − 1

28
cos(7x4 + 3) + C.

To check our work, we observe by the Chain Rule that

d

dx

[
− 1

28
cos(7x4 + 3) + C

]
= − 1

28
· (−1) sin(7x4 + 3) · 28x3 = sin(7x4 + 3) · x3,

which is indeed the original integrand.

An essential observation about our work in Example 5.2 is that the u-substitution only worked
because the function multiplying sin(7x4 + 3) was x3. If instead that function was x2 or x4, the
substitution process may not (and likely would not) have worked. This is one of the primary
challenges of antidifferentiation: slight changes in the integrand make tremendous differences.
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For instance, we can use u-substitution with u = x2 and du = 2xdx to find that

∫
xex

2
dx =

∫
eu · 1

2
du

=
1

2

∫
eu du

=
1

2
eu + C

=
1

2
ex

2
+ C.

If, however, we consider the similar indefinite integral

∫
ex

2
dx,

the missing x to multiply ex
2

makes the u-substitution u = x2 no longer possible. Hence, part
of the lesson of u-substitution is just how specialized the process is: it only applies to situations
where, up to a missing constant, the integrand that is present is the result of applying the Chain
Rule to a different, related function.

Activity 5.8.

Evaluate each of the following indefinite integrals by using these steps:

• Find two functions within the integrand that form (up to a possible missing constant) a
function-derivative pair;

• Make a substitution and convert the integral to one involving u and du;

• Evaluate the new integral in u;

• Convert the resulting function of u back to a function of x by using your earlier substitu-
tion;

• Check your work by differentiating the function of x. You should come up with the inte-
grand originally given.

(a)
∫

x2

5x3 + 1
dx

(b)
∫
ex sin(ex) dx

(c)
∫

cos(
√
x)√

x
dx

C
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Evaluating Definite Integrals via u-substitution

We have just introduced u-substitution as a means to evaluate indefinite integrals of functions that
can be written, up to a constant multiple, in the form f(g(x))g′(x). This same technique can be
used to evaluate definite integrals involving such functions, though we need to be careful with
the corresponding limits of integration. Consider, for instance, the definite integral

∫ 5

2
xex

2
dx.

Whenever we write a definite integral, it is implicit that the limits of integration correspond to the
variable of integration. To be more explicit, observe that

∫ 5

2
xex

2
dx =

∫ x=5

x=2
xex

2
dx.

When we execute a u-substitution, we change the variable of integration; it is essential to note
that this also changes the limits of integration. For instance, with the substitution u = x2 and
du = 2x dx, it also follows that when x = 2, u = 22 = 4, and when x = 5, u = 52 = 25. Thus, under
the change of variables of u-substitution, we now have

∫ x=5

x=2
xex

2
dx =

∫ u=25

u=4
eu · 1

2
du

=
1

2
eu
∣∣∣∣
u=25

u=4

=
1

2
e25 − 1

2
e4.

Alternatively, we could consider the related indefinite integral
∫ 5

2 xe
x2 dx, find the antideriva-

tive 1
2e
x2 through u-substitution, and then evaluate the original definite integral. From that per-

spective, we’d have
∫ 5

2
xex

2
dx =

1

2
ex

2

∣∣∣∣
5

2

=
1

2
e25 − 1

2
e4,

which is, of course, the same result.

Activity 5.9.

Evaluate each of the following definite integrals exactly through an appropriate u-substitution.

(a)
∫ 2

1

x

1 + 4x2
dx

(b)
∫ 1

0
e−x(2e−x + 3)9 dx
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(c)
∫ 4/π

2/π

cos
(

1
x

)

x2
dx

C

Summary

In this section, we encountered the following important ideas:

• To begin to find algebraic formulas for antiderivatives of more complicated algebraic functions,
we need to think carefully about how we can reverse known differentiation rules. To that end,
it is essential that we understand and recall known derivatives of basic functions, as well as the
standard derivative rules.

• The indefinite integral provides notation for antiderivatives. When we write “
∫
f(x) dx,” we

mean “the general antiderivative of f .” In particular, if we have functions f and F such that
F ′ = f , the following two statements say the exact thing:

d

dx
[F (x)] = f(x) and

∫
f(x) dx = F (x) + C.

That is, f is the derivative of F , and F is an antiderivative of f .

• The technique of u-substitution helps us evaluate indefinite integrals of the form
∫
f(g(x))g′(x) dx

through the substitutions u = g(x) and du = g′(x) dx, so that
∫
f(g(x))g′(x) dx =

∫
f(u) du.

A key part of choosing the expression in x to let be represented by u is the identification of
a function-derivative pair. To do so, we often look for an “inner” function g(x) that is part
of a composite function, while investigating whether g′(x) (or a constant multiple of g′(x)) is
present as a multiplying factor of the integrand.

Exercises

1. This problem centers on finding antiderivatives for the basic trigonometric functions other than
sin(x) and cos(x).

(a) Consider the indefinite integral
∫

tan(x) dx. By rewriting the integrand as tan(x) =

sin(x)
cos(x) and identifying an appropriate function-derivative pair, make a u-substitution

and hence evaluate
∫

tan(x) dx.

(b) In a similar way, evaluate
∫

cot(x) dx.
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(c) Consider the indefinite integral

∫
sec2(x) + sec(x) tan(x)

sec(x) + tan(x)
dx.

Evaluate this integral using the substitution u = sec(x) + tan(x).

(d) Simplify the integrand in (c) by factoring the numerator. What is a far simpler way to
write the integrand?

(e) Combine your work in (c) and (d) to determine
∫

sec(x) dx.

(f) Using (c)-(e) as a guide, evaluate
∫

csc(x) dx.

2. Consider the indefinite integral
∫
x
√
x− 1 dx.

(a) At first glance, this integrand may not seem suited to substitution due to the presence
of x in separate locations in the integrand. Nonetheless, using the composite function√
x− 1 as a guide, let u = x− 1. Determine expressions for both x and dx in terms of u.

(b) Convert the given integral in x to a new integral in u.

(c) Evaluate the integral in (b) by noting that
√
u = u1/2 and observing that it is now possi-

ble to rewrite the integrand in u by expanding through multiplication.

(d) Evaluate each of the integrals
∫
x2
√
x− 1 dx and

∫
x
√
x2 − 1 dx. Write a paragraph to

discuss the similarities among the three indefinite integrals in this problem and the role
of substitution and algebraic rearrangement in each.

3. Consider the indefinite integral
∫

sin3(x) dx.

(a) Explain why the substitution u = sin(x) will not work to help evaluate the given inte-
gral.

(b) Recall the Fundamental Trigonometric Identity, which states that sin2(x) + cos2(x) = 1.
By observing that sin3(x) = sin(x) ·sin2(x), use the Fundamental Trigonometric Identity
to rewrite the integrand as the product of sin(x) with another function.

(c) Explain why the substitution u = cos(x) now provides a possible way to evaluate the
integral in (b).

(d) Use your work in (a)-(c) to evaluate the indefinite integral
∫

sin3(x) dx.

(e) Use a similar approach to evaluate
∫

cos3(x) dx.
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4. For the town of Mathland, MI, residential power consumption has shown certain trends over
recent years. Based on data reflecting average usage, engineers at the power company have
modeled the town’s rate of energy consumption by the function

r(t) = 4 + sin(0.263t+ 4.7) + cos(0.526t+ 9.4).

Here, t measures time in hours after midnight on a typical weekday, and r is the rate of con-
sumption in megawatts per hour at time t. Units are critical throughout this problem.

(a) Sketch a carefully labeled graph of r(t) on the interval [0,24] and explain its meaning.
Why is this a reasonable model of power consumption?

(b) Without calculating its value, explain the meaning of
∫ 24

0 r(t) dt. Include appropriate
units on your answer.

(c) Determine the exact amount of power Mathland consumes in a typical day.

(d) What is Mathland’s average rate of energy consumption in a given 24-hour period?
What are the units on this quantity?
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5.4 Integration by Parts

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How do we evaluate indefinite integrals that involve products of basic functions such as∫
x sin(x) dx and

∫
xex dx?

• What is the method of integration by parts and how can we consistently apply it to integrate
products of basic functions?

• How does the algebraic structure of functions guide us in identifying u and dv in using
integration by parts?

Introduction

In Section 5.3, we learned the technique of u-substitution for evaluating indefinite integrals that
involve certain composite functions. For example, the indefinite integral

∫
x3 sin(x4) dx is per-

fectly suited to u-substitution, since not only is there a composite function present, but also the
inner function’s derivative (up to a constant) is multiplying the composite function. Through u-
substitution, we learned a general situation where recognizing the algebraic structure of a function
can enable us to find its antiderivative.

It is natural to ask similar questions to those we considered in Section 5.3 about functions
with a different elementary algebraic structure: those that are the product of basic functions. For
instance, suppose we are interested in evaluating the indefinite integral

∫
x sin(x) dx.

Here, there is not a composite function present, but rather a product of the basic functions f(x) = x
and g(x) = sin(x). From our work in Section 2.3 with the Product Rule, we know that it is relatively
complicated to compute the derivative of the product of two functions, so we should expect that
antidifferentiating a product should be similarly involved. In addition, intuitively we expect that
evaluating

∫
x sin(x) dx will involve somehow reversing the Product Rule.

To that end, in Preview Activity 5.4 we refresh our understanding of the Product Rule and then
investigate some indefinite integrals that involve products of basic functions.

Preview Activity 5.4. In Section 2.3, we developed the Product Rule and studied how it is em-
ployed to differentiate a product of two functions. In particular, recall that if f and g are differen-
tiable functions of x, then

d

dx
[f(x) · g(x)] = f(x) · g′(x) + g(x) · f ′(x).
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(a) For each of the following functions, use the Product Rule to find the function’s derivative.
Be sure to label each derivative by name (e.g., the derivative of g(x) should be labeled
g′(x)).

i. g(x) = x sin(x)

ii. h(x) = xex

iii. p(x) = x ln(x)

iv. q(x) = x2 cos(x)

v. r(x) = ex sin(x)

(b) Use your work in (a) to help you evaluate the following indefinite integrals. Use differen-
tiation to check your work.

i.
∫
xex + ex dx

ii.
∫
ex(sin(x) + cos(x)) dx

iii.
∫

2x cos(x)− x2 sin(x) dx

iv.
∫
x cos(x) + sin(x) dx

v.
∫

1 + ln(x) dx

(c) Observe that the examples in (b) work nicely because of the derivatives you were asked
to calculate in (a). Each integrand in (b) is precisely the result of differentiating one of
the products of basic functions found in (a). To see what happens when an integrand is
still a product but not necessarily the result of differentiating an elementary product, we
consider how to evaluate ∫

x cos(x) dx.

i. First, observe that
d

dx
[x sin(x)] = x cos(x) + sin(x).

Integrating both sides indefinitely and using the fact that the integral of a sum is the
sum of the integrals, we find that

∫ (
d

dx
[x sin(x)]

)
dx =

∫
x cos(x) dx+

∫
sin(x) dx.
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In this last equation, evaluate the indefinite integral on the left side as well as the
rightmost indefinite integral on the right.

ii. In the most recent equation from (i.), solve the equation for the expression
∫
x cos(x) dx.

iii. For which product of basic functions have you now found the antiderivative?

./

Reversing the Product Rule: Integration by Parts

Problem (c) in Preview Activity 5.4 provides a clue for how we develop the general technique
known as Integration by Parts, which comes from reversing the Product Rule. Recall that the
Product Rule states that

d

dx
[f(x)g(x)] = f(x)g′(x) + g(x)f ′(x).

Integrating both sides of this equation indefinitely with respect to x, it follows that
∫

d

dx
[f(x)g(x)] dx =

∫
f(x)g′(x) dx+

∫
g(x)f ′(x) dx. (5.5)

On the left in Equation (5.5), we recognize that we have the indefinite integral of the derivative of
a function which, up to an additional constant, is the original function itself. Temporarily omitting
the constant that may arise, we equivalently have

f(x)g(x) =

∫
f(x)g′(x) dx+

∫
g(x)f ′(x) dx. (5.6)

The most important thing to observe about Equation (5.6) is that it provides us with a choice of
two integrals to evaluate. That is, in a situation where we can identify two functions f and g, if we
can integrate f(x)g′(x), then we know the indefinite integral of g(x)f ′(x), and vice versa. To that
end, we choose the first indefinite integral on the left in Equation (5.6) and solve for it to generate
the rule ∫

f(x)g′(x) dx = f(x)g(x)−
∫
g(x)f ′(x) dx. (5.7)

Often we express Equation (5.7) in terms of the variables u and v, where u = f(x) and v = g(x).
Note that in differential notation, du = f ′(x) dx and dv = g′(x) dx, and thus we can state the rule
for Integration by Parts in its most common form as follows.

∫
u dv = uv −

∫
v du.

To apply Integration by Parts, we look for a product of basic functions that we can identify as
u and dv. If we can antidifferentiate dv to find v, and evaluating

∫
v du is not more difficult than

evaluating
∫
u dv, then this substitution usually proves to be fruitful. To demonstrate, we consider

the following example.
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Example 5.3. Evaluate the indefinite integral
∫
x cos(x) dx

using Integration by Parts.

Solution. Whenever we are trying to integrate a product of basic function through Integration by
Parts, we are presented with a choice for u and dv. In the current problem, we can either let u = x
and dv = cos(x) dx, or let u = cos(x) and dv = x dx. While there is not a universal rule for how
to choose u and dv, a good guideline is this: do so in a way that

∫
v du is at least as simple as the

original problem
∫
u dv.

In this setting, this leads us to choose5 u = x and dv = cos(x) dx, from which it follows that
du = 1 dx and v = sin(x). With this substitution, the rule for Integration by Parts tells us that

∫
x cos(x) dx = x sin(x)−

∫
sin(x) · 1 dx.

At this point, all that remains to do is evaluate the (simpler) integral
∫

sin(x) · 1 dx. Doing so, we
find ∫

x cos(x) dx = x sin(x)− (− cos(x)) + C = x sin(x) + cos(x) + C.

There are at least two additional important observations to make from Example 5.3. First, the
general technique of Integration by Parts involves trading the problem of integrating the product
of two functions for the problem of integrating the product of two related functions. In particular,
we convert the problem of evaluating

∫
u dv for that of evaluating

∫
v du. This perspective clearly

shapes our choice of u and v. In Example 5.3, the original integral to evaluate was
∫
x cos(x) dx,

and through the substitution provided by Integration by Parts, we were instead able to evaluate∫
sin(x) · 1 dx. Note that the original function x was replaced by its derivative, while cos(x) was

replaced by its antiderivative. Second, observe that when we get to the final stage of evaluating
the last remaining antiderivative, it is at this step that we include the integration constant, +C.

Activity 5.10.

Evaluate each of the following indefinite integrals. Check each antiderivative that you find by
differentiating.

5Observe that if we considered the alternate choice, and let u = cos(x) and dv = x dx, then du = − sin(x) dx and
v = 1

2
x2, from which we would write∫

x cos(x) dx =
1

2
x2 cos(x)−

∫
1

2
x2(− sin(x)) dx.

Thus we have replaced the problem of integrating x cos(x) with that of integrating 1
2
x2 sin(x); the latter is clearly more

complicated, which shows that this alternate choice is not as helpful as the first choice.
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(a)
∫
te−t dt

(b)
∫

4x sin(3x) dx

(c)
∫
z sec2(z) dz

(d)
∫
x ln(x) dx

C

Some Subtleties with Integration by Parts

There are situations where Integration by Parts is not an obvious choice, but the technique is
appropriate nonetheless. One guide to understanding why is the observation that integration by
parts allows us to replace one function in a product with its derivative while replacing the other
with its antiderivative. For instance, consider the problem of evaluating

∫
arctan(x) dx.

Initially, this problem seems ill-suited to Integration by Parts, since there does not appear to be
a product of functions present. But if we note that arctan(x) = arctan(x) · 1, and realize that we
know the derivative of arctan(x) as well as the antiderivative of 1, we see the possibility for the
substitution u = arctan(x) and dv = 1 dx. We explore this substitution further in Activity 5.11.

In a related problem, if we consider
∫
t3 sin(t2) dt, two key observations can be made about the

algebraic structure of the integrand: there is a composite function present in sin(t2), and there is
not an obvious function-derivative pair, as we have t3 present (rather than simply t) multiplying
sin(t2). This problem exemplifies the situation where we sometimes use both u-substitution and
Integration by Parts in a single problem. If we write t3 = t · t2 and consider the indefinite integral

∫
t · t2 · sin(t2) dt,

we can use a mix of the two techniques we have recently learned. First, let z = t2 so that dz = 2t dt,
and thus t dt = 1

2 dz. (We are using the variable z to perform a “z-substitution” since uwill be used
subsequently in executing Integration by Parts.) Under this z-substitution, we now have

∫
t · t2 · sin(t2) dt =

∫
z · sin(z) · 1

2
dz.

The remaining integral is a standard one that can be evaluated by parts. This, too, is explored
further in Activity 5.11.

The problems briefly introduced here exemplify that we sometimes must think creatively in
choosing the variables for substitution in Integration by Parts, as well as that it is entirely possible
that we will need use the technique of substitution for an additional change of variables within
the process of integrating by parts.

Activity 5.11.
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Evaluate each of the following indefinite integrals, using the provided hints.

(a) Evaluate
∫

arctan(x) dx by using Integration by Parts with the substitution u = arctan(x)
and dv = 1 dx.

(b) Evaluate
∫

ln(z) dz. Consider a similar substitution to the one in (a).

(c) Use the substitution z = t2 to transform the integral
∫
t3 sin(t2) dt to a new integral in

the variable z, and evaluate that new integral by parts.

(d) Evaluate
∫
s5es

3
ds using an approach similar to that described in (c).

(e) Evaluate
∫
e2t cos(et) dt. You will find it helpful to note that e2t = et · et.

C

Using Integration by Parts Multiple Times

We have seen that the technique of Integration by Parts is well suited to integrating the prod-
uct of basic functions, and that it allows us to essentially trade a given integrand for a new one
where one function in the product is replaced by its derivative, while the other is replaced by its
antiderivative. The main goal in this trade of

∫
u dv for

∫
v du is to have the new integral not be

more challenging to evaluate than the original one. At times, it turns out that it can be necessary
to apply Integration by Parts more than once in order to ultimately evaluate a given indefinite
integral.

For example, if we consider
∫
t2et dt and let u = t2 and dv = et dt, then it follows that du = 2t dt

and v = et, thus ∫
t2et dt = t2et −

∫
2tet dt.

The integral on the righthand side is simpler to evaluate than the one on the left, but it still requires
Integration by Parts. Now letting u = 2t and dv = et dt, we have du = 2 dt and v = et, so that

∫
t2et dt = t2et −

(
2tet −

∫
2et dt

)
.

Note the key role of the parentheses, as it is essential to distribute the minus sign to the entire
value of the integral

∫
2tet dt. The final integral on the right in the most recent equation is a basic

one; evaluating that integral and distributing the minus sign, we find
∫
t2et dt = t2et − 2tet + 2et + C.

Of course, situations are possible where even more than two applications of Integration by
Parts may be necessary. For instance, in the preceding example, it is apparent that if the integrand
was t3et instead, we would have to use Integration by Parts three times.
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Next, we consider the slightly different scenario presented by the definite integral
∫
et cos(t) dt.

Here, we can choose to let u be either et or cos(t); we pick u = cos(t), and thus dv = et dt. With
du = − sin(t) dt and v = et, Integration by Parts tells us that

∫
et cos(t) dt = et cos(t)−

∫
et(− sin(t)) dt,

or equivalently that ∫
et cos(t) dt = et cos(t) +

∫
et sin(t) dt (5.8)

Observe that the integral on the right in Equation (5.8),
∫
et sin(t) dt, while not being more com-

plicated than the original integral we want to evaluate, it is essentially identical to
∫
et cos(t) dt.

While the overall situation isn’t necessarily better than what we started with, the problem hasn’t
gotten worse. Thus, we proceed by integrating by parts again. This time we let u = sin(t) and
dv = et dt, so that du = cos(t) dt and v = et, which implies

∫
et cos(t) dt = et cos(t) +

(
et sin(t)−

∫
et cos(t) dt

)
(5.9)

We seem to be back where we started, as two applications of Integration by Parts has led us back
to the original problem,

∫
et cos(t) dt. But if we look closely at Equation (5.9), we see that we can

use algebra to solve for the value of the desired integral. In particular, adding
∫
et cos(t) dt to both

sides of the equation, we have

2

∫
et cos(t) dt = et cos(t) + et sin(t),

and therefore ∫
et cos(t) dt =

1

2

(
et cos(t) + et sin(t)

)
+ C.

Note that since we never actually encountered an integral we could evaluate directly, we didn’t
have the opportunity to add the integration constant C until the final step, at which point we
include it as part of the most general antiderivative that we sought from the outset in evaluating
an indefinite integral.

Activity 5.12.

Evaluate each of the following indefinite integrals.

(a)
∫
x2 sin(x) dx

(b)
∫
t3 ln(t) dt

(c)
∫
ez sin(z) dz

(d)
∫
s2e3s ds
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(e)
∫
t arctan(t) dt

(Hint: At a certain point in this problem, it is very helpful to note that t2

1+t2
= 1− 1

1+t2
.)

C

Evaluating Definite Integrals Using Integration by Parts

Just as we saw with u-substitution in Section 5.3, we can use the technique of Integration by Parts
to evaluate a definite integral. Say, for example, we wish to find the exact value of

∫ π/2

0
t sin(t) dt.

One option is to evaluate the related indefinite integral to find that
∫
t sin(t) dt = −t cos(t)+sin(t)+

C, and then use the resulting antiderivative along with the Fundamental Theorem of Calculus to
find that

∫ π/2

0
t sin(t) dt = (−t cos(t) + sin(t))

∣∣∣∣
π/2

0

=
(
−π

2
cos(

π

2
) + sin(

π

2
)
)
− (−0 cos(0) + sin(0))

= 1.

Alternatively, we can apply Integration by Parts and work with definite integrals throughout.
In this perspective, it is essential to remember to evaluate the product uv over the given limits
of integration. To that end, using the substitution u = t and dv = sin(t) dt, so that du = dt and
v = − cos(t), we write

∫ π/2

0
t sin(t) dt = −t cos(t)

∣∣∣∣
π/2

0

−
∫ π/2

0
(− cos(t)) dt

= −t cos(t)

∣∣∣∣
π/2

0

+ sin(t)

∣∣∣∣
π/2

0

=
(
−π

2
cos(

π

2
) + sin(

π

2
)
)
− (−0 cos(0) + sin(0))

= 1.

As with any substitution technique, it is important to remember the overall goal of the problem,
to use notation carefully and completely, and to think about our end result to ensure that it makes
sense in the context of the question being answered.

When u-substitution and Integration by Parts Fail to Help

As we close this section, it is important to note that both integration techniques we have discussed
apply in relatively limited circumstances. In particular, it is not hard to find examples of functions
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for which neither technique produces an antiderivative; indeed, there are many, many functions
that appear elementary but that do not have an elementary algebraic antiderivative. For instance,
if we consider the indefinite integrals

∫
ex

2
dx and

∫
x tan(x) dx,

neither u-substitution nor Integration by Parts proves fruitful. While there are other integration
techniques, some of which we will consider briefly, none of them enables us to find an algebraic
antiderivative for ex

2
or x tan(x). There are at least two key observations to make: one, we do

know from the Second Fundamental Theorem of Calculus that we can construct an integral an-
tiderivative for each function; and two, antidifferentiation is much, much harder in general than
differentiation. In particular, we observe that F (x) =

∫ x
0 e

t2 dt is an antiderivative of f(x) = ex
2
,

and G(x) =
∫ x

0 t tan(t) dt is an antiderivative of g(x) = x tan(x). But finding an elementary alge-
braic formula that doesn’t involve integrals for either F or G turns out not only to be impossible
through u-substitution or Integration by Parts, but indeed impossible altogether.

Summary

In this section, we encountered the following important ideas:

• Through the method of Integration by Parts, we can evaluate indefinite integrals that involve
products of basic functions such as

∫
x sin(x) dx and

∫
x ln(x) dx through a substitution that

enables us to effectively trade one of the functions in the product for its derivative, and the
other for its antiderivative, in an effort to find a different product of functions that is easier to
integrate.

• If we are given an integral whose algebraic structure we can identify as a product of basic
functions in the form

∫
f(x)g′(x) dx, we can use the substitution u = f(x) and dv = g′(x) dx

and apply the rule ∫
u dv = uv −

∫
v du

in an effort to evaluate the original integral
∫
f(x)g′(x) dx by instead evaluating

∫
v du =∫

f ′(x)g(x) dx.

• When deciding to integrate by parts, we normally have a product of functions present in the
integrand and we have to select both u and dv. That selection is guided by the overall principal
that we desire the new integral

∫
v du to not be any more difficult or complicated than the

original integral
∫
u dv. In addition, it is often helpful to recognize if one of the functions present

is much easier to differentiate than antidifferentiate (such as ln(x)), in which case that function
often is best assigned the variable u. For sure, when choosing dv, the corresponding function
must be one that we can antidifferentiate.

Exercises
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1. Let f(t) = te−2t and F (x) =
∫ x

0 f(t).

(a) Determine F ′(x).

(b) Use the First FTC to find a formula for F that does not involve an integral.

(c) Is F an increasing or decreasing function for x > 0? Why?

2. Consider the indefinite integral given by
∫
e2x cos(ex) dx.

(a) Noting that e2x = ex · ex, use the substitution z = ex to determine a new, equivalent
integral in the variable z.

(b) Evaluate the integral you found in (a) using an appropriate technique.

(c) How is the problem of evaluating
∫
e2x cos(e2x) dx different from evaluating the integral

in (a)? Do so.

(d) Evaluate each of the following integrals as well, keeping in mind the approach(es) used
earlier in this problem:

•
∫
e2x sin(ex) dx

•
∫
e3x sin(e3x) dx

•
∫
xex

2
cos(ex

2
) sin(ex

2
) dx

3. For each of the following indefinite integrals, determine whether you would use u-substitution,
integration by parts, neither, or both to evaluate the integral. In each case, write one sentence
to explain your reasoning, and include a statement of any substitutions used. (That is, if you
decide in a problem to let u = e3x, you should state that, as well as that du = 3e3x dx.) Finally,
use your chosen approach to evaluate each integral.

(a)
∫
x2 cos(x3) dx

(b)
∫
x4 cos(x3) dx (Hint: x4 = x2 · x2)

(c)
∫
x ln(x2) dx

(d)
∫

sin(x4) dx

(e)
∫
x3 sin(x4) dx

(f)
∫
x7 sin(x4) dx
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5.5 Other Options for Finding Algebraic Antiderivatives

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How does the method of partial fractions enable any rational function to be antidifferenti-
ated?

• What role have integral tables historically played in the study of calculus and how can a
table be used to evaluate integrals such as

∫ √
a2 + u2 du?

• What role can a computer algebra system play in the process of finding antiderivatives?

Introduction

In the preceding sections, we have learned two very specific antidifferentiation techniques: u-
substitution and integration by parts. The former is used to reverse the chain rule, while the
latter to reverse the product rule. But we have seen that each only works in very specialized cir-
cumstances. For example, while

∫
xex

2
dx may be evaluated by u-substitution and

∫
xex dx by

integration by parts, neither method provides a route to evaluate
∫
ex

2
dx. That fact is not a par-

ticular shortcoming of these two antidifferentiation techniques, as it turns out there does not exist
an elementary algebraic antiderivative for ex

2
. Said differently, no matter what antidifferentiation

methods we could develop and learn to execute, none of them will be able to provide us with a
simple formula that does not involve integrals for a function F (x) that satisfies F ′(x) = ex

2
.

In this section of the text, our main goals are to better understand some classes of functions
that can always be antidifferentiated, as well as to learn some options for so doing. At the same
time, we want to recognize that there are many functions for which an algebraic formula for an
antiderivative does not exist, and also appreciate the role that computing technology can play
in helping us find antiderivatives of other complicated functions. Throughout, it is helpful to
remember what we have learned so far: how to reverse the chain rule through u-substitution,
how to reverse the product rule through integration by parts, and that overall, there are subtle
and challenging issues to address when trying to find antiderivatives.

Preview Activity 5.5. For each of the indefinite integrals below, the main question is to decide
whether the integral can be evaluated using u-substitution, integration by parts, a combination
of the two, or neither. For integrals for which your answer is affirmative, state the substitution(s)
you would use. It is not necessary to actually evaluate any of the integrals completely, unless the
integral can be evaluated immediately using a familiar basic antiderivative.

(a)
∫
x2 sin(x3) dx,

∫
x2 sin(x) dx,

∫
sin(x3) dx,

∫
x5 sin(x3) dx

(b)
∫

1

1 + x2
dx,

∫
x

1 + x2
dx,

∫
2x+ 3

1 + x2
dx,

∫
ex

1 + (ex)2
dx,
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(c)
∫
x ln(x) dx,

∫
ln(x)

x
dx,

∫
ln(1 + x2) dx,

∫
x ln(1 + x2) dx,

(d)
∫
x
√

1− x2 dx,
∫

1√
1− x2

dx,
∫

x√
1− x2

dx,
∫

1

x
√

1− x2
dx,

./

The Method of Partial Fractions

The method of partial fractions is used to integrate rational functions, and essentially involves
reversing the process of finding a common denominator. For example, suppoes we have the func-
tion R(x) = 5x

x2−x−2
and want to evaluate

∫
5x

x2 − x− 2
dx.

Thinking algebraically, if we factor the denominator, we can see how R might come from the sum
of two fractions of the form A

x−2 + B
x+1 . In particular, suppose that

5x

(x− 2)(x+ 1)
=

A

x− 2
+

B

x+ 1
.

Multiplying both sides of this last equation by (x− 2)(x+ 1), we find that

5x = A(x+ 1) +B(x− 2).

Since we want this equation to hold for every value of x, we can use insightful choices of specific
x-values to help us find A and B. Taking x = −1, we have

5(−1) = A(0) +B(−3),

and thus B = 5
3 . Choosing x = 2, it follows

5(2) = A(3) +B(0),

so A = 10
3 . Therefore, we now know that

∫
5x

x2 − x− 2
dx =

∫
10/3

x− 2
+

5/3

x+ 1
dx.

This equivalent integral expression is straightforward to evaluate, and hence we find that

∫
5x

x2 − x− 2
dx =

10

3
ln |x− 2|+ 5

3
ln |x+ 1|+ C.
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It turns out that for any rational function R(x) = P (x)
Q(x) where the degree of the polynomial P is

less than6 the degree of the polynomial Q, the method of partial fractions can be used to rewrite
the rational function as a sum of simpler rational functions of one of the following forms:

A

x− c ,
A

(x− c)n , or
Ax+B

x2 + k

where A, B, and c are real numbers, and k is a positive real number. Because each of these basic
forms is one we can antidifferentiate, partial fractions enables us to antidifferentiate any rational
function.

A computer algebra system such as Maple, Mathematica, or WolframAlpha can be used to find the
partial fraction decomposition of any rational function. In WolframAlpha, entering

partial fraction 5x/(xˆ2-x-2)

results in the output
5x

x2 − x− 2
=

10

3(x− 2)
+

5

3(x+ 1)
.

We will primarily use technology to generate partial fraction decompositions of rational functions,
and then work from there to evaluate the integrals of interest using established methods.

Activity 5.13.

Activity. For each of the following integrals, evaluate the integral by using the partial fraction
decomposition provided.

(a)
∫

1

x2 − 2x− 3
dx, given that 1

x2−2x−3
= 1/4

x−3 −
1/4
x+1

(b)
∫

x2 + 1

x3 − x2
dx, given that x2+1

x3−x2 = − 1
x − 1

x2
+ 2

x−1

(c)
∫

x− 2

x4 + x2
dx, given that x−2

x4+x2
= 1

x − 2
x2

+ −x+2
1+x2

C

Using an Integral Table

Calculus has a long history, with key ideas going back as far as Greek mathematicians in 400-300
BC. Its main foundations were first investigated and understood independently by Isaac Newton
and Gottfried Wilhelm Leibniz in the late 1600s, making the modern ideas of calculus well over
300 years old. It is instructive to realize that until the late 1980s, the personal computer essentially
did not exist, so calculus (and other mathematics) had to be done by hand for roughly 300 years.

6If the degree of P is greater than or equal to the degree of Q, long division may be used to write R as the sum of a
polynomial plus a rational function where the numerator’s degree is less than the denominator’s.
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During the last 30 years, however, computers have revolutionized many aspects of the world we
live in, including mathematics. In this section we take a short historical tour to precede the fol-
lowing discussion of the role computer algebra systems can play in evaluating indefinite integrals.
In particular, we consider a class of integrals involving certain radical expressions that, until the
advent of computer algebra systems, were often evaluated using an integral table.

As seen in the short table of integrals found in Appendix A, there are also many forms of
integrals that involve

√
a2 ± w2 and

√
w2 − a2. These integral rules can be developed using a tech-

nique known as trigonometric substitution that we choose to omit; instead, we will simply accept the
results presented in the table. To see how these rules are needed and used, consider the differences
among ∫

1√
1− x2

dx,

∫
x√

1− x2
dx, and

∫ √
1− x2 dx.

The first integral is a familiar basic one, and results in arcsin(x) + C. The second integral can be
evaluated using a standard u-substitution with u = 1−x2. The third, however, is not familiar and
does not lend itself to u-substitution.

In Appendix A, we find the rule

(3)

∫ √
u2 ± a2 du =

u

2

√
u2 ± a2 ± a2

2
ln |u+

√
u2 ± a2|+ C.

Using the substitutions a = 1 and u = x (so that du = dx), and choosing the “−” option from the
± in the rule, it follows that

∫ √
1− x2 dx =

x

2

√
x2 − 1− 1

2
ln |x+

√
x2 − 1|+ C.

One important point to note is that whenever we are applying a rule in the table, we are doing
a u-substitution. This is especially key when the situation is more complicated than allowing u = x
as in the last example. For instance, say we wish to evaluate the integral

∫ √
9 + 64x2 dx.

Once again, we want to use Rule (3) from the table, but now do so with a = 3 and u = 8x; we
also choose the “+” option in the rule. With this substitution, it follows that du = 8dx, so dx = 1

du .
Applying this substitution,

∫ √
9 + 64x2 dx =

∫ √
9 + u2 · 1

8
du =

1

8

∫ √
9 + u2 du.

By Rule (3), we now find that
∫ √

9 + 64x2 dx =
1

8

(
u

2

√
u2 + 9 +

9

2
ln |u+

√
u2 + 9|+ C

)

=
1

8

(
8x

2

√
64x2 + 9 +

9

2
ln |8x+

√
64x2 + 9|+ C

)
.
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In problems such as this one, it is essential that we not forget to account for the factor of 1
8 that

must be present in the evaluation.

Activity 5.14.

Activity. For each of the following integrals, evaluate the integral using u-substitution and/or
an entry from the table found in Appendix A.

(a)
∫ √

x2 + 4 dx

(b)
∫

x√
x2 + 4

dx

(c)
∫

2√
16 + 25x2

dx

(d)
∫

1

x2
√

49− 36x2
dx

C

Using Computer Algebra Systems

A computer algebra system (CAS) is a computer program that is capable of executing symbolic
mathematics. For a simple example, if we ask a CAS to solve the equation ax2 + bx + c = 0 for
the variable x, where a, b, and c are arbitrary constants, the program will return x = −b±

√
b2−4ac

2a .
While research to develop the first CAS dates to the 1960s, these programs became more common
and publicly available in the early 1990s. Two prominent early examples are the programs Maple
and Mathematica, which were among the first computer algebra systems to offer a graphical user
interface. Today, Maple and Mathematica are exceptionally powerful professional software pack-
ages that are capable of executing an amazing array of sophisticated mathematical computations.
They are also very expensive, as each is a proprietary program. The CAS SAGE is an open-source,
free alternative to Maple and Mathematica.

For the purposes of this text, when we need to use a CAS, we are going to turn instead to
a similar, but somewhat different computational tool, the web-based “computational knowledge
engine” called WolframAlpha. There are two features of WolframAlpha that make it stand out from
the CAS options mentioned above: (1) unlike Maple and Mathematica, WolframAlpha is free (pro-
vided we are willing to suffer through some pop-up advertising); and (2) unlike any of the three,
the syntax in WolframAlpha is flexible. Think of WolframAlpha as being a little bit like doing a
Google search: the program will interpret what is input, and then provide a summary of options.

If we want to have WolframAlpha evaluate an integral for us, we can provide it syntax such as

integrate xˆ2 dx
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to which the program responds with

∫
x2 dx =

x3

3
+ constant.

While there is much to be enthusiastic about regarding CAS programs such as WolframAlpha, there
are several things we should be cautious about: (1) a CAS only responds to exactly what is input;
(2) a CAS can answer using powerful functions from highly advances mathematics; and (3) there
are problems that even a CAS cannot do without additional human insight.

Although (1) likely goes without saying, we have to be careful with our input: if we enter
syntax that defines a function other than the problem of interest, the CAS will work with precisely
the function we define. For example, if we are interested in evaluating the integral

∫
1

16− 5x2
dx,

and we mistakenly enter

integrate 1/16 - 5xˆ2 dx

a CAS will (correctly) reply with
1

16
x− 5

3
x3.

It is essential that we are sufficiently well-versed in antidifferentiation to recognize that this func-
tion cannot be the the one that we seek: integrating a rational function such as 1

16−5x2
, we expect

the logarithm function to be present in the result.

Regarding (2), even for a relatively simple integral such as
∫

1
16−5x2

dx, some CASs will invoke
advanced functions rather than simple ones. For instance, if we use Maple to execute the command

int(1/(16-5*xˆ2), x);

the program responds with

∫
1

16− 5x2
dx =

√
5

20
arctanh(

√
5

4
x).

While this is correct (save for the missing arbitrary constant, which Maple never reports), the in-
verse hyperbolic tangent function is not a common nor familiar one; a simpler way to express this
function can be found by using the partial fractions method, and happens to be the result reported
by WolframAlpha:

∫
1

16− 5x2
dx =

1

8
√

5

(
log(4

√
5 + 5

√
x)− log(4

√
5− 5

√
x)
)

+ constant.
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Using sophisticated functions from more advanced mathematics is sometimes the way a CAS
says to the user “I don’t know how to do this problem.” For example, if we want to evaluate

∫
e−x

2
dx,

and we ask WolframAlpha to do so, the input

integrate exp(-xˆ2) dx

results in the output ∫
e−x

2
dx =

√
π

2
erf(x) + constant.

The function “erf(x)” is the error function, which is actually defined by an integral:

erf(x) =
2√
π

∫ x

0
e−t

2
dt.

So, in producing output involving an integral, the CAS has basically reported back to us the very
question we asked.

Finally, as remarked at (3) above, there are times that a CAS will actually fail without some
additional human insight. If we consider the integral

∫
(1 + x)ex

√
1 + x2e2x dx

and ask WolframAlpha to evaluate

int (1+x) * exp(x) * sqrt(1+xˆ2 * exp(2x)) dx,

the program thinks for a moment and then reports

(no result found in terms of standard mathematical functions)

But in fact this integral is not that difficult to evaluate. If we let u = xex, then du = (1 + x)ex dx,
which means that the preceding integral has form

∫
(1 + x)ex

√
1 + x2e2x dx =

∫ √
1 + u2 du,

which is a straightforward one for any CAS to evaluate.

So, the above observations regarding computer algebra systems lead us to proceed with some
caution: while any CAS is capable of evaluating a wide range of integrals (both definite and indef-
inite), there are times when the result can mislead us. We must think carefully about the meaning
of the output, whether it is consistent with what we expect, and whether or not it makes sense to
proceed.

Summary

In this section, we encountered the following important ideas:
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• The method of partial fractions enables any rational function to be antidifferentiated, because
any polynomial function can be factored into a product of linear and irreducible quadratic
terms. This allows any rational function to be written as the sum of a polynomial plus rational
terms of the form A

(x−c)n (where n is a natural number) and Bx+C
x2+k

(where k is a positive real
number).

• Until the development of computing algebra systems, integral tables enabled students of calcu-
lus to more easily evaluate integrals such as

∫ √
a2 + u2 du, where a is a positive real number.

A short table of integrals may be found in Appendix A.

• Computer algebra systems can play an important role in finding antiderivatives, though we
must be cautious to use correct input, to watch for unusual or unfamiliar advanced functions
that the CAS may cite in its result, and to consider the possibility that a CAS may need further
assistance or insight from us in order to answer a particular question.

Exercises

1. For each of the following integrals involving rational functions, (1) use a CAS to find the par-
tial fraction decomposition of the integrand; (2) evaluate the integral of the resulting function
without the assistance of technology; (3) use a CAS to evaluate the original integral to test and
compare your result in (2).

(a)
∫
x3 + x+ 1

x4 − 1
dx

(b)
∫

x5 + x2 + 3

x3 − 6x2 + 11x− 6
dx

(c)
∫
x2 − x− 1

(x− 3)3
dx

2. For each of the following integrals involving radical functions, (1) use an appropriate u-substitution
along with Appendix A to evaluate the integral without the assistance of technology, and (2)
use a CAS to evaluate the original integral to test and compare your result in (1).

(a)
∫

1

x
√

9x2 + 25
dx

(b)
∫
x
√

1 + x4 dx

(c)
∫
ex
√

4 + e2x dx

(d)
∫

tan(x)√
9− cos2(x)

dx
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3. Consider the indefinite integral given by

∫ √
x+
√

1 + x2

x
dx.

(a) Explain why u-substitution does not offer a way to simplify this integral by discussing
at least two different options you might try for u.

(b) Explain why integration by parts does not seem to be a reasonable way to proceed,
either, by considering one option for u and dv.

(c) Is there any line in the integral table in Appendix A that is helpful for this integral?

(d) Evaluate the given integral using WolframAlpha. What do you observe?
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5.6 Numerical Integration

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How do we accurately evaluate a definite integral such as
∫ 1

0 e
−x2 dx when we cannot use

the First Fundamental Theorem of Calculus because the integrand lacks an elementary al-
gebraic antiderivative? Are there ways to generate accurate estimates without using ex-
tremely large values of n in Riemann sums?

• What is the Trapezoid Rule, and how is it related to left, right, and middle Riemann sums?

• How are the errors in the Trapezoid Rule and Midpoint Rule related, and how can they be
used to develop an even more accurate rule?

Introduction

When we were first exploring the problem of finding the net-signed area bounded by a curve,
we developed the concept of a Riemann sum as a helpful estimation tool and a key step in the
definition of the definite integral. In particular, as we found in Section 4.2, recall that the left,
right, and middle Riemann sums of a function f on an interval [a, b] are denoted Ln, Rn, and Mn,
with formulas

Ln = f(x0)4x+ f(x1)4x+ · · ·+ f(xn−1)4x =
n−1∑

i=0

f(xi)4x, (5.10)

Rn = f(x1)4x+ f(x2)4x+ · · ·+ f(xn)4x =
n∑

i=1

f(xi)4x, (5.11)

Mn = f(x1)4x+ f(x2)4x+ · · ·+ f(xn)4x =

n∑

i=1

f(xi)4x, (5.12)

where x0 = a, xi = a + i4x, xn = b, and 4x = b−a
n . For the middle sum, note that xi =

(xi−1 + xi)/2.

Further, recall that a Riemann sum is essentially a sum of (possibly signed) areas of rectangles,
and that the value of n determines the number of rectangles, while our choice of left endpoints,
right endpoints, or midpoints determines how we use the given function to find the heights of the
respective rectangles we choose to use. Visually, we can see the similarities and differences among
these three options in Figure 5.14, where we consider the function f(x) = 1

20(x − 4)3 + 7 on the
interval [1, 8], and use 5 rectangles for each of the Riemann sums.

While it is a good exercise to compute a few Riemann sums by hand, just to ensure that we
understand how they work and how varying the function, the number of subintervals, and the
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1 8

y = f(x)

LEFT 1 8

y = f(x)

RIGHT 1 8

y = f(x)

MID

Figure 5.14: Left, right, and middle Riemann sums for y = f(x) on [1, 8] with 5 subintervals.

choice of endpoints or midpoints affects the result, it is of course the case that using computing
technology is the best way to determine Ln, Rn, and Mn going forward. Any computer algebra
system will offer this capability; a straightforward option that happens to also be freely avail-
able online is the applet7 at http://gvsu.edu/s/dP. From this URL, we see the interface in
Figure 5.15.

Figure 5.15: A snapshot of the applet for computing Riemann sums (and more) found at
http://gvsu.edu/s/dP.

Note that we can adjust the formula for f(x), the window of x- and y-values of interest, the

7Mike May, St. Louis University, http://gvsu.edu/s/dQ building upon the work of David Eck
http://gvsu.edu/s/av.

http://gvsu.edu/s/dP
http://gvsu.edu/s/dP
http://gvsu.edu/s/dQ
http://gvsu.edu/s/av
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number of subintervals, and the method. The pictured result tells us that for f(x) = x2 on the
interval [0, 3] with 8 subintervals using the left endpoint rule,

∫ 3
0 x

2 dx ≈ L8, and L8 ≈ 7.382815.

In what follows in this section we explore several different alternatives, including left, right,
and middle Riemann sums, for estimating definite integrals. One of our main goals is to develop
formulas that enable us to estimate definite integrals accurately without having to use exception-
ally large numbers of rectangles.

Preview Activity 5.6. As we begin to investigate ways to approximate definite integrals, it will be
insightful to compare results to integrals whose exact values we know. To that end, the following
sequence of questions centers on

∫ 3
0 x

2 dx.

(a) Use the applet8 at http://gvsu.edu/s/dP with the function f(x) = x2 on the window
of x values from 0 to 3 and y values from −1 to 10, to compute L3, the left Riemann sum
with three subintervals.

(b) Likewise, use the applet to compute R3 and M3, the right and middle Riemann sums with
three subintervals, respectively.

(c) Use the Fundamental Theorem of Calculus to compute the exact value of I =
∫ 3

0 x
2 dx.

(d) We define the error in an approximation of a definite integral to be the difference between
the integral’s exact value and the approximation’s value. What is the error that results
from using L3? From R3? From M3?

(e) In what follows in this section, we will learn a new approach to estimating the value of
a definite integral known as the Trapezoid Rule. For now, use the “Trapezoid” option in
the applet in the pull-down menu for the “Method” of estimating the definite integral,
and determine the approximation generated by 3 trapezoids. What is the error in this
approximation? How does it compare to the errors you calculated in (d)?

(f) What is the formula for the area of a trapezoid with bases of length b1 and b2 and height h?

./

The Trapezoid Rule

Throughout our work to date with developing and estimating definite integrals, we have used
the simplest possible quadrilaterals (that is, rectangles) to subdivide regions with complicated
shapes. It is natural, however, to wonder if other familiar shapes might serve us even better. In
particular, our goal is to be able to accurately estimate

∫ b
a f(x) dx without having to use extremely

large values of n in Riemann sums.

To this end, we consider an alternative to Ln, Rn, and Mn, know as the Trapezoid Rule. The
fundamental idea is simple: rather than using a rectangle to estimate the (signed) area bounded

8Mike May, St. Louis University, http://gvsu.edu/s/dQ.

http://gvsu.edu/s/dP
http://gvsu.edu/s/dQ
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by y = f(x) on a small interval, we use a trapezoid. For example, in Figure 5.16, we estimate
the area under the pictured curve using three subintervals and the trapezoids that result from
connecting the corresponding points on the curve with straight lines.

y = f(x)

x0 x1 x2 x3

D1 D2 D3

Figure 5.16: Estimating
∫ b
a
f(x) dx using three subintervals and trapezoids, rather than rectangles, where

a = x0 and b = x3.

The biggest difference between the Trapezoid Rule and a left, right, or middle Riemann sum is
that on each subinterval, the Trapezoid Rule uses two function values, rather than one, to estimate
the (signed) area bounded by the curve. For instance, to compute D1, the area of the trapezoid
generated by the curve y = f(x) in Figure 5.16 on [x0, x1], we observe that the left base of this
trapezoid has length f(x0), while the right base has length f(x1). In addition, the height of this
trapezoid is x1 − x0 = 4x = b−a

3 . Since the area of a trapezoid is the average of the bases times
the height, we have

D1 =
1

2
(f(x0) + f(x1)) · 4x.

Using similar computations for D2 and D3, we find that T3, the trapezoidal approximation to∫ b
a f(x) dx is given by

T3 = D1 +D2 +D3

=
1

2
(f(x0) + f(x1)) · 4x+

1

2
(f(x1) + f(x2)) · 4x+

1

2
(f(x2) + f(x3)) · 4x.

Because both left and right endpoints are being used, we can recognize within the trapezoidal ap-
proximation the use of both left and right Riemann sums. In particular, rearranging the expression
for T3 by removing a factor of 1

2 , then grouping all of the left endpoint evaluations of f , and then
grouping all of the right endpoint evaluations of f , we have equivalently that

T3 =
1

2
[(f(x0)4x+ f(x1)4x+ f(x2)4x) + (f(x1)4x+ f(x2)4x+ f(x3)4x)] . (5.13)

At this point, we observe that two familiar sums have arisen. Since the left Riemann sum L3 is
L3 = f(x0)4x + f(x1)4x + f(x2), and the right Riemann sum is R3 = f(x1)4x + f(x2)4x +
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f(x3)4x, substituting L3 and R3 for the corresponding expressions in Equation 5.13, it follows
that

T3 =
1

2
[L3 +R3] .

We have thus seen the main ideas behind a very important result: using trapezoids to estimate the
(signed) area bounded by a curve is the same as averaging the estimates generated by using left
and right endpoints.

(The Trapezoid Rule) The trapezoidal approximation, Tn, of the definite integral
∫ b
a f(x) dx

using n subintervals is given by the rule

Tn =
1

2
(f(x0) + f(x1))4x+

1

2
(f(x1) + f(x2))4x+ · · ·+ 1

2
(f(xn−1) + f(xn))4x.

=
n−1∑

i=0

1

2
(f(xi) + f(xi+1).

Moreover, with Ln and Rn representing the familiar left and right Riemann sums for estimat-
ing the same definite integral, it follows that

Tn =
1

2
[Ln +Rn] .

Activity 5.15.

In this activity, we explore the relationships among the errors generated by left, right, midpoint,
and trapezoid approximations to the definite integral

∫ 2
1

1
x2
dx

(a) Use the First FTC to evaluate
∫ 2

1
1
x2
dx exactly.

(b) Use appropriate computing technology to compute the following approximations for∫ 2
1

1
x2
dx: T4, M4, T8, and M8.

(c) Let the error of an approximation be the difference between the exact value of the def-
inite integral and the resulting approximation. For instance, if we let ET,4 represent
the error that results from using the trapezoid rule with 4 subintervals to estimate the
integral, we have

ET,4 =

∫ 2

1

1

x2
dx− T4.

Similarly, we compute the error of the midpoint rule approximation with 8 subintervals
by the formula

EM,8 =

∫ 2

1

1

x2
dx−M8.

Based on your work in (a) and (b) above, compute ET,4, ET,8, EM,4, EM,8.
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(d) Which rule consistently over-estimates the exact value of the definite integral? Which
rule consistently under-estimates the definite integral?

(e) What behavior(s) of the function f(x) = 1
x2

lead to your observations in (d)?

C

Comparing the Midpoint and Trapezoid Rules

We know from the definition of the definite integral of a continuous function f , that if we let n
be large enough, we can make the value of any of the approximations Ln, Rn, and Mn as close
as we’d like (in theory) to the exact value of

∫ b
a f(x) dx. Thus, it may be natural to wonder why

we ever use any rule other than Ln or Rn (with a sufficiently large n value) to estimate a definite
integral. One of the primary reasons is that as n → ∞, 4x = b−a

n → 0, and thus in a Riemann
sum calculation with a large n value, we end up multiplying by a number that is very close to
zero. Doing so often generates roundoff error, as representing numbers close to zero accurately is
a persistent challenge for computers.

Hence, we are exploring ways by which we can estimate definite integrals to high levels of
precision, but without having to use extremely large values of n. Paying close attention to pat-
terns in errors, such as those observed in Activity 5.15, is one way to begin to see some alternate
approaches.

To begin, we make a comparison of the errors in the Midpoint and Trapezoid rules from two
different perspectives. First, consider a function of consistent concavity on a given interval, and
picture approximating the area bounded on that interval by both the Midpoint and Trapezoid
rules using a single subinterval. As seen in Figure 5.17, it is evident that whenever the function

T1 M1 M1

Figure 5.17: Estimating
∫ b
a
f(x) dx using a single subinterval: at left, the trapezoid rule; in the middle, the

midpoint rule; at right, a modified way to think about the midpoint rule.

is concave up on an interval, the Trapezoid Rule with one subinterval, T1, will overestimate the
exact value of the definite integral on that interval. Moreover, from a careful analysis of the line
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that bounds the top of the rectangle for the Midpoint Rule (shown in magenta), we see that if
we rotate this line segment until it is tangent to the curve at the point on the curve used in the
Midpoint Rule (as shown at right in Figure 5.17), the resulting trapezoid has the same area as M1,
and this value is less than the exact value of the definite integral. Hence, when the function is
concave up on the interval, M1 underestimates the integral’s true value.

These observations extend easily to the situation where the function’s concavity remains con-
sistent but we use higher values of n in the Midpoint and Trapezoid Rules. Hence, whenever f
is concave up on [a, b], Tn will overestimate the value of

∫ b
a f(x) dx, while Mn will underestimate∫ b

a f(x) dx. The reverse observations are true in the situation where f is concave down.

Next, we compare the size of the errors between Mn and Tn. Again, we focus on M1 and
T1 on an interval where the concavity of f is consistent. In Figure 5.18, where the error of the
Trapezoid Rule is shaded in red, while the error of the Midpoint Rule is shaded lighter red, it is

M1

Figure 5.18: Comparing the error in estimating
∫ b
a
f(x) dx using a single subinterval: in red, the error from

the Trapezoid rule; in light red, the error from the Midpoint rule.

visually apparent that the error in the Trapezoid Rule is more significant. To see how much more
significant, let’s consider two examples and some particular computations.

If we let f(x) = 1− x2 and consider
∫ 1

0 f(x) dx, we know by the First FTC that the exact value
of the integral is ∫ 1

0
(1− x2) dx = x− x3

3

∣∣∣∣
1

0

=
2

3
.

Using appropriate technology to compute M4, M8, T4, and T8, as well as the corresponding errors
EM,4, EM,8, ET,4, and ET,8, as we did in Activity 5.15, we find the results summarized in Table 5.1.
Note that in the table, we also include the approximations and their errors for the example

∫ 2
1

1
x2
dx

from Activity 5.15.

Recall that for a given function f and interval [a, b], ET,4 =
∫ b
a f(x) dx − T4 calculates the

difference between the exact value of the definite integral and the approximation generated by
the Trapezoid Rule with n = 4. If we look at not only ET,4, but also the other errors generated
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∫ 1
0 (1− x2) dx = 0.6 error

∫ 2
1

1
x2
dx = 0.5 error

T4 0.65625 -0.0104166667 0.5089937642 0.0089937642

M4 0.671875 0.0052083333 0.4955479365 -0.0044520635

T8 0.6640625 -0.0026041667 0.5022708502 0.0022708502

M8 0.66796875 0.0013020833 0.4988674899 -0.0011325101

Table 5.1: Calculations of T4, M4, T8, and M8, along with corresponding errors, for the definite integrals∫ 1

0
(1− x2) dx and

∫ 2

1
1
x2 dx.

by using Tn and Mn with n = 4 and n = 8 in the two examples noted in Table 5.1, we see an
evident pattern. Not only is the sign of the error (which measures whether the rule generates an
over- or under-estimate) tied to the rule used and the function’s concavity, but the magnitude of
the errors generated by Tn and Mn seems closely connected. In particular, the errors generated by
the Midpoint Rule seem to be about half the size of those generated by the Trapezoid Rule.

That is, we can observe in both examples that EM,4 ≈ −1
2ET,4 and EM,8 ≈ −1

2ET,8, which
demonstrates a property of the Midpoint and Trapezoid Rules that turns out to hold in general:
for a function of consistent concavity, the error in the Midpoint Rule has the opposite sign and
approximately half the magnitude of the error of the Trapezoid Rule. Said symbolically,

EM,n ≈ −
1

2
ET,n.

This important relationship suggests a way to combine the Midpoint and Trapezoid Rules to create
an even more accurate approximation to a definite integral.

Simpson’s Rule

When we first developed the Trapezoid Rule, we observed that it can equivalently be viewed as
resulting from the average of the Left and Right Riemann sums:

Tn =
1

2
(Ln +Rn).

Whenever a function is always increasing or always decreasing on the interval [a, b], one of Ln and
Rn will over-estimate the true value of

∫ b
a f(x) dx, while the other will under-estimate the integral.

Said differently, the errors found in Ln and Rn will have opposite signs; thus, averaging Ln and
Rn eliminates a considerable amount of the error present in the respective approximations. In a
similar way, it makes sense to think about averaging Mn and Tn in order to generate a still more
accurate approximation.

At the same time, we’ve just observed that Mn is typically about twice as accurate as Tn. Thus,
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∫ 1
0 (1− x2) dx = 0.6 error

∫ 2
1

1
x2
dx = 0.5 error

T4 0.65625 -0.0104166667 0.5089937642 0.0089937642

M4 0.671875 0.0052083333 0.4955479365 -0.0044520635

S4 0.6666666668 10−10 0.5000298792 0.0000298792

T8 0.6640625 -0.0026041667 0.5022708502 0.0022708502

M8 0.66796875 0.0013020833 0.4988674899 -0.0011325101

S8 0.6666666667 0 0.5000019434 0.0000019434

Table 5.2: Table 5.1 updated to include S4, S8, and the corresponding errors.

we instead choose to use the weighted average

Sn =
2Mn + Tn

3
. (5.14)

The rule for Sn giving by Equation 5.14 is usually known as Simpson’s Rule.9 We build upon
the results in Table 5.1 to see the approximations generated by Simpson’s Rule. In particular, in
Table 5.2, we include all of the results in Table 5.1, but include additional results for S4 = 2M4+T4

3

and S8 = 2M8+T8
3 .

The results seen in Table 5.2 are striking. If we consider the S8 approximation of
∫ 2

1
1
x2
dx, the

error is only ES,8 = 0.0000019434. By contrast, L8 = 0.5491458502, so the error of that estimate is
EL,8 = −0.0491458502. Moreover, we observe that generating the approximations for Simpson’s
Rule is almost no additional work: once we have Ln, Rn, and Mn for a given value of n, it is a
simple exercise to generate Tn, and from there to calculate Sn. The error in the Simpson’s Rule
approximations of

∫ 1
0 x

2 dx is even smaller.10

These rules are not only useful for approximating definite integrals such as
∫ 1

0 e
−x2 dx, for

which we cannot find an elementary antiderivative of e−x
2
, but also for approximating definite

integrals in the setting where we are given a function through a table of data.

Activity 5.16.

A car traveling along a straight road is braking and its velocity is measured at several different
points in time, as given in the following table. Assume that v is continuous, always decreasing,
and always decreasing at a decreasing rate, as is suggested by the data.

9Thomas Simpson was an 18th century mathematician; his idea was to extend the Trapezoid rule, but rather than
using straight lines to build trapezoids, to use quadratic functions to build regions whose area was bounded by parabo-
las (whose areas he could find exactly). Simpson’s Rule is often developed from the more sophisticated perspective of
using interpolation by quadratic functions.

10Similar to how the Midpoint and Trapezoid approximations are exact for linear functions, Simpson’s Rule approx-
imations are exact for quadratic and cubic functions. See additional discussion on this issue later in the section and in
the exercises.
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seconds, t 0 0.3 0.6 0.9 1.2 1.5 1.8
Velocity in ft/sec, v(t) 100 99 96 90 80 50 0

(a) Plot the given data on the set of axes provided in Figure 5.19 with time on the horizontal
axis and the velocity on the vertical axis.

(b) What definite integral will give you the exact distance the car traveled on [0, 1.8]?

(c) Estimate the total distance traveled on [0, 1.8] by computing L3, R3, and T3. Which of
these under-estimates the true distance traveled?

(d) Estimate the total distance traveled on [0, 1.8] by computing M3. Is this an over- or
under-estimate? Why?

(e) Use your results from (c) and (d) improve your estimate further by using Simpson’s
Rule.

(f) What is your best estimate of the average velocity of the car on [0, 1.8]? Why? What are
the units on this quantity?

0.3 0.6 0.9 1.2 1.5 1.8

v

t

Figure 5.19: Axes for plotting the data in Activity 5.16.

C

Overall observations regarding Ln, Rn, Tn, Mn, and Sn.

As we conclude our discussion of numerical approximation of definite integrals, it is important
to summarize general trends in how the various rules over- or under-estimate the true value of a
definite integral, and by how much. To revisit some past observations and see some new ones, we
consider the following activity.

Activity 5.17.

Consider the functions f(x) = 2− x2, g(x) = 2− x3, and h(x) = 2− x4, all on the interval [0, 1].
For each of the questions that require a numerical answer in what follows, write your answer
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exactly in fraction form.

(a) On the three sets of axes provided in Figure 5.20, sketch a graph of each function on the
interval [0, 1], and compute L1 and R1 for each. What do you observe?

(b) Compute M1 for each function to approximate
∫ 1

0 f(x) dx,
∫ 1

0 g(x) dx, and
∫ 1

0 h(x) dx,
respectively.

(c) Compute T1 for each of the three functions, and hence compute S1 for each of the three
functions.

(d) Evaluate each of the integrals
∫ 1

0 f(x) dx,
∫ 1

0 g(x) dx, and
∫ 1

0 h(x) dx exactly using the
First FTC.

(e) For each of the three functions f , g, and h, compare the results of L1, R1, M1, T1, and S1

to the true value of the corresponding definite integral. What patterns do you observe?

1

2

1

2

1

2

Figure 5.20: Axes for plotting the functions in Activity 5.17.

C

The results seen in the examples in Activity 5.17 generalize nicely. For instance, for any func-
tion f that is decreasing on [a, b], Ln will over-estimate the exact value of

∫ b
a f(x) dx, and for any

function f that is concave down on [a, b], Mn will over-estimate the exact value of the integral.
An excellent exercise is to write a collection of scenarios of possible function behavior, and then
categorize whether each of Ln, Rn, Tn, and Mn is an over- or under-estimate.

Finally, we make two important notes about Simpson’s Rule. When T. Simpson first devel-
oped this rule, his idea was to replace the function f on a given interval with a quadratic function
that shared three values with the function f . In so doing, he guaranteed that this new approxi-
mation rule would be exact for the definite integral of any quadratic polynomial. In one of the
pleasant surprises of numerical analysis, it turns out that even though it was designed to be exact
for quadratic polynomials, Simpson’s Rule is exact for any cubic polynomial: that is, if we are
interested in an integral such as

∫ 5
2 (5x3 − 2x2 + 7x − 4) dx, Sn will always be exact, regardless of
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the value of n. This is just one more piece of evidence that shows how effective Simpson’s Rule is
as an approximation tool for estimating definite integrals.11

Summary

In this section, we encountered the following important ideas:

• For a definite integral such as
∫ 1

0 e
−x2 dx when we cannot use the First Fundamental Theorem

of Calculus because the integrand lacks an elementary algebraic antiderivative, we can estimate
the integral’s value by using a sequence of Riemann sum approximations. Typically, we start
by computing Ln, Rn, and Mn for one or more chosen values of n.

• The Trapezoid Rule, which estimates
∫ b
a f(x) dx by using trapezoids, rather than rectangles, can

also be viewed as the average of Left and Right Riemann sums. That is, Tn = 1
2(Ln +Rn).

• The Midpoint Rule is typically twice as accurate as the Trapezoid Rule, and the signs of the
respective errors of these rules are opposites. Hence, by taking the weighted average Sn =
2Mn+Tn

3 , we can build a much more accurate approximation to
∫ b
a f(x) dx by using approxima-

tions we have already computed. The rule for Sn is known as Simpson’s Rule, which can also
be developed by approximating a given continuous function with pieces of quadratic polyno-
mials.

Exercises

1. Consider the definite integral
∫ 1

0 x tan(x) dx.

(a) Explain why this integral cannot be evaluated exactly by using either u-substitution or
by integrating by parts.

(b) Using 4 subintervals, compute L4, R4, M4, T4, and S4.

(c) Which of the approximations in (b) is an over-estimate to the true value of
∫ 1

0 x tan(x) dx?
Which is an under-estimate? How do you know?

2. For an unknown function f(x), the following information is known.

• f is continuous on [3, 6];

• f is either always increasing or always decreasing on [3, 6];

• f has the same concavity throughout the interval [3, 6];

• As approximations to
∫ 6

3 f(x) dx, L4 = 7.23, R4 = 6.75, and M4 = 7.05.

(a) Is f increasing or decreasing on [3, 6]? What data tells you?
11One reason that Simpson’s Rule is so effective is that Sn benefits from using 2n + 1 points of data. Because it

combines Mn, which uses n midpoints, and Tn, which uses the n + 1 endpoints of the chosen subintervals, Sn takes
advantage of the maximum amount of information we have when we know function values at the endpoints and
midpoints of n subintervals.
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(b) Is f concave up or concave down on [3, 6]? Why?

(c) Determine the best possible estimate you can for
∫ 6

3 f(x) dx, based on the given infor-
mation.

3. The rate at which water flows through Table Rock Dam on the White River in Branson, MO, is
measured in thousands of cubic feet per second (TCFS). As engineers open the floodgates, flow
rates are recorded according to the following chart.

seconds, t 0 10 20 30 40 50 60
flow in TCFS, r(t) 2000 2100 2400 3000 3900 5100 6500

(a) What definite integral measures the total volume of water to flow through the dam in
the 60 second time period provided by the table above?

(b) Use the given data to calculateMn for the largest possible value of n to approximate the
integral you stated in (a). Do you think Mn over- or under-estimates the exact value of
the integral? Why?

(c) Approximate the integral stated in (a) by calculating Sn for the largest possible value of
n, based on the given data.

(d) Compute 1
60Sn and 2000+2100+2400+3000+3900+5100+6500

7 . What quantity do both of these
values estimate? Which is a more accurate approximation?
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Chapter 6

Using Definite Integrals

6.1 Using Definite Integrals to Find Area and Length

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How can we use definite integrals to measure the area between two curves?

• How do we decide whether to integrate with respect to x or with respect to y when we try
to find the area of a region?

• How can a definite integral be used to measure the length of a curve?

Introduction

Early on in our work with the definite integral, we learned that if we have a nonnegative velocity
function, v, for an object moving along an axis, the area under the velocity function between a and
b tells us the distance the object traveled on that time interval. Moreover, based on the definition of
the definite integral, that area is given precisely by

∫ b
a v(t) dt. Indeed, for any nonnegative function

f on an interval [a, b], we know that
∫ b
a f(x) dx measures the area bounded by the curve and the

x-axis between x = a and x = b, as shown in Figure 6.2.

Through our upcoming work in the present section and chapter, we will explore how definite
integrals can be used to represent a variety of different physically important properties. In Preview
Activity 6.1, we begin this investigation by seeing how a single definite integral may be used to
represent the area between two curves.

Preview Activity 6.1. Consider the functions given by f(x) = 5− (x− 1)2 and g(x) = 4− x.

(a) Use algebra to find the points where the graphs of f and g intersect.

317
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y = f(x)

a b

A =
∫ b

a
f(x) dx

Figure 6.1: The area between a nonnegative function f and the x-axis on the interval [a, b].

(b) Sketch an accurate graph of f and g on the axes provided, labeling the curves by name and
the intersection points with ordered pairs.

(c) Find and evaluate exactly an integral expression that represents the area between y = f(x)
and the x-axis on the interval between the intersection points of f and g.

(d) Find and evaluate exactly an integral expression that represents the area between y = g(x)
and the x-axis on the interval between the intersection points of f and g.

(e) What is the exact area between f and g between their intersection points? Why?

1 2 3

2

4

6

Figure 6.2: Axes for plotting f and g in Preview Activity 6.1

./
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The Area Between Two Curves

Through Preview Activity 6.1, we encounter a natural way to think about the area between two
curves: the area between the curves is the area beneath the upper curve minus the area below the
lower curve. For the functions f(x) = (x − 1)2 + 1 and g(x) = x + 2, shown in Figure 6.3, we see

1 2 3

2

4

6

g

1 2 3

2

4

6

g

f

1 2 3

2

4

6

f

g

Figure 6.3: The areas bounded by the functions f(x) = (x− 1)2 + 1 and g(x) = x+ 2 on the interval [0, 3].

that the upper curve is g(x) = x+ 2, and that the graphs intersect at (0, 2) and (3, 5). Note that we
can find these intersection points by solving the system of equations given by y = (x− 1)2 + 1 and
y = x+2 through substitution: substituting x+2 for y in the first equation yields x+2 = (x−1)2+1,
so x+ 2 = x2 − 2x+ 1 + 1, and thus

x2 − 3x = x(x− 3) = 0,

from which it follows that x = 0 or x = 3. Using y = x+ 2, we find the corresponding y-values of
the intersection points.

On the interval [0, 3], the area beneath g is
∫ 3

0
(x+ 2) dx =

21

2
,

while the area under f on the same interval is
∫ 3

0
[(x− 1)2 + 1] dx = 6.

Thus, the area between the curves is

A =

∫ 3

0
(x+ 2) dx−

∫ 3

0
[(x− 1)2 + 1] dx =

21

2
− 6 =

9

2
. (6.1)

A slightly different perspective is also helpful here: if we take the region between two curves
and slice it up into thin vertical rectangles (in the same spirit as we originally sliced the region
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between a single curve and the x-axis in Section 4.2), then we see that the height of a typical
rectangle is given by the difference between the two functions. For example, for the rectangle
shown at left in Figure 6.4, we see that the rectangle’s height is g(x)− f(x), while its width can be

g

f

x

△x

g(x)− f(x)

1 2 3

2

4

6

f

g

Figure 6.4: The area bounded by the functions f(x) = (x− 1)2 + 1 and g(x) = x+ 2 on the interval [0, 3].

viewed as4x, and thus the area of the rectangle is

Arect = (g(x)− f(x))4x.

In addition, the area between the two curves on the interval [0, 3] is then approximated by the
Riemann sum

A ≈
n∑

i=1

(g(xi)− f(xi))4x,

and then as we let n→∞, it follows that the area is given by the single definite integral

A =

∫ 3

0
(g(x)− f(x)) dx. (6.2)

In our work with applications of the definite integral, we will often find it helpful to think of a
“representative slice” and how the definite integral may be used to add these slices to find the
exact value of a desired quantity. Here, the integral essentially sums the areas of thin rectangles.

Finally, we note that whether we think of the area between two curves as stemming from the
difference between the area bounded by the individual curves (as in Equation (6.1)) or as the limit
of a Riemann sum that adds the areas of thin rectangles between the curves (as in Equation (6.2)),
these two results are the same, since the difference of two integrals is the integral of the difference:

∫ 3

0
g(x) dx−

∫ 3

0
f(x) dx =

∫ 3

0
(g(x)− f(x)) dx.
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Moreover, our work so far in this section exemplifies the following general principle.

If two curves y = g(x) and y = f(x) intersect at (a, g(a)) and (b, g(b)), and for all x such that
a ≤ x ≤ b, g(x) ≥ f(x), then the area between the curves is

A =

∫ b

a
(g(x)− f(x)) dx.

Activity 6.1.

In each of the following problems, our goal is to determine the area of the region described.
For each region, (i) determine the intersection points of the curves, (ii) sketch the region whose
area is being found, (iii) draw and label a representative slice, and (iv) state the area of the
representative slice. Then, state a definite integral whose value is the exact area of the region,
and evaluate the integral to find the numeric value of the region’s area.

(a) The finite region bounded by y =
√
x and y = 1

4x.

(b) The finite region bounded by y = 12− 2x2 and y = x2 − 8.

(c) The area bounded by the y-axis, f(x) = cos(x), and g(x) = sin(x), where we consider
the region formed by the first positive value of x for which f and g intersect.

(d) The finite regions between the curves y = x3 − x and y = x2.

C

Finding Area with Horizontal Slices

At times, the shape of a geometric region may dictate that we need to use horizontal rectangular
slices, rather than vertical ones. For instance, consider the region bounded by the parabola x =
y2 − 1 and the line y = x − 1, pictured in Figure 6.5. First, we observe that by solving the second
equation for x and writing x = y + 1, we can eliminate a variable through substitution and find
that y + 1 = y2 − 1, and hence the curves intersect where y2 − y − 2 = 0. Thus, we find y = −1 or
y = 2, so the intersection points of the two curves are (0,−1) and (3, 2).

We see that if we attempt to use vertical rectangles to slice up the area, at certain values of
x (specifically from x = −1 to x = 0, as seen in the center graph of Figure 6.5), the curves that
govern the top and bottom of the rectangle are one and the same. This suggests, as shown in the
rightmost graph in the figure, that we try using horizontal rectangles as a way to think about the
area of the region. For such a horizontal rectangle, note that its width depends on y, the height
at which the rectangle is constructed. In particular, at a height y between y = −1 and y = 2, the
right end of a representative rectangle is determined by the line, x = y + 1, while the left end of
the rectangle is determined by the parabola, x = y2 − 1, and the thickness of the rectangle is4y.
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1 2 3

-1

1

2
x = y2 − 1

y = x− 1

1 2 3

-1

1

2
x = y2 − 1

y = x− 1
1 2 3

-1

1

2
x = y2 − 1

x = y + 1

△y

Figure 6.5: The area bounded by the functions x = y2 − 1 and y = x − 1 (at left), with the region sliced
vertically (center) and horizontally (at right).

Therefore, the area of the rectangle is

Arect = [(y + 1)− (y2 − 1)]4y,

from which it follows that the area between the two curves on the y-interval [−1, 2] is approxi-
mated by the Riemann sum

A ≈
n∑

i=1

[(yi + 1)− (y2
i − 1)]4y.

Taking the limit of the Riemann sum, it follows that the area of the region is

A =

∫ y=2

y=−1
[(y + 1)− (y2 − 1)] dy. (6.3)

We emphasize that we are integrating with respect to y; this is dictated by the fact that we chose
to use horizontal rectangles whose widths depend on y and whose thickness is denoted 4y. It is
a straightforward exercise to evaluate the integral in Equation (6.3) and find that A = 9

2 .

Just as with the use of vertical rectangles of thickness 4x, we have a general principle for
finding the area between two curves, which we state as follows.

If two curves x = g(y) and x = f(y) intersect at (g(c), c) and (g(d), d), and for all y such that
c ≤ y ≤ d, g(y) ≥ f(y), then the area between the curves is

A =

∫ y=d

y=c
(g(y)− f(y)) dy.

Activity 6.2.
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In each of the following problems, our goal is to determine the area of the region described.
For each region, (i) determine the intersection points of the curves, (ii) sketch the region whose
area is being found, (iii) draw and label a representative slice, and (iv) state the area of the
representative slice. Then, state a definite integral whose value is the exact area of the region,
and evaluate the integral to find the numeric value of the region’s area. Note well: At the
step where you draw a representative slice, you need to make a choice about whether to slice
vertically or horizontally.

(a) The finite region bounded by x = y2 and x = 6− 2y2.

(b) The finite region bounded by x = 1− y2 and x = 2− 2y2.

(c) The area bounded by the x-axis, y = x2, and y = 2− x.

(d) The finite regions between the curves x = y2 − 2y and y = x.

C

Finding the length of a curve

In addition to being able to use definite integrals to find the areas of certain geometric regions,
we can also use the definite integral to find the length of a portion of a curve. We use the same
fundamental principle: we take a curve whose length we cannot easily find, and slice it up into
small pieces whose lengths we can easily approximate. In particular, we take a given curve and
subdivide it into small approximating line segments, as shown at left in Figure 6.6. To see how we

x

y
f

x0 x1 x2 x3
△x

△yh

L

Figure 6.6: At left, a continuous function y = f(x) whose length we seek on the interval a = x0 to b = x3.
At right, a close up view of a portion of the curve.

find such a definite integral that measures arc length on the curve y = f(x) from x = a to x = b,
we think about the portion of length, Lslice, that lies along the curve on a small interval of length
4x, and estimate the value of Lslice using a well-chosen triangle. In particular, if we consider the
right triangle with legs parallel to the coordinate axes and hypotenuse connecting two points on
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the curve, as seen at right in Figure 6.6, we see that the length, h, of the hypotenuse approximates
the length, Lslice, of the curve between the two selected points. Thus,

Lslice ≈ h =
√

(4x)2 + (4y)2.

By algebraically rearranging the expression for the length of the hypotenuse, we see how a definite
integral can be used to compute the length of a curve. In particular, observe that by removing a
factor of (4x)2, we find that

Lslice ≈
√

(4x)2 + (4y)2

=

√
(4x)2

(
1 +

(4y)2

(4x)2

)

=

√
1 +

(4y)2

(4x)2
· 4x.

Furthermore, as n→∞ and4x→ 0, it follows that 4y4x →
dy
dx = f ′(x). Thus, we can say that

Lslice ≈
√

1 + f ′(x)24x.
Taking a Riemann sum of all of these slices and letting n→∞, we arrive at the following fact.

Given a continuous function f on an interval [a, b], the total arc length, L, along the curve
y = f(x) from x = a to x = b is given by

L =

∫ b

a

√
1 + f ′(x)2 dx.

Activity 6.3.

Each of the following questions somehow involves the arc length along a curve.

(a) Determine the exact arc length along y = x2 from x = −1 to x = 1.

(b) Find the arc length of y =
√

4− x2 on the interval 0 ≤ x ≤ 4. Find this value in two
different ways: (a) by using a definite integral, and (b) by using a familiar property of
the curve.

(c) Determine the arc length of y = xe3x on the interval [0, 1].

(d) Will the integrals that arise calculating arc length typically be ones that we can evaluate
exactly using the First FTC, or ones that we need to approximate? Why?

(e) A moving particle is traveling along the curve given by y = f(x) = 0.1x2 + 1, and does
so at a constant rate of 7 cm/sec, where both x and y are measured in cm (that is, the
curve y = f(x) is the path along which the object actually travels; the curve is not a
“position function”). Find the position of the particle when t = 4 sec, assuming that
when t = 0, the particle’s location is (0, f(0)).
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C

Summary

In this section, we encountered the following important ideas:

• To find the area between two curves, we think about slicing the region into thin rectangles. If,
for instance, the area of a typical rectangle on the interval x = a to x = b is given by Arect =
(g(x)− f(x))4x, then the exact area of the region is given by the definite integral

A =

∫ b

a
(g(x)− f(x)) dx.

• The shape of the region usually dictates whether we should use vertical rectangles of thickness
4x or horizontal rectangles of thickness 4y. We desire to have the height of the rectangle
governed by the difference between two curves: if those curves are best thought of as functions
of y, we use horizontal rectangles, whereas if those curves are best viewed as functions of x, we
use vertical rectangles.

• The arc length, L, along the curve y = f(x) from x = a to x = b is given by

L =

∫ b

a

√
1 + f ′(x)2 dx.

Exercises

1. Find the exact area of each described region.

(a) The finite region between the curves x = y(y − 2) and x = −(y − 1)(y − 3).

(b) The region between the sine and cosine functions on the interval [π4 ,
3π
4 ].

(c) The finite region between x = y2 − y − 2 and y = 2x− 1.

(d) The finite region between y = mx and y = x2 − 1, where m is a positive constant.

2. Let f(x) = 1 − x2 and g(x) = ax2 − a, where a is an unknown real number. For what value(s)
of a is the area between the curves f and g equal to 2?

3. Let f(x) = 2 − x2. Recall that the average value of any continuous function f on an interval
[a, b] is given by 1

b−a
∫ b
a f(x) dx.

(a) Find the average value of f(x) = 2− x2 on the interval [0,
√

2]. Call this value r.

(b) Sketch a graph of y = f(x) and y = r. Find their intersection point(s).

(c) Show that on the interval [0,
√

2], the amount of area that lies below y = f(x) and above
y = r is equal to the amount of area that lies below y = r and above y = f(x).
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(d) Will the result of (c) be true for any continuous function and its average value on any
interval? Why?



6.2. USING DEFINITE INTEGRALS TO FIND VOLUME 327

6.2 Using Definite Integrals to Find Volume

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How can we use a definite integral to find the volume of a three-dimensional solid of revo-
lution that results from revolving a two-dimensional region about a particular axis?

• In what circumstances do we integrate with respect to y instead of integrating with respect
to x?

• What adjustments do we need to make if we revolve about a line other than the x- or y-axis?

Introduction

3

2

△x

x

y

Figure 6.7: A right circular cylinder.

Just as we can use definite integrals to add up the areas of rectangular slices to find the exact
area that lies between two curves, we can also employ integrals to determine the volume of certain
regions that have cross-sections of a particular consistent shape. As a very elementary example,
consider a cylinder of radius 2 and height 3, as pictured in Figure 6.7. While we know that we can
compute the area of any circular cylinder by the formula V = πr2h, if we think about slicing the
cylinder into thin pieces, we see that each is a cylinder of radius r = 2 and height (thickness)4x.
Hence, the volume of a representative slice is

Vslice = π · 22 · 4x.

Letting4x→ 0 and using a definite integral to add the volumes of the slices, we find that

V =

∫ 3

0
π · 22 dx.
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Moreover, since
∫ 3

0 4π dx = 12π, we have found that the volume of the cylinder is 4π. The principal
problem of interest in our upcoming work will be to find the volume of certain solids whose cross-
sections are all thin cylinders (or washers) and to do so by using a definite integral. To that end,
we first consider another familiar shape in Preview Activity 6.2: a circular cone.

Preview Activity 6.2. Consider a circular cone of radius 3 and height 5, which we view horizon-
tally as pictured in Figure 6.8. Our goal in this activity is to use a definite integral to determine the
volume of the cone.

(a) Find a formula for the linear function y = f(x) that is pictured in Figure 6.8.

(b) For the representative slice of thickness 4x that is located horizontally at a location x
(somewhere between x = 0 and x = 5), what is the radius of the representative slice? Note
that the radius depends on the value of x.

(c) What is the volume of the representative slice you found in (b)?

(d) What definite integral will sum the volumes of the thin slices across the full horizontal
span of the cone? What is the exact value of this definite integral?

(e) Compare the result of your work in (d) to the volume of the cone that comes from using
the formula Vcone = 1

3πr
2h.

5

3

△x

x

y

y = f(x)

Figure 6.8: The circular cone described in Preview Activity 6.2

./

The Volume of a Solid of Revolution

A solid of revolution is a three dimensional solid that can be generated by revolving one or more
curves around a fixed axis. For example, we can think of a circular cylinder as a solid of revolu-
tion: in Figure 6.7, this could be accomplished by revolving the line segment from (0, 2) to (3, 2)
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about the x-axis. Likewise, the circular cone in Figure 6.8 is the solid of revolution generated by
revolving the portion of the line y = 3− 3

5x from x = 0 to x = 5 about the x-axis. It is particularly
important to notice in any solid of revolution that if we slice the solid perpendicular to the axis of
revolution, the resulting cross-section is circular.

We consider two examples to highlight some of the natural issues that arise in determining the
volume of a solid of revolution.

Example 6.1. Find the volume of the solid of revolution generated when the regionR bounded by
y = 4− x2 and the x-axis is revolved about the x-axis.

Solution.

First, we observe that y = 4− x2 intersects the x-axis at the points (−2, 0) and (2, 0). When we
take the region R that lies between the curve and the x-axis on this interval and revolve it about
the x-axis, we get the three-dimensional solid pictured in Figure 6.9.

2

4

△x

x

y
y = 4− x2

Figure 6.9: The solid of revolution in Example 6.1.

Taking a representative slice of the solid located at a value x that lies between x = −2 and
x = 2, we see that the thickness of such a slice is 4x (which is also the height of the cylinder-
shaped slice), and that the radius of the slice is determined by the curve y = 4 − x2. Hence, we
find that

Vslice = π(4− x2)24x,
since the volume of a cylinder of radius r and height h is V = πr2h.

Using a definite integral to sum the volumes of the representative slices, it follows that

V =

∫ 2

−2
π(4− x2)2 dx.

It is straightforward to evaluate the integral and find that the volume is V = 512
15 π.
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For a solid such as the one in Example 6.1, where each cross-section is a cylindrical disk, we
first find the volume of a typical cross-section (noting particularly how this volume depends on x),
and then we integrate over the range of x-values through which we slice the solid in order to find
the exact total volume. Often, we will be content with simply finding the integral that represents
the sought volume; if we desire a numeric value for the integral, we typically use a calculator or
computer algebra system to find that value.

The general principle we are using to find the volume of a solid of revolution generated by a
single curve is often called the disk method.

If y = r(x) is a nonnegative continuous function on [a, b], then the volume of the solid of
revolution generated by revolving the curve about the x-axis over this interval is given by

V =

∫ b

a
πr(x)2 dx.

A different type of solid can emerge when two curves are involved, as we see in the following
example.

Example 6.2. Find the volume of the solid of revolution generated when the finite region R that
lies between y = 4− x2 and y = x+ 2 is revolved about the x-axis.

Solution.

First, we must determine where the curves y = 4 − x2 and y = x + 2 intersect. Substituting
the expression for y from the second equation into the first equation, we find that x+ 2 = 4− x2.
Rearranging, it follows that

x2 + x− 2 = 0,

and the solutions to this equation are x = −2 and x = 1. The curves therefore cross at (−2, 0) and
(1, 1).

When we take the region R that lies between the curves and revolve it about the x-axis, we get
the three-dimensional solid pictured at left in Figure 6.10.

Immediately we see a major difference between the solid in this example and the one in Exam-
ple 6.1: here, the three-dimensional solid of revolution isn’t “solid” in the sense that it has open
space in its center. If we slice the solid perpendicular to the axis of revolution, we observe that in
this setting the resulting representative slice is not a solid disk, but rather a washer, as pictured at
right in Figure 6.10. Moreover, at a given location x between x = −2 and x = 1, the small radius
r(x) of the inner circle is determined by the curve y = x + 2, so r(x) = x + 2. Similarly, the big
radius R(x) comes from the function y = 4− x2, and thus R(x) = 4− x2.
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2

△x

4 y

r(x)

R(x)

Figure 6.10: At left, the solid of revolution in Example 6.2. At right, a typical slice with inner radius r(x)
and outer radius R(x).

Thus, to find the volume of a representative slice, we compute the volume of the outer disk
and subtract the volume of the inner disk. Since

πR(x)24x− πr(x)24x = π[R(x)2 − r(x)2]4x,

it follows that the volume of a typical slice is

Vslice = π[(4− x2)2 − (x+ 2)2]4x.

Hence, using a definite integral to sum the volumes of the respective slices across the integral, we
find that

V =

∫ 1

−2
π[(4− x2)2 − (x+ 2)2] dx.

Evaluating the integral, the volume of the solid of revolution is V = 108
5 π.

The general principle we are using to find the volume of a solid of revolution generated by a
single curve is often called the washer method.

If y = R(x) and y = r(x) are nonnegative continuous functions on [a, b] that satisfyR(x) ≥ r(x)
for all x in [a, b], then the volume of the solid of revolution generated by revolving the region
between them about the x-axis over this interval is given by

V =

∫ b

a
π[R(x)2 − r(x)2] dx.

Activity 6.4.
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In each of the following questions, draw a careful, labeled sketch of the region described, as
well as the resulting solid that results from revolving the region about the stated axis. In addi-
tion, draw a representative slice and state the volume of that slice, along with a definite integral
whose value is the volume of the entire solid. It is not necessary to evaluate the integrals you
find.

(a) The region S bounded by the x-axis, the curve y =
√
x, and the line x = 4; revolve S

about the x-axis.

(b) The region S bounded by the y-axis, the curve y =
√
x, and the line y = 2; revolve S

about the x-axis.

(c) The finite region S bounded by the curves y =
√
x and y = x3; revolve S about the

x-axis.

(d) The finite region S bounded by the curves y = 2x2 + 1 and y = x2 + 4; revolve S about
the x-axis

(e) The region S bounded by the y-axis, the curve y =
√
x, and the line y = 2; revolve S

about the y-axis. How does the problem change considerably when we revolve about
the y-axis?

C

Revolving about the y-axis

As seen in Activity 6.5, problem (e), the problem changes considerably when we revolve a given
region about the y-axis. Foremost, this is due to the fact that representative slices now have thick-
ness 4y, which means that it becomes necessary to integrate with respect to y. Let’s consider a
particular example to demonstrate some of the key issues.

Example 6.3. Find the volume of the solid of revolution generated when the finite region R that
lies between y =

√
x and y = x4 is revolved about the y-axis.

Solution.

We observe that these two curves intersect when x = 1, hence at the point (1, 1). When we
take the region R that lies between the curves and revolve it about the y-axis, we get the three-
dimensional solid pictured at left in Figure 6.11. Now, it is particularly important to note that the
thickness of a representative slice is4y, and that the slices are only cylindrical washers in nature
when taken perpendicular to the y-axis. Hence, we envision slicing the solid horizontally, starting
at y = 0 and proceeding up to y = 1. Because the inner radius is governed by the curve y =

√
x,

but from the perspective that x is a function of y, we solve for x and get x = y2 = r(y). In the same
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1

1

△y

x =
√

r(y)

R(y)

Figure 6.11: At left, the solid of revolution in Example 6.3. At right, a typical slice with inner radius r(y)
and outer radius R(y).

way, we need to view the curve y = x4 (which governs the outer radius) in the form where x is a
function of y, and hence x = 4

√
y. Therefore, we see that the volume of a typical slice is

Vslice = π[R(y)2 − r(y)2] = π[ 4
√
y2 − (y2)2]4y.

Using a definite integral to sum the volume of all the representative slices from y = 0 to y = 1, the
total volume is

V =

∫ y=1

y=0
π
[

4
√
y2 − (y2)2

]
dy.

It is straightforward to evaluate the integral and find that V = 7
15π.

Activity 6.5.

In each of the following questions, draw a careful, labeled sketch of the region described, as
well as the resulting solid that results from revolving the region about the stated axis. In addi-
tion, draw a representative slice and state the volume of that slice, along with a definite integral
whose value is the volume of the entire solid. It is not necessary to evaluate the integrals you
find.

(a) The region S bounded by the y-axis, the curve y =
√
x, and the line y = 2; revolve S

about the y-axis.

(b) The region S bounded by the x-axis, the curve y =
√
x, and the line x = 4; revolve S

about the y-axis.

(c) The finite region S in the first quadrant bounded by the curves y = 2x and y = x3;
revolve S about the x-axis.
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(d) The finite region S in the first quadrant bounded by the curves y = 2x and y = x3;
revolve S about the y-axis.

(e) The finite region S bounded by the curves x = (y − 1)2 and y = x− 1; revolve S about
the y-axis

C

Revolving about horizontal and vertical lines other than the coordinate axes

Just as we can revolve about one of the coordinate axes (y = 0 or x = 0), it is also possible to
revolve around any horizontal or vertical line. Doing so essentially adjusts the radii of cylinders
or washers involved by a constant value. A careful, well-labeled plot of the solid of revolution will
usually reveal how the different axis of revolution affects the definite integral we set up. Again,
an example is instructive.

Example 6.4. Find the volume of the solid of revolution generated when the finite region S that
lies between y = x2 and y = x is revolved about the line y = −1.

Solution.

1

-2

1

r(x) R(x)

Figure 6.12: The solid of revolution described in Example 6.4.
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Graphing the region between the two curves in the first quadrant between their points of
intersection ((0, 0) and (1, 1)) and then revolving the region about the line y = −1, we see the
solid shown in Figure 6.12. Each slice of the solid perpendicular to the axis of revolution is a
washer, and the radii of each washer are governed by the curves y = x2 and y = x. But we also
see that there is one added change: the axis of revolution adds a fixed length to each radius. In
particular, the inner radius of a typical slice, r(x), is given by r(x) = x2 + 1, while the outer radius
is R(x) = x+ 1. Therefore, the volume of a typical slice is

Vslice = π[R(x)2 − r(x)2]4x = π
[
(x+ 1)2 − (x2 + 1)2

]24x.

Finally, we integrate to find the total volume, and

V =

∫ 1

0
π
[
(x+ 1)2 − (x2 + 1)2

]2
dx =

7

15
π.

Activity 6.6.

In each of the following questions, draw a careful, labeled sketch of the region described, as
well as the resulting solid that results from revolving the region about the stated axis. In addi-
tion, draw a representative slice and state the volume of that slice, along with a definite integral
whose value is the volume of the entire solid. It is not necessary to evaluate the integrals you
find. For each prompt, use the finite region S in the first quadrant bounded by the curves
y = 2x and y = x3.

(a) Revolve S about the line y = −2.

(b) Revolve S about the line y = 4.

(c) Revolve S about the line x = −1.

(d) Revolve S about the line x = 5.

C

Summary

In this section, we encountered the following important ideas:

• We can use a definite integral to find the volume of a three-dimensional solid of revolution
that results from revolving a two-dimensional region about a particular axis by taking slices
perpendicular to the axis of revolution which will then be circular disks or washers.

• If we revolve about a vertical line and slice perpendicular to that line, then our slices are hor-
izontal and of thickness 4y. This leads us to integrate with respect to y, as opposed to with
respect to x when we slice a solid vertically.
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• If we revolve about a line other than the x- or y-axis, we need to carefully account for the
shift that occurs in the radius of a typical slice. Normally, this shift involves taking a sum or
difference of the function along with the constant connected to the equation for the horizontal
or vertical line; a well-labeled diagram is usually the best way to decide the new expression for
the radius.

Exercises

1. Consider the curve f(x) = 3 cos(x
3

4 ) and the portion of its graph that lies in the first quadrant
between the y-axis and the first positive value of x for which f(x) = 0. Let R denote the region
bounded by this portion of f , the x-axis, and the y-axis.

(a) Determine the arc length of f that lies along the upper boundary of R.

(b) Determine the area of R.

(c) Suppose that the region R is revolved around the x-axis. Find the volume of the solid
of revolution that is generated.

(d) Suppose instead that R is revolved around the y-axis. If possible, set up an integral
expression whose value is the exact volume of the solid of revolution and evaluate the
integral using appropriate technology. If not possible, explain why.

2. Consider the curves given by y = sin(x) and y = cos(x). For each of the following problems,
you should include a sketch of the region/solid being considered, as well as a labeled repre-
sentative slice.

(a) Sketch the region R bounded by the y-axis and the curves y = sin(x) and y = cos(x)
up to the first positive value of x at which they intersect. What is the exact intersection
point of the curves?

(b) Set up a definite integral whose value is the exact area of R.

(c) Set up a definite integral whose value is the exact volume of the solid of revolution
generated by revolving R about the x-axis.

(d) Set up a definite integral whose value is the exact volume of the solid of revolution
generated by revolving R about the y-axis.

(e) Set up a definite integral whose value is the exact volume of the solid of revolution
generated by revolving R about the line y = 2.

(f) Set up a definite integral whose value is the exact volume of the solid of revolution
generated by revolving R about the x = −1.

3. Consider the finite region R that is bounded by the curves y = 1 + 1
2(x − 2)2, y = 1

2x
2, and

x = 0.

(a) Determine a definite integral whose value is the of the region enclosed by the two
curves.
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(b) Find an expression involving one or more definite integrals whose value is the volume
of the solid of revolution generated by revolving the region R about the line y = −1.

(c) Determine an expression involving one or more definite integrals whose value is the
volume of the solid of revolution generated by revolving the region R about the y-axis.

(d) Find an expression involving one or more definite integrals whose value is the perime-
ter of the region R.
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6.3 Density, Mass, and Center of Mass

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How are mass, density, and volume related?

• How is the mass of an object with varying density computed?

• What is the center of mass of an object, and how are definite integrals used to compute it?

Introduction

We have seen in several different circumstances how studying the units on the integrand and
variable of integration enables us to better understand the meaning of a definite integral. For
instance, if v(t) is the velocity of an object moving along an axis, measured in feet per second, while
t measures time in seconds, then both the definite integral and its Riemann sum approximation,

∫ b

a
v(t) dt ≈

n∑

i=1

v(ti)4t,

have their overall units given by the product of the units of v(t) and t:

(feet/sec)·(sec) = feet.

Thus,
∫ b
a v(t) dt measures the total change in position (in feet) of the moving object.

This type of unit analysis will be particularly helpful to us in what follows. To begin, in the
following preview activity we consider two different definite integrals where the integrand is a
function that measures how a particular quantity is distributed over a region and think about how
the units on the integrand and the variable of integration indicate the meaning of the integral.

Preview Activity 6.3. In each of the following scenarios, we consider the distribution of a quantity
along an axis.

(a) Suppose that the function c(x) = 200 + 100e−0.1x models the density of traffic on a straight
road, measured in cars per mile, where x is number of miles east of a major interchange,
and consider the definite integral

∫ 2
0 (200 + 100e−0.1x) dx.

i. What are the units on the product c(x) · 4x?
ii. What are the units on the definite integral and its Riemann sum approximation given

by ∫ 2

0
c(x) dx ≈

n∑

i=1

c(xi)4x?
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iii. Evaluate the definite integral
∫ 2

0 c(x) dx =
∫ 2

0 (200 + 100e−0.1x) dx and write one sen-
tence to explain the meaning of the value you find.

(b) On a 6 foot long shelf filled with books, the function B models the distribution of the
weight of the books, measured in pounds per inch, where x is the number of inches from
the left end of the bookshelf. Let B(x) be given by the rule B(x) = 0.5 + 1

x2
.

i. What are the units on the product B(x) · 4x?

ii. What are the units on the definite integral and its Riemann sum approximation given
by

∫ 36

12
B(x) dx ≈

n∑

i=1

B(xi)4x?

iii. Evaluate the definite integral
∫ 72

0 B(x) dx =
∫ 72

0 (0.5 + 1
x2

) dx and write one sentence
to explain the meaning of the value you find.

./

Density

The mass of a quantity, typically measured in metric units such as grams or kilograms, is a mea-
sure of the amount of a quantity. In a corresponding way, the density of an object measures the
distribution of mass per unit volume. For instance, if a brick has mass 3 kg and volume 0.002 m3,
then the density of the brick is

3kg
0.002m3

= 1500
kg
m3

.

As another example, the mass density of water is 1000 kg/m3. Each of these relationships demon-
strate the following general principle.

For an object of constant density d, with mass m and volume V ,

d =
m

V
, or m = d · V.

But what happens when the density is not constant?

If we consider the formula m = d · V , it is reminiscent of two other equations that we have
used frequently in recent work: for a body moving in a fixed direction, distance = rate · time, and,
for a rectangle, its area is given by A = l · w. These formulas hold when the principal quantities
involved, such as the rate the body moves and the height of the rectangle, are constant. When
these quantities are not constant, we have turned to the definite integral for assistance. The main
idea in each situation is that by working with small slices of the quantity that is varying, we can



340 6.3. DENSITY, MASS, AND CENTER OF MASS

use a definite integral to add up the values of small pieces on which the quantity of interest (such
as the velocity of a moving object) are approximately constant.

For example, in the setting where we have a nonnegative velocity function that is not constant,
over a short time interval 4t we know that the distance traveled is approximately v(t)4t, since
v(t) is almost constant on a small interval, and for a constant rate, distance = rate · time. Similarly,
if we are thinking about the area under a nonnegative function f whose value is changing, on
a short interval 4x the area under the curve is approximately the area of the rectangle whose
height is f(x) and whose width is 4x: f(x)4x. Both of these principles are represented visually
in Figure 6.13.

ft/sec

sec

y = v(t)

v(t)

△t

y

x

y = f(x)

f(x)

△x

Figure 6.13: At left, estimating a small amount of distance traveled, v(t)4t, and at right, a small amount of
area under the curve, f(x)4x.

In a similar way, if we consider the setting where the density of some quantity is not constant,
the definite integral enables us to still compute the overall mass of the quantity. Throughout, we
will focus on problems where the density varies in only one dimension, say along a single axis,
and think about how mass is distributed relative to location along the axis.

Let’s consider a thin bar of length b that is situated so its left end is at the origin, where x =
0, and assume that the bar has constant cross-sectional area of 1 cm2. We let the function ρ(x)
represent the mass density function of the bar, measured in grams per cubic centimeter. That is,
given a location x, ρ(x) tells us approximately how much mass will be found in a one-centimeter
wide slice of the bar at x.

△x

ρ(x)

Figure 6.14: A thin bar of constant cross-sectional area 1 cm2 with density function ρ(x) g/cm3.

If we now consider a thin slice of the bar of width 4x, as pictured in Figure 6.14, the volume
of such a slice is the cross-sectional area times 4x. Since the cross-sections each have constant
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area 1 cm2, it follows that the volume of the slice is 14x cm3. Moreover, since mass is the prod-
uct of density and volume (when density is constant), we see that the mass of this given slice is
approximately

massslice ≈ ρ(x)
g

cm3
· 14x cm3 = ρ(x) · 4x g.

Hence, for the corresponding Riemann sum (and thus for the integral that it approximates),

n∑

i=1

ρ(xi)4x ≈
∫ b

0
ρ(x) dx,

we see that these quantities measure the mass of the bar between 0 and b. (The Riemann sum is
an approximation, while the integral will be the exact mass.)

At this point, we note that we will be focused primarily on situations where mass is distributed
relative to horizontal location, x, for objects whose cross-sectional area is constant. In that setting,
it makes sense to think of the density function ρ(x) with units “mass per unit length,” such as
g/cm. Thus, when we compute ρ(x) · 4x on a small slice4x, the resulting units are g/cm · cm =
g, which thus measures the mass of the slice. The general principle follows.

For an object of constant cross-sectional area whose mass is distributed along a single axis
according to the function ρ(x) (whose units are units of mass per unit of length), the total
mass, M of the object between x = a and x = b is given by

M =

∫ b

a
ρ(x) dx.

Activity 6.7.

Consider the following situations in which mass is distributed in a non-constant manner.

(a) Suppose that a thin rod with constant cross-sectional area of 1 cm2 has its mass dis-
tributed according to the density function ρ(x) = 2e−0.2x, where x is the distance in cm
from the left end of the rod, and the units on ρ(x) are g/cm. If the rod is 10 cm long,
determine the exact mass of the rod.

(b) Consider the cone that has a base of radius 4 m and a height of 5 m. Picture the cone ly-
ing horizontally with its base at the origin and think of the cone as a solid of revolution.

i. Write and evaluate a definite integral whose value is the volume of the cone.
ii. Next, suppose that the cone has uniform density of 800 kg/m3. What is the mass

of the solid cone?
iii. Now suppose that the cone’s density is not uniform, but rather that the cone is

most dense at its base. In particular, assume that the density of the cone is uniform
across cross sections parallel to its base, but that in each such cross section that is
a distance x units from the origin, the density of the cross section is given by the
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function ρ(x) = 400 + 200x
1+x2

, measured in kg/m3. Determine and evaluate a definite
integral whose value is the mass of this cone of non-uniform density. Do so by first
thinking about the mass of a given slice of the cone x units away from the base;
remember that in such a slice, the density will be essentially constant.

(c) Let a thin rod of constant cross-sectional area 1 cm2 and length 12 cm have its mass be
distributed according to the density function ρ(x) = 1

25(x − 15)2, measured in g/cm.
Find the exact location z at which to cut the bar so that the two pieces will each have
identical mass.

C

Weighted Averages

class grade grade points credits
chemistry B+ 3.3 5
calculus A- 3.7 4
history B- 2.7 3
psychology B- 2.7 3

Table 6.1: A college student’s semester grades.

The concept of an average is a natural one, and one that we have used repeatedly as part of
our understanding of the meaning of the definite integral. If we have n values a1, a2, . . ., an, we
know that their average is given by

a1 + a2 + · · ·+ an
n

,

and for a quantity being measured by a function f on an interval [a, b], the average value of the
quantity on [a, b] is

1

b− a

∫ b

a
f(x) dx.

As we continue to think about problems involving the distribution of mass, it is natural to consider
the idea of a weighted average, where certain quantities involved are counted more in the average.

A common use of weighted averages is in the computation of a student’s GPA, where grades
are weighted according to credit hours. Let’s consider the scenario in Table 6.1.

If all of the classes were of the same weight (i.e., the same number of credits), the student’s
GPA would simply be calculated by taking the average

3.3 + 3.7 + 2.7 + 2.7

4
= 3.1.
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But since the chemistry and calculus courses have higher weights (of 5 and 4 credits respectively),
we actually compute the GPA according to the weighted average

3.3 · 5 + 3.7 · 4 + 2.7 · 3 + 2.7 · 3
5 + 4 + 3 + 3

= 3.16.

The weighted average reflects the fact that chemistry and calculus, as courses with higher credits,
have a greater impact on the students’ grade point average. Note particularly that in the weighted
average, each grade gets multiplied by its weight, and we divide by the sum of the weights.

In the following activity, we explore further how weighted averages can be used to find the
balancing point of a physical system.

Activity 6.8.

For quantities of equal weight, such as two children on a teeter-totter, the balancing point is
found by taking the average of their locations. When the weights of the quantities differ, we
use a weighted average of their respective locations to find the balancing point.

(a) Suppose that a shelf is 6 feet long, with its left end situated at x = 0. If one book of
weight 1 lb is placed at x1 = 0, and another book of weight 1 lb is placed at x2 = 6,
what is the location of x, the point at which the shelf would (theoretically) balance on a
fulcrum?

(b) Now, say that we place four books on the shelf, each weighing 1 lb: at x1 = 0, at x2 = 2,
at x3 = 4, and at x4 = 6. Find x, the balancing point of the shelf.

(c) How does x change if we change the location of the third book? Say the locations of the
1-lb books are x1 = 0, x2 = 2, x3 = 3, and x4 = 6.

(d) Next, suppose that we place four books on the shelf, but of varying weights: at x1 = 0 a
2-lb book, at x2 = 2 a 3-lb book, and x3 = 4 a 1-lb book, and at x4 = 6 a 1-lb book. Use a
weighted average of the locations to find x, the balancing point of the shelf. How does
the balancing point in this scenario compare to that found in (b)?

(e) What happens if we change the location of one of the books? Say that we keep every-
thing the same in (d), except that x3 = 5. How does x change?

(f) What happens if we change the weight of one of the books? Say that we keep everything
the same in (d), except that the book at x3 = 4 now weighs 2 lbs. How does x change?

(g) Experiment with a couple of different scenarios of your choosing where you move the
location of one of the books to the left, or you decrease the weight of one of the books.

(h) Write a couple of sentences to explain how adjusting the location of one of the books
or the weight of one of the books affects the location of the balancing point of the shelf.
Think carefully here about how your changes should be considered relative to the loca-
tion of the balancing point x of the current scenario.

C
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Center of Mass

In Activity 6.8, we saw that the balancing point of a system of point-masses1 (such as books on
a shelf) is found by taking a weighted average of their respective locations. In the activity, we
were computing the center of mass of a system of masses distributed along an axis, which is the
balancing point of the axis on which the masses rest.

For a collection of n masses m1, . . ., mn that are distributed along a single axis at the locations
x1, . . ., xn, the center of mass is given by

x =
x1m1 + x2m2 + · · ·xnmn

m1 +m2 + · · ·+mn
.

What if we instead consider a thin bar over which density is distributed continuously? If the
density is constant, it is obvious that the balancing point of the bar is its midpoint. But if density
is not constant, we must compute a weighted average. Let’s say that the function ρ(x) tells us
the density distribution along the bar, measured in g/cm. If we slice the bar into small sections,
this enables us to think of the bar as holding a collection of adjacent point-masses. For a slice of
thickness4x at location xi, note that the mass of the slice, mi, satisfies mi ≈ ρ(xi)4x.

△x

ρ(x)

Figure 6.15: A thin bar of constant cross-sectional area with density function ρ(x) g/cm.

Taking n slices of the bar, we can approximate its center of mass by

x ≈ x1 · ρ(x1)4x+ x2 · ρ(x2)4x+ · · ·+ xn · ρ(xn)4x
ρ(x1)4x+ ρ(x2)4x+ · · ·+ ρ(xn)4x .

Rewriting the sums in sigma notation, it follows that

x ≈
∑n

i=1 xi · ρ(xi)4x∑n
i=1 ρ(xi)4x

. (6.4)

Moreover, it is apparent that the greater the number of slices, the more accurate our estimate of
the balancing point will be, and that the sums in Equation (6.4) can be viewed as Riemann sums.
Hence, in the limit as n → ∞, we find that the center of mass is given by the quotient of two

1In the activity, we actually used weight rather than mass. Since weight is computed by the gravitational constant
times mass, the computations for the balancing point result in the same location regardless of whether we use weight
or mass, since the gravitational constant is present in both the numerator and denominator of the weighted average.
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integrals.

For a thin rod of density ρ(x) distributed along an axis from x = a to x = b, the center of mass
of the rod is given by

x =

∫ b
a xρ(x) dx
∫ b
a ρ(x) dx

.

Note particularly that the denominator of x is the mass of the bar, and that this quotient of
integrals is simply the continuous version of the weighted average of locations, x, along the bar.

Activity 6.9.

Consider a thin bar of length 20 cm whose density is distributed according to the function
ρ(x) = 4 + 0.1x, where x = 0 represents the left end of the bar. Assume that ρ is measured in
g/cm and x is measured in cm.

(a) Find the total mass, M , of the bar.

(b) Without doing any calculations, do you expect the center of mass of the bar to be equal
to 10, less than 10, or greater than 10? Why?

(c) Compute x, the exact center of mass of the bar.

(d) What is the average density of the bar?

(e) Now consider a different density function, given by p(x) = 4e0.020732x, also for a bar
of length 20 cm whose left end is at x = 0. Plot both ρ(x) and p(x) on the same axes.
Without doing any calculations, which bar do you expect to have the greater center of
mass? Why?

(f) Compute the exact center of mass of the bar described in (e) whose density function is
p(x) = 4e0.020732x. Check the result against the prediction you made in (e).

C

Summary

In this section, we encountered the following important ideas:

• For an object of constant density D, with volume V and mass m, we know that m = D · V.

• If an object with constant cross-sectional area (such as a thin bar) has its density distributed
along an axis according to the function ρ(x), then we can find the mass of the object between
x = a and x = b by

m =

∫ b

a
ρ(x) dx.
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• For a system of point-masses distributed along an axis, say m1, . . . ,mn at locations x1, . . . , xn,
the center of mass, x, is given by the weighted average

x =

∑n
i=1 ximi∑n
i=1mi

.

If instead we have mass continuously distributed along an axis, such as by a density function
ρ(x) for a thin bar of constant cross-sectional area, the center of mass of the portion of the bar
between x = a and x = b is given by

x =

∫ b
a xρ(x) dx
∫ b
a ρ(x) dx

.

In each situation, x represents the balancing point of the system of masses or of the portion of
the bar.

Exercises

1. Let a thin rod of length a have density distribution function ρ(x) = 10e−0.1x, where x is mea-
sured in cm and ρ in grams.

(a) If the mass of the rod is 30 g, what is the value of a?

(b) For the 30g rod, will the center of mass lie at its midpoint, to the left of the midpoint, or
to the right of the midpoint? Why?

(c) For the 30g rod, find the center of mass, and compare your prediction in (b).

(d) At what value of x should the 30g rod be cut in order to form two pieces of equal mass?

2. Consider two thin bars of constant cross-sectional area, each of length 10 cm, with respective
mass density functions ρ(x) = 1

1+x2
and p(x) = e−0.1x.

(a) Find the mass of each bar.

(b) Find the center of mass of each bar.

(c) Now consider a new 10 cm bar whose mass density function is f(x) = ρ(x) + p(x).

i. Explain how you can easily find the mass of this new bar with little to no addi-
tional work.

ii. Similarly, compute
∫ 10

0 xf(x) dx as simply as possible, in light of earlier computa-
tions.

iii. True or false: the center of mass of this new bar is the average of the centers of mass
of the two earlier bars. Write at least one sentence to say why your conclusion
makes sense.
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3. Consider the curve given by y = f(x) = 2xe−1.25x + (30− x)e−0.25(30−x).

(a) Plot this curve in the window x = 0 . . . 30, y = 0 . . . 30, and use it to generate a solid of
revolution about the x-axis. Explain why this curve could generate a reasonable model
of a baseball bat.

(b) Let x and y be measured in inches. Find the total volume of the baseball bat generated
by revolving the given curve about the x-axis. Include units on your answer

(c) Suppose that the baseball bat has constant weight density, and that the weight density
is 0.6 ounces per cubic inch. Find the total weight of the bat whose volume you found
in (b).

(d) Because the baseball bat does not have constant cross-sectional area, we see that the
amount of weight concentrated at a location x along the bat is determined by the vol-
ume of a slice at location x. Explain why we can think about the function ρ(x) =
0.6πf(x)2 (where f is the function given at the start of the problem) as being the weight
density function for how the weight of the baseball bat is distributed from x = 0 to
x = 30.

(e) Compute the center of mass of the baseball bat.
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6.4 Physics Applications: Work, Force, and Pressure

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How do we measure the work accomplished by a varying force that moves an object a
certain distance?

• What is the total force exerted by water against a dam?

• How are both of the above concepts and their corresponding use of definite integrals similar
to problems we have encountered in the past involving formulas such as “distance equals
rate times time” and “mass equals density times volume”?

Introduction

y = f(x)

a b

f(x)

△x

y

t

y = v(t)

v(t)

△ta b

△x

ρ(x)

Figure 6.16: Three settings where we compute the accumulation of a varying quantity: the area under
y = f(x), the distance traveled by an object with velocity y = v(t), and the mass of a bar with density
function y = ρ(x).

In our work to date with the definite integral, we have seen several different circumstances
where the integral enables us to measure the accumulation of a quantity that varies, provided the
quantity is approximately constant over small intervals. For instance, based on the fact that the
area of a rectangle isA = l ·w, if we wish to find the area bounded by a nonnegative curve y = f(x)
and the x-axis on an interval [a, b], a representative slice of width 4x has area Aslice = f(x)4x,
and thus as we let the width of the representative slice tend to zero, we find that the exact area of
the region is

A =

∫ b

a
f(x) dx.
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In a similar way, if we know that the velocity of a moving object is given by the function y = v(t),
and we wish to know the distance the object travels on an interval [a, b] where v(t) is nonnegative,
we can use a definite integral to generalize the fact that d = r · t when the rate, r, is constant. More
specifically, on a short time interval 4t, v(t) is roughly constant, and hence for a small slice of
time, dslice = v(t)4t, and so as the width of the time interval4t tends to zero, the exact distance
traveled is given by the definite integral

d =

∫ b

a
v(t) dt.

Finally, when we recently learned about the mass of an object of non-constant density, we saw
that since M = D · V (mass equals density times volume, provided that density is constant), if we
can consider a small slice of an object on which the density is approximately constant, a definite
integral may be used to determine the exact mass of the object. For instance, if we have a thin
rod whose cross sections have constant density, but whose density is distributed along the x axis
according to the function y = ρ(x), it follows that for a small slice of the rod that is 4x thick,
Mslice = ρ(x)4x. In the limit as4x→ 0, we then find that the total mass is given by

M =

∫ b

a
ρ(x) dx.

Note that all three of these situations are similar in that we have a basic rule (A = l ·w, d = r · t,
M = D · V ) where one of the two quantities being multiplied is no longer constant; in each, we
consider a small interval for the other variable in the formula, calculate the approximate value
of the desired quantity (area, distance, or mass) over the small interval, and then use a definite
integral to sum the results as the length of the small intervals is allowed to approach zero. It
should be apparent that this approach will work effectively for other situations where we have a
quantity of interest that varies.

We next turn to the notion of work: from physics, a basic principal is that work is the product of
force and distance. For example, if a person exerts a force of 20 pounds to lift a 20-pound weight
4 feet off the ground, the total work accomplished is

W = F · d = 20 · 4 = 80 foot-pounds.

If force and distance are measured in English units (pounds and feet), then the units on work
are foot-pounds. If instead we work in metric units, where forces are measured in Newtons and
distances in meters, the units on work are Newton-meters.

Of course, the formula W = F · d only applies when the force is constant while it is exerted
over the distance d. In Preview Activity 6.4, we explore one way that we can use a definite integral
to compute the total work accomplished when the force exerted varies.

Preview Activity 6.4. A bucket is being lifted from the bottom of a 50-foot deep well; its weight
(including the water), B, in pounds at a height h feet above the water is given by the function
B(h). When the bucket leaves the water, the bucket and water together weigh B(0) = 20 pounds,



350 6.4. PHYSICS APPLICATIONS: WORK, FORCE, AND PRESSURE

and when the bucket reaches the top of the well, B(50) = 12 pounds. Assume that the bucket
loses water at a constant rate (as a function of height, h) throughout its journey from the bottom
to the top of the well.

(a) Find a formula for B(h).

(b) Compute the value of the product B(5)4h, where 4h = 2 feet. Include units on your
answer. Explain why this product represents the approximate work it took to move the
bucket of water from h = 5 to h = 7.

(c) Is the value in (b) an over- or under-estimate of the actual amount of work it took to move
the bucket from h = 5 to h = 7? Why?

(d) Compute the value of the product B(22)4h, where4h = 0.25 feet. Include units on your
answer. What is the meaning of the value you found?

(e) More generally, what does the quantity Wslice = B(h)4h measure for a given value of h
and a small positive value of4h?

(f) Evaluate the definite integral
∫ 50

0 B(h) dh. What is the meaning of the value you find?
Why?

./

Work

Because work is calculated by the rule W = F · d, whenever the force F is constant, it follows that
we can use a definite integral to compute the work accomplished by a varying force. For example,
suppose that in a setting similar to the problem posed in Preview Activity 6.4, we have a bucket
being lifted in a 50-foot well whose weight at height h is given by B(h) = 12 + 8e−0.1h.

In contrast to the problem in the preview activity, this bucket is not leaking at a constant rate;
but because the weight of the bucket and water is not constant, we have to use a definite integral
to determine the total work that results from lifting the bucket. Observe that at a height h above
the water, the approximate work to move the bucket a small distance4h is

Wslice = B(h)4h = (12 + 8e−0.1h)4h.
Hence, if we let 4h tend to 0 and take the sum of all of the slices of work accomplished on these
small intervals, it follows that the total work is given by

W =

∫ 50

0
B(h) dh =

∫ 50

0
(12 + 8e−0.1h) dh.

While is a straightforward exercise to evaluate this integral exactly using the First Fundamental
Theorem of Calculus, in applied settings such as this one we will typically use computing technol-
ogy to find accurate approximations of integrals that are of interest to us. Here, it turns out that
W =

∫ 50
0 (12 + 8e−0.1h) dh ≈ 679.461 foot-pounds.
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Our work in Preview Activity 6.1 and in the most recent example above employs the following
important general principle.

For an object being moved in the positive direction along an axis, x, by a force F (x), the total
work to move the object from a to b is given by

W =

∫ b

a
F (x) dx.

Activity 6.10.

Consider the following situations in which a varying force accomplishes work.

(a) Suppose that a heavy rope hangs over the side of a cliff. The rope is 200 feet long and
weighs 0.3 pounds per foot; initially the rope is fully extended. How much work is
required to haul in the entire length of the rope? (Hint: set up a function F (h) whose
value is the weight of the rope remaining over the cliff after h feet have been hauled in.)

(b) A leaky bucket is being hauled up from a 100 foot deep well. When lifted from the
water, the bucket and water together weigh 40 pounds. As the bucket is being hauled
upward at a constant rate, the bucket leaks water at a constant rate so that it is losing
weight at a rate of 0.1 pounds per foot. What functionB(h) tells the weight of the bucket
after the bucket has been lifted h feet? What is the total amount of work accomplished
in lifting the bucket to the top of the well?

(c) Now suppose that the bucket in (b) does not leak at a constant rate, but rather that its
weight at a height h feet above the water is given by B(h) = 25 + 15e−0.05h. What is the
total work required to lift the bucket 100 feet? What is the average force exerted on the
bucket on the interval h = 0 to h = 100?

(d) From physics, Hooke’s Law for springs states that the amount of force required to hold
a spring that is compressed (or extended) to a particular length is proportionate to the
distance the spring is compressed (or extended) from its natural length. That is, the
force to compress (or extend) a spring x units from its natural length is F (x) = kx for
some constant k (which is called the spring constant.) For springs, we choose to measure
the force in pounds and the distance the spring is compressed in feet.
Suppose that a force of 5 pounds extends a particular spring 4 inches (1/3 foot) beyond
its natural length.

i. Use the given fact that F (1/3) = 5 to find the spring constant k.

ii. Find the work done to extend the spring from its natural length to 1 foot beyond
its natural length.

iii. Find the work required to extend the spring from 1 foot beyond its natural length
to 1.5 feet beyond its natural length.
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C

Work: Pumping Liquid from a Tank

In certain geographic locations where the water table is high, residential homes with basements
have a peculiar feature: in the basement, one finds a large hole in the floor, and in the hole, there is
water. For example, in Figure 6.17 where we see a sump crock2. Essentially, a sump crock provides

Figure 6.17: A sump crock.

an outlet for water that may build up beneath the basement floor; of course, as that water rises,
it is imperative that the water not flood the basement. Hence, in the crock we see the presence
of a floating pump that sits on the surface of the water: this pump is activated by elevation, so
when the water level reaches a particular height, the pump turns on and pumps a certain portion
of the water out of the crock, hence relieving the water buildup beneath the foundation. One of
the questions we’d like to answer is: how much work does a sump pump accomplish?

To that end, let’s suppose that we have a sump crock that has the shape of a frustum of a cone,
as pictured in Figure 6.18. Assume that the crock has a diameter of 3 feet at its surface, a diameter
of 1.5 feet at its base, and a depth of 4 feet. In addition, suppose that the sump pump is set up so
that it pumps the water vertically up a pipe to a drain that is located at ground level just outside
a basement window. To accomplish this, the pump must send the water to a location 9 feet above
the surface of the sump crock.

It turns out to be advantageous to think of the depth below the surface of the crock as being
the independent variable, so, in problems such as this one we typically let the positive x-axis point
down, and the positive x-axis to the right, as pictured in the figure. As we think about the work
that the pump does, we first realize that the pump sits on the surface of the water, so it makes
sense to think about the pump moving the water one “slice” at a time, where it takes a thin slice
from the surface, pumps it out of the tank, and then proceeds to pump the next slice below.

2Image credit to http://www.warreninspect.com/basement-moisture.

http://www.warreninspect.com/basement-moisture
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(0, 1.5)

(4, 0.75)

△x x

y = f(x)

Figure 6.18: A sump crock with approximately cylindrical cross-sections that is 4 feet deep, 1.5 feet in
diameter at its base, and 3 feet in diameter at its top.

For the sump crock described in this example, each slice of water is cylindrical in shape. We
see that the radius of each approximately cylindrical slice varies according to the linear function
y = f(x) that passes through the points (0, 1.5) and (4, 0.75), where x is the depth of the particular
slice in the tank; it is a straightforward exercise to find that f(x) = 1.5 − 0.375x. Now we are
prepared to think about the overall problem in several steps: (a) determining the volume of a
typical slice; (b) finding the weight3 of a typical slice (and thus the force that must be exerted on
it); (c) deciding the distance that a typical slice moves; and (d) computing the work to move a
representative slice. Once we know the work it takes to move one slice, we use a definite integral
over an appropriate interval to find the total work.

Consider a representative cylindrical slice that sits on the surface of the water at a depth of x
feet below the top of the crock. It follows that the approximate volume of that slice is given by

Vslice = πf(x)24x = π(1.5− 0.375x)24x.

Since water weighs 62.4 lb/ft3, it follows that the approximate weight of a representative slice,
which is also the approximate force the pump must exert to move the slice, is

Fslice = 62.4 · Vslice = 62.4π(1.5− 0.375x)24x.

Because the slice is located at a depth of x feet below the top of the crock, the slice being moved
by the pump must move x feet to get to the level of the basement floor, and then, as stated in
the problem description, be moved another 9 feet to reach the drain at ground level outside a
basement window. Hence, the total distance a representative slice travels is

dslice = x+ 9.

Finally, we note that the work to move a representative slice is given by

Wslice = Fslice · dslice = 62.4π(1.5− 0.375x)24x · (x+ 9),

3We assume that the weight density of water is 62.4 pounds per cubic foot.
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since the force to move a particular slice is constant.

We sum the work required to move slices throughout the tank (from x = 0 to x = 4), let
4x→ 0, and hence

W =

∫ 4

0
62.4π(1.5− 0.375x)2(x+ 9) dx,

which, when evaluated using appropriate technology, shows that the total work is W = 1872π
foot-pounds.

The preceding example demonstrates the standard approach to finding the work required to
empty a tank filled with liquid. The main task in each such problem is to determine the volume of
a representative slice, followed by the force exerted on the slice, as well as the distance such a slice
moves. In the case where the units are metric, there is one key difference: in the metric setting,
rather than weight, we normally first find the mass of a slice. For instance, if distance is measured
in meters, the mass density of water is 1000 kg/m3. In that setting, we can find the mass of a
typical slice (in kg). To determine the force required to move it, we use F = ma, where m is the
object’s mass and a is the gravitational constant 9.81 N/kg3. That is, in metric units, the weight
density of water is 9810 N/m3.

Activity 6.11.

In each of the following problems, determine the total work required to accomplish the de-
scribed task. In parts (b) and (c), a key step is to find a formula for a function that describes the
curve that forms the side boundary of the tank.

x+

y+

Figure 6.19: A trough with triangular ends, as described in Activity 6.11, part (c).

(a) Consider a vertical cylindrical tank of radius 2 meters and depth 6 meters. Suppose the
tank is filled with 4 meters of water of mass density 1000 kg/m3, and the top 1 meter of
water is pumped over the top of the tank.

(b) Consider a hemispherical tank with a radius of 10 feet. Suppose that the tank is full to a
depth of 7 feet with water of weight density 62.4 pounds/ft3, and the top 5 feet of water
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are pumped out of the tank to a tanker truck whose height is 5 feet above the top of the
tank.

(c) Consider a trough with triangular ends, as pictured in Figure 6.19, where the tank is 10
feet long, the top is 5 feet wide, and the tank is 4 feet deep. Say that the trough is full
to within 1 foot of the top with water of weight density 62.4 pounds/ft3, and a pump is
used to empty the tank until the water remaining in the tank is 1 foot deep.

C

Force due to Hydrostatic Pressure

When a dam is built, it is imperative to for engineers to understand how much force water will
exert against the face of the dam. The first thing we realize is the the force exerted by the fluid is
related to the natural concept of pressure. The pressure a force exerts on a region is measured in
units of force per unit of area: for example, the air pressure in a tire is often measured in pounds
per square inch (PSI). Hence, we see that the general relationship is given by

P =
F

A
, or F = P ·A,

where P represents pressure, F represents force, and A the area of the region being considered.
Of course, in the equation F = PA, we assume that the pressure is constant over the entire region
A.

Most people know from experience that the deeper one dives underwater while swimming,
the greater the pressure that is exerted by the water. This is due to the fact that the deeper one
dives, the more water there is right on top of the swimmer: it is the force that “column” of water
exerts that determines the pressure the swimmer experiences. To get water pressure measured
in its standard units (pounds per square foot), we say that the total water pressure is found by
computing the total weight of the column of water that lies above a region of area 1 square foot
at a fixed depth. Such a rectangular column with a 1 × 1 base and a depth of d feet has volume
V = 1 · 1 · d ft3, and thus the corresponding weight of the water overhead is 62.4d. Since this is
also the amount of force being exerted on a 1 square foot region at a depth d feet underwater, we
see that P = 62.4d (lbs/ft2) is the pressure exerted by water at depth d.

The understanding that P = 62.4d will tell us the pressure exerted by water at a depth of d,
along with the fact that F = PA, will now enable us to compute the total force that water exerts
on a dam, as we see in the following example.

Example 6.5. Consider a trapezoid-shaped dam that is 60 feet wide at its base and 90 feet wide at
its top, and assume the dam is 25 feet tall with water that rises to within 5 feet of the top of its face.
Water weighs 62.5 pounds per cubic foot. How much force does the water exert against the dam?
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y = f(x)
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Figure 6.20: A trapezoidal dam that is 25 feet tall, 60 feet wide at its base, 90 feet wide at its top, with the
water line 5 feet down from the top of its face.

Solution. First, we sketch a picture of the dam, as shown in Figure 6.20. Note that, as in problems
involving the work to pump out a tank, we let the positive x-axis point down.

It is essential to use the fact that pressure is constant at a fixed depth. Hence, we consider a slice
of water at constant depth on the face, such as the one shown in the figure. First, the approximate
area of this slice is the area of the pictured rectangle. Since the width of that rectangle depends
on the variable x (which represents the how far the slice lies from the top of the dam), we find
a formula for the function y = f(x) that determines one side of the face of the dam. Since f is
linear, it is straightforward to find that y = f(x) = 45 − 3

5x. Hence, the approximate area of a
representative slice is

Aslice = 2f(x)4x = 2(45− 3

5
x)4x.

At any point on this slice, the depth is approximately constant, and thus the pressure can be
considered constant. In particular, we note that since x measures the distance to the top of the
dam, and because the water rises to within 5 feet of the top of the dam, the depth of any point on
the representative slice is approximately (x − 5). Now, since pressure is given by P = 62.4d, we
have that at any point on the representative slice

Pslice = 62.4(x− 5).

Knowing both the pressure and area, we can find the force the water exerts on the slice. Using
F = PA, it follows that

Fslice = Pslice ·Aslice = 62.4(x− 5) · 2(45− 3

5
x)4x.

Finally, we use a definite integral to sum the forces over the appropriate range of x-values. Since
the water rises to within 5 feet of the top of the dam, we start at x = 5 and slice all the way to the
bottom of the dam, where x = 30. Hence,

F =

∫ x=30

x=5
62.4(x− 5) · 2(45− 3

5
x) dx.
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Using technology to evaluate the integral, we find F ≈ 1.248× 106 pounds.

Activity 6.12.

In each of the following problems, determine the total force exerted by water against the surface
that is described.

x+

y+

Figure 6.21: A trough with triangular ends, as described in Activity 6.12, part (c).

(a) Consider a rectangular dam that is 100 feet wide and 50 feet tall, and suppose that water
presses against the dam all the way to the top.

(b) Consider a semicircular dam with a radius of 30 feet. Suppose that the water rises to
within 10 feet of the top of the dam.

(c) Consider a trough with triangular ends, as pictured in Figure 6.21, where the tank is 10
feet long, the top is 5 feet wide, and the tank is 4 feet deep. Say that the trough is full to
within 1 foot of the top with water of weight density 62.4 pounds/ft3. How much force
does the water exert against one of the triangular ends?

C

While there are many different formulas that we use in solving problems involving work, force,
and pressure, it is important to understand that the fundamental ideas behind these problems
are similar to several others that we’ve encountered in applications of the definite integral. In
particular, the basic idea is to take a difficult problem and somehow slice it into more manageable
pieces that we understand, and then use a definite integral to add up these simpler pieces.

Summary

In this section, we encountered the following important ideas:
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• To measure the work accomplished by a varying force that moves an object, we subdivide the
problem into pieces on which we can use the formulaW = F ·d, and then use a definite integral
to sum the work accomplished on each piece.

• To find the total force exerted by water against a dam, we use the formula F = P ·A to measure
the force exerted on a slice that lies at a fixed depth, and then use a definite integral to sum the
forces across the appropriate range of depths.

• Because work is computed as the product of force and distance (provided force is constant), and
the force water exerts on a dam can be computed as the product of pressure and area (provided
pressure is constant), problems involving these concepts are similar to earlier problems we did
using definite integrals to find distance (via “distance equals rate times time”) and mass (“mass
equals density times volume”).

Exercises

1. Consider the curve f(x) = 3 cos(x
3

4 ) and the portion of its graph that lies in the first quadrant
between the y-axis and the first positive value of x for which f(x) = 0. Let R denote the region
bounded by this portion of f , the x-axis, and the y-axis. Assume that x and y are each measured
in feet.

(a) Picture the coordinate axes rotated 90 degrees clockwise so that the positive x-axis
points straight down, and the positive y-axis points to the right. Suppose that R is
rotated about the x axis to form a solid of revolution, and we consider this solid as a
storage tank. Suppose that the resulting tank is filled to a depth of 1.5 feet with water
weighing 62.4 pounds per cubic foot. Find the amount of work required to lower the
water in the tank until it is 0.5 feet deep, by pumping the water to the top of the tank.

(b) Again picture the coordinate axes rotated 90 degrees clockwise so that the positive x-
axis points straight down, and the positive y-axis points to the right. Suppose that R,
together with its reflection across the x-axis, forms one end of a storage tank that is
10 feet long. Suppose that the resulting tank is filled completely with water weighing
62.4 pounds per cubic foot. Find a formula for a function that tells the amount of work
required to lower the water by h feet.

(c) Suppose that the tank described in (b) is completely filled with water. Find the total
force due to hydrostatic pressure exerted by the water on one end of the tank.

2. A cylindrical tank, buried on its side, has radius 3 feet and length 10 feet. It is filled com-
pletely with water whose weight density is 62.4 lbs/ft3, and the top of the tank is two feet
underground.

(a) Set up, but do not evaluate, an integral expression that represents the amount of work
required to empty the top half of the water in the tank to a truck whose tank lies 4.5 feet
above ground.
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(b) With the tank now only half-full, set up, but do not evaluate an integral expression that
represents the total force due to hydrostatic pressure against one end of the tank.
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6.5 Improper Integrals

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What are improper integrals and why are they important?

• What does it mean to say that an improper integral converges or diverges?

• What are some typical improper integrals that we can classify as convergent or divergent?

Introduction

An important application of the definite integral that we are going to study in Section 6.6 regards
how the likelihood of certain events can be measured. For example, consider a company that
manufactures incandescent light bulbs, and suppose that based on a large volume of test results,
they have determined that the fraction of light bulbs that fail between times t = a and t = b of use
(where t is measured in months) is given by

∫ b

a
0.3e−0.3t dt.

For example, the fraction of light bulbs that fail during their third month of use is given by

∫ 3

2
0.3e−0.3t dt = −e−0.3t

∣∣∣∣
3

2

= −e−0.9 + e−0.6

≈ 0.1422.

Thus about 14.22% of all lightbulbs fail between t = 2 and t = 3. In upcoming study of the
concept of probability in Section 6.6, we’ll also see how such an integral represents the likelihood
that a randomly chosen light bulb fails between t = 2 and t = 3. Clearly we could adjust the limits
of integration to measure the fraction of light bulbs that fail during any time period of interest.

Preview Activity 6.5. A company with a large customer base has a call center that receives thou-
sands of calls a day. After studying the data that represents how long callers wait for assistance,
they find that the function p(t) = 0.25e−0.25 models the time customers wait in the following way:
the fraction of customers who wait between t = a and t = b minutes is given by

∫ b

a
p(t) dt.

Use this information to answer the following questions.
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(a) Determine the fraction of callers who wait between 5 and 10 minutes.

(b) Determine the fraction of callers who wait between 10 and 20 minutes.

(c) Next, let’s study how the fraction who wait up to a certain number of minutes:

i. What is the fraction of callers who wait between 0 and 5 minutes?

ii. What is the fraction of callers who wait between 0 and 10 minutes?

iii. Between 0 and 15 minutes? Between 0 and 20?

(d) Let F (b) represent the fraction of callers who wait between 0 and bminutes. Find a formula
for F (b) that involves a definite integral, and then use the First FTC to find a formula for
F (b) that does not involve a definite integral.

(e) What is the value of lim
b→∞

F (b)? Why?

./

Improper Integrals Involving Unbounded Intervals

In light of our example with light bulbs that fail, as well as with the problem involving customer
wait time in Preview Activity 6.5, we see that it is natural to consider questions where we desire
to integrate over an interval whose upper limit grows without bound. For example, if we are
interested in the fraction of light bulbs that fail within the first b months of use, we know that the
expression ∫ b

0
0.3e−0.3t dt

measures this value. To think about the fraction of light bulbs that fail eventually, we understand
that we wish to find

lim
b→∞

∫ b

0
0.3e−0.3t dt,

for which we will also use the notation
∫ ∞

0
0.3e−0.3t dt. (6.5)

Note particularly that we are studying the area of an unbounded region, as pictured in Figure 6.22.

Anytime we are interested in an integral for which the interval of integration is unbounded
(that is, one for which at least one of the limits of integration involves∞), we say that the integral
is improper. For instance, the integrals

∫ ∞

1

1

x2
dx,

∫ 0

−∞

1

1 + x2
dx, and

∫ ∞

−∞
e−x

2
dx
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y
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· · ·

Figure 6.22: At left, the area bounded by p(t) = 0.3e−0.3t on the finite interval [0, b]; at right, the result
of letting b → ∞. By “· · · ” in the righthand figure, we mean that the region extends to the right without
bound.

are all improper due to having limits of integration that involve∞. We investigate the value of any
such integral be replacing the improper integral with a limit of proper integrals; for an improper
integral such as

∫∞
0 f(x) dx, we write

∫ ∞

0
f(x) dx = lim

b→∞

∫ b

0
f(x) dx.

We can then attempt to evaluate
∫ b

0 f(x) dx using the First FTC, after which we can evaluate the
limit. An immediate and important question arises: is it even possible for the area of such an
unbounded region to be finite? The following activity explores this issue and others in more
detail.

Activity 6.13.

In this activity we explore the improper integrals
∫ ∞

1

1

x
dx and

∫ ∞

1

1

x3/2
dx.

(a) First we investigate
∫ ∞

1

1

x
dx.

i. Use the First FTC to determine the exact values of
∫ 10

1

1

x
dx,

∫ 1000

1

1

x
dx, and

∫ 100000

1

1

x
dx. Then, use your calculator to compute a decimal approximation of

each result.

ii. Use the First FTC to evaluate the definite integral
∫ b

1

1

x
dx (which results in an

expression that depends on b).
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iii. Now, use your work from (ii.) to evaluate the limit given by

lim
b→∞

∫ b

1

1

x
dx.

(b) Next, we investigate
∫ ∞

1

1

x3/2
dx.

i. Use the First FTC to determine the exact values of
∫ 10

1

1

x3/2
dx,
∫ 1000

1

1

x3/2
dx, and

∫ 100000

1

1

x3/2
dx. Then, use your calculator to compute a decimal approximation of

each result.

ii. Use the First FTC to evaluate the definite integral
∫ b

1

1

x3/2
dx (which results in an

expression that depends on b).

iii. Now, use your work from (ii.) to evaluate the limit given by

lim
b→∞

∫ b

1

1

x3/2
dx.

(c) Plot the functions y = 1
x and y = 1

x3/2
on the same coordinate axes for the values

x = 0 . . . 10. How would you compare their behavior as x increases without bound?
What is similar? What is different?

(d) How would you characterize the value of
∫ ∞

1

1

x
dx? of

∫ ∞

1

1

x3/2
dx? What does this

tell us about the respective areas bounded by these two curves for x ≥ 1?

C

Convergence and Divergence

Our work so far has suggested that when we consider a nonnegative function f on an inter-
val [1,∞], such as f(x) = 1

x or f(x) = 1
x3/2

, there are at least two possibilities for the value of

limb→∞
∫ b

1 f(x) dx: the limit is finite or infinite. With these possibilities in mind, we introduce the
following terminology.

If f(x) is nonnegative for x ≥ a, then we say that the improper integral
∫∞
a f(x) dx converges

provided that

lim
b→∞

∫ b

a
f(x) dx

exists and is finite. Otherwise, we say that
∫∞
a f(x) dx diverges.

We normally restrict our interest to improper integrals for which the integrand is nonnegative.
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Further, we note that our primary interest is in functions f for which limx→∞ f(x) = 0, for if the
function f does not approach 0 as x→∞, then it is impossible for

∫∞
a f(x) dx to converge.

Activity 6.14.

Determine whether each of the following improper integrals converges or diverges. For each
integral that converges, find its exact value.

(a)
∫ ∞

1

1

x2
dx

(b)
∫ ∞

0
e−x/4 dx

(c)
∫ ∞

2

9

(x+ 5)2/3
dx

(d)
∫ ∞

4

3

(x+ 2)5/4
dx

(e)
∫ ∞

0
xe−x/4 dx

(f)
∫ ∞

1

1

xp
dx, where p is a positive real number

C

Improper Integrals Involving Unbounded Integrands

It is also possible for an integral to be improper due to the integrand being unbounded on the
interval of integration. For example, if we consider

∫ 1

0

1√
x
dx,

we see that because f(x) = 1√
x

has a vertical asymptote at x = 0, f is not continuous on [0, 1],
and the integral is attempting to represent the area of the unbounded region shown at right in
Figure 6.23.

Just as we did with improper integrals involving infinite limits, we address the problem of
the integrand being unbounded by replacing such an improper integral with a limit of proper
integrals. For example, to evaluate

∫ 1
0

1√
x
dx, we replace 0 with a and let a approach 0 from the

right. Thus, ∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx,

and then we evaluate the proper integral
∫ 1
a

1√
x
dx, followed by taking the limit. In the same way

as with improper integrals involving unbounded regions, we will say that the improper integral
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y

x

f(x) = 1√
x

1a

y

x

f(x) = 1√
x

1

Figure 6.23: At left, the area bounded by f(x) = 1√
x

on the finite interval [a, 1]; at right, the result of letting
a→ 0+, where we see that the shaded region will extend vertically without bound.

converges provided that this limit exists, and diverges otherwise. In the present example, we
observe that

∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx

= lim
a→0+

2
√
x
∣∣1
a

= lim
a→0+

2
√

1− 2
√
a

= 2,

and therefore the improper integral
∫ 1

0
1√
x
dx converges (to the value 2).

We have to be particularly careful with unbounded integrands, for they may arise in ways that
may not initially be obvious. Consider, for instance, the integral

∫ 3

1

1

(x− 2)2
dx.

At first glance we might think that we can simply apply the Fundamental Theorem of Calculus
by antidifferentiating 1

(x−2)2
to get − 1

x−2 and then evaluate from 1 to 3. Were we to do so, we
would be erroneously applying the FTC because f(x) = 1

(x−2)2
fails to be continuous throughout

the interval, as seen in Figure 6.24.

Such an incorrect application of the FTC leads to an impossible result (−2), which would itself
suggest that something we did must be wrong. Indeed, we must address the vertical asymptote
in f(x) = 1

(x−2)2
at x = 2 by writing

∫ 3

1

1

(x− 2)2
dx = lim

a→2−

∫ a

1

1

(x− 2)2
dx+ lim

b→2+

∫ 3

b

1

(x− 2)2
dx
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1 2 3

y

x

y = 1
(x−2)2

Figure 6.24: The function f(x) = 1
(x−2)2 on an interval including x = 2.

and then evaluate two separate limits of proper integrals. For instance, doing so for the integral
with a approaching 2 from the left, we find

∫ 2

1

1

(x− 2)2
dx = lim

a→2−

∫ a

1

1

(x− 2)2
dx

= lim
a→2−

− 1

(x− 2)

∣∣∣∣
a

1

= lim
a→2−

− 1

(a− 2)
+

1

1− 2
= ∞,

since 1
a−2 → −∞ as a approaches 2 from the left. Thus, the improper integral

∫ 2
1

1
(x−2)2

dx di-

verges; similar work shows that
∫ 3

2
1

(x−2)2
dx also diverges. From either of these two results, we

can conclude that that the original integral,
∫ 3

1
1

(x−2)2
dx diverges, too.

Activity 6.15.

For each of the following definite integrals, decide whether the integral is improper or not. If
the integral is proper, evaluate it using the First FTC. If the integral is improper, determine
whether or not the integral converges or diverges; if the integral converges, find its exact value.

(a)
∫ 1

0
1

x1/3
dx

(b)
∫ 2

0 e
−x dx

(c)
∫ 4

1
1√
4−x dx

(d)
∫ 2
−2

1
x2
dx

(e)
∫ π/2

0 tan(x) dx
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(f)
∫ 1

0
1√

1−x2 dx

C

Summary

In this section, we encountered the following important ideas:

• An integral
∫ b
a f(x) dx can be improper if at least one of a or b is ±∞, making the interval

unbounded, or if f has a vertical asymptote at x = c for some value of c that satisfies a ≤ c ≤ b.
One reason that improper integrals are important is that certain probabilities can be represented
by integrals that involve infinite limits.

• When we encounter an improper integral, we work to understand it by replacing the improper
integral with a limit of proper integrals. For instance, we write

∫ ∞

a
f(x) dx = lim

b→∞

∫ b

a
f(x) dx,

and then work to determine whether the limit exists and is finite. For any improper integral,
if the resulting limit of proper integrals exists and is finite, we say the improper integral con-
verges. Otherwise, the improper integral diverges.

• An important class of improper integrals is given by
∫ ∞

1

1

xp
dx

where p is a positive real number. We can show that this improper integral converges whenever

p > 1, and diverges whenever 0 < p ≤ 1. A related class of improper integrals is
∫ 1

0

1

xp
dx,

which converges for 0 < p < 1, and diverges for p ≥ 1.

Exercises

1. Determine, with justification, whether each of the following improper integrals converges or
diverges.

(a)
∫ ∞

e

ln(x)

x
dx

(b)
∫ ∞

e

1

x ln(x)
dx

(c)
∫ ∞

e

1

x(ln(x))2
dx

(d)
∫ ∞

e

1

x(ln(x))p
dx, where p is a positive real number
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(e)
∫ 1

0

ln(x)

x
dx

(f)
∫ 1

0
ln(x) dx

2. Sometimes we may encounter an improper integral for which we cannot easily evaluate the

limit of the corresponding proper integrals. For instance, consider
∫ ∞

1

1

1 + x3
dx. While it is

hard (or perhaps impossible) to find an antiderivative for 1
1+x3

, we can still determine whether
or not the improper integral converges or diverges by comparison to a simpler one. Observe
that for all x > 0, 1 + x3 > x3, and therefore

1

1 + x3
<

1

x3
.

It therefore follows that ∫ b

1

1

1 + x3
dx <

∫ b

1

1

x3
dx

for every b > 1. If we let b→∞ so as to consider the two improper integrals
∫ ∞

1

1

1 + x3
dx and

∫∞
1

1
x3
dx, we know that the larger of the two improper integrals converges. And thus, since

the smaller one lies below a convergent integral, it follows that the smaller one must converge,

too. In particular,
∫ ∞

1

1

1 + x3
dx must converge, even though we never explicitly evaluated the

corresponding limit of proper integrals. We use this idea and similar ones in the exercises that
follow.

(a) Explain why x2 + x + 1 > x2 for all x ≥ 1, and hence show that
∫ ∞

1

1

x2 + x+ 1
dx

converges by comparison to
∫ ∞

1

1

x2
dx.

(b) Observe that for each x > 1, ln(x) < x. Explain why

∫ b

2

1

x
dx <

∫ b

2

1

ln(x)
dx

for each b > 2. Why must it be true that
∫ b

2

1

ln(x)
dx diverges?

(c) Explain why

√
x4 + 1

x4
> 1 for all x > 1. Then, determine whether or not the improper

integral ∫ ∞

1

1

x
·
√
x4 + 1

x4
dx

converges or diverges.
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6.6 Probability

This section of the text is forthcoming. It will be available in early February 2013.



Chapter 7

Differential Equations

7.1 An Introduction to Differential Equations

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is a differential equation and what kinds of information can it tell us?

• How do differential equations arise in the world around us?

• What do we mean by a solution to a differential equation?

Introduction

In previous chapters, we have seen that a function’s derivative tells us the rate at which the func-
tion is changing. More recently, the Fundamental Theorem of Calculus helped us to determine
the total change of a function over an interval when we know the function’s rate of change. For
instance, an object’s velocity tells us the rate of change of that object’s position. By integrating the
velocity over a time interval, we may determine by how much the position changes over that time
interval. In particular, if we know where the object is at the beginning of that interval, then we
have enough information to accurately predict where it will be at the end of the interval.

In this chapter, we will introduce the concept of differential equations and explore this idea
in more depth. Simply said, a differential equation is an equation that provides a description
of a function’s derivative, which means that it tells us the function’s rate of change. Using this
information, we would like to learn as much as possible about the function itself. For instance, we
would ideally like to have an algebraic description of the function. As we’ll see, this may be too
much to ask in some situations, but we will still be able to make accurate approximations.

Preview Activity 7.1. The position of a moving object is given by the function s(t), where s is

371
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measured in feet and t in seconds. We determine that the velocity is v(t) = 4t+ 1 feet per second.

(a) How much does the position change over the time interval [0, 4]?

(b) Does this give you enough information to determine s(4), the position at time t = 4? If so,
what is s(4)? If not, what additional information would you need to know to determine
s(4)?

(c) Suppose you are told that the object’s initial position s(0) = 7. Determine s(2), the object’s
position 2 seconds later.

(d) If you are told instead that the object’s initial position is s(0) = 3, what is s(2)?

(e) If we only know the velocity v(t) = 4t + 1, is it possible that the object’s position at all
times is s(t) = 2t2 + t− 4? Explain how you know.

(f) Are there other possibilities for s(t)? If so, what are they?

(g) If, in addition to knowing the velocity function is v(t) = 4t+1, we know the initial position
s(0), how many possibilities are there for s(t)?

./

What is a differential equation?

A differential equation is an equation that describes the derivative, or derivatives, of a function
that is unknown to us. For instance, the equation

dy

dx
= x sinx

is a differential equation since it describes the derivative of a function y(x) that is unknown to us.

As many important examples of differential equations involve quantities that change in time,
the independent variable in our discussion will frequently be time t. For instance, in the preview
activity, we considered the differential equation

ds

dt
= 4t+ 1.

Knowing the velocity and the starting position of the object, we were able to find the position at
any later time.

Because differential equations describe the derivative of a function, they give us information
about how that function changes. Our goal will be to take this information and use it to predict the
value of the function in the future; in this way, differential equations provide us with something
like a crystal ball.

Differential equations arise frequently in our every day world. For instance, you may hear a
bank advertising:
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Your money will grow at a 3% annual interest rate with us.

This innocuous statement is really a differential equation. Let’s translate: A(t) will be amount
of money you have in your account at time t. On one hand, the rate at which your money grows
is the derivative dA/dt. On the other hand, we are told that this rate is 0.03A. This leads to the
differential equation

dA

dt
= 0.03A.

This differential equation has a slightly different feel than the previous equation ds
dt = 4t+1. In

the earlier example, the rate of change depends only on the independent variable t, and we may
find s(t) by integrating the velocity 4t + 1. In the banking example, however, the rate of change
depends on the dependent variable A, so we’ll need some new techniques in order to find A(t).

Activity 7.1.

Express the following statements as differential equations. In each case, you will need to intro-
duce notation to describe the important quantities in the statement so be sure to clearly state
what your notation means.

(a) The population of a town grows at an annual rate of 1.25%.

(b) A radioactive sample losses 5.6% of its mass every day.

(c) You have a bank account that earns 4% interest every year. At the same time, you
withdraw money continually from the account at the rate of $1000 per year.

(d) A cup of hot chocolate is sitting in a 70◦ room. The temperature of the hot chocolate
cools by 10% of the difference between the hot chocolate’s temperature and the room
temperature every minute.

(e) A can of cold soda is sitting in a 70◦ room. The temperature of the soda warms at the rate
of 10% of the difference between the soda’s temperature and the room’s temperature
every minute.

C

Differential equations in the world around us

As we have noted, differential equations give a natural way to describe phenomena we see in the
real world. For instance, physical principles are frequently expressed as a description of how a
quantity changes. A good example is Newton’s Second Law, an important physcial principle that
says:

The product of an object’s mass and acceleration equals the force applied to it.
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For instance, when gravity acts on an object near the earth’s surface, it exerts a force equal to
mg, the mass of the object times the gravitational constant g. We therefore have

ma = mg, or
dv

dt
= g,

where v is the velocity of the object, and g = 9.8 meters per second squared. Notice that this
physical principle does not tell us what the object’s velocity is, but rather how the object’s velocity
changes.

Activity 7.2.

Shown below are two graphs depicting the velocity of falling objects. On the left is the velocity
of a skydiver, while on the right is the velocity of a meteorite entering the Earth’s atmosphere.

1 2 3

1

2

3

4

5

6

t

v

1 2 3

1

2

3

4

5

6

t

v

Skydiver’s velocity Meteorite’s velocity

(a) Begin with the skydiver’s velocity and use the given graph to measure the rate of
change dv/dt when the velocity is v = 0.5, 1.0, 1.5, 2.0, and 2.5. Plot your values on the
graph below. You will want to think carefully about this: you are plotting the derivative
dv/dt as a function of velocity.
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v

dv

dt

(b) Now do the same thing with the meteorite’s velocity: use the given graph to measure
the rate of change dv/dt when the velocity is v = 3.5, 4.0, 4.5, and 5.0. Plot your values
on the graph above.

(c) You should find that all your points lie on a line. Write the equation of this line being
careful to use proper notation for the quantities on the horizontal and vertical axes.

(d) The relationship you just found is a differential equation. Write a complete sentence
that explains its meaning.

(e) By looking at the differential equation, determine the values of the velocity for which
the velocity increases.

(f) By looking at the differential equation, determine the values of the velocity for which
the velocity decreases.

(g) By looking at the differential equation, determine the values of the velocity for which
the velocity remains constant.

C

The point of this activity is to demonstrate how differential equations model processes in the
real world. In this example, two factors are influencing the velocities: gravity and wind resistance.
The differential equation describes how these factors influence the rate of change of the objects’
velocities.

Solving a differential equation

We have said that a differential equation is an equation that describes the derivative, or deriva-
tives, of a function that is unknown to us. By a solution to a differential equation, we mean simply
a function that satisies this description.

For instance, the first differential equation we looked at is

ds

dt
= 4t+ 1,
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which describes an unknown function s(t). We may check that s(t) = 2t2 + t is a solution because
it satisfies this description. Notice that s(t) = 2t2 + t+ 4 is also a solution.

If we have a candidate for a solution, it is straightforward to check whether it is a solution or
not. Before we demonstrate, however, let’s consider the same issue in a simpler context. Suppose
we are given the equation 2x2−2x = 2x+ 6 and asked whether x = 3 is a solution. To answer this
question, we could rewrite the variable x in the equation with the symbol �:

2�2 − 2� = 2�+ 6.

To determine whether x = 3 is a solution, we simply fill in � with 3 and see if the statement is
true.

2 · 32 − 2 · 3 ?
= 2 · 3 + 6

12
?
= 12

Therefore, x = 3 is indeed a solution.

We will do the same thing with differential equations. Consider the differential equation

dv

dt
= 1.5− 0.5v, or

d�
dt

= 1.5− 0.5�.

Let’s ask whether v(t) = 3− 2e−0.5t is a solution1.

d

dt

(
3− 2e−0.5t

) ?
= 1.5− 0.5(3− 2e−0.5t)

−2(−0.5e−0.5t)
?
= 1.5− 1.5− 0.5(−2e−0.5t)

e−0.5t ?
= e−0.5t

Since the two sides of the equation agree for all values of t, we have found a solution to the
differential equation.

Activity 7.3.

Consider the differential equation
dv

dt
= 1.5− 0.5v.

Which of the following functions are solutions of this differential equation?

(a) v(t) = 1.5t− 0.25t2.

1At this time, don’t worry about why we chose this function; we will learn techniques for finding solutions to
differential equations soon enough.
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(b) v(t) = 3 + 2e−0.5t.

(c) v(t) = 3.

(d) v(t) = 3 + Ce−0.5t where C is any constant.

C

This activity shows us something interesting. Notice that the differential equation has in-
finitely many solutions, which are parametrized by the constant C in v(t) = 3 + Ce−0.5t. In
Figure 7.1, we see the graphs of these solutions for a few values of C, as labeled.
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Figure 7.1: The family of solutions to the differential equation dv
dt = 1.5− 0.5v.

Notice that the value ofC is connected to the initial value of the velocity v(0), since v(0) = 3+C.
In other words, while the differential equation describes how the velocity changes as a function of
the velocity itself, this is not enough information to determine the velocity uniquely: we also need
to know the initial velocity. For this reason, differential equations will typically have infinitely
many solutions, one corresponding to each initial value. We have seen this phenomenon before,
such as when given the velocity of a moving object v(t), we were not able to uniquely determine
the object’s position unless we also know its initial position.

If we are given a differential equation and an initial value for the unknown function, we say
that we have an initial value problem. For instance,

dv

dt
= 1.5− 0.5v, v(0) = 0.5

is an initial value problem. In this situation, we know the value of v at one time and we know how
v is changing. Consequently, there should be exactly one function v that satisfies the initial value
problem.

This demonstrates the following important general property of initial value problems.

Initial value problems that are “well behaved” have exactly one solution, which exists in some
interval around the initial point.
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We won’t worry about what “well behaved” means—it is a technical condition that will be
satisfied by all the differential equations we consider.

To close this section, we note that differential equations may be classified based on certain
characteristics they may possess. Indeed, you may see many different types of differential equa-
tions in a later course in differential equations. For now, we would like to introduce a few terms
that are used to describe differential equations.

A first-order differential equation is one in which only the first derivative of the function occurs.
For this reason,

dv

dt
= 1.5− 0.5v

is a first-order equation while
d2y

dt2
= −10y

is a second-order equation.

A differential equation is autonomous if the independent variable does not appear in the de-
scription of the derivative. For instance,

dv

dt
= 1.5− 0.5v

is autonomous because the description of the derivative dv/dt does not depend on time. The
equation

dy

dt
= 1.5t− 0.5y,

however, is not autonomous.

Summary

In this section, we encountered the following important ideas:

• A differential equation is simply an equation that describes the derivative(s) of an unknown
function.

• Physical principles, as well as some everyday situations, often describe how a quantity changes,
which lead to differential equations.

• A solution to a differential equation is a function whose derivatives satisfy the equation’s de-
scription. Differential equations typically have infinitely many solutions, parametrized by the
initial values.

Exercises
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1. Suppose that T (t) represents the temperature of a cup of coffee set out in a room, where T is
expressed in degrees Fahrenheit and t in minutes. A physcial principle known as Newton’s
Law of Cooling tells us that

dT

dt
= − 1

15
T + 5.

(a) Supposes that T (0) = 105. What does the differential equation give us for the value of
dT

dt
|T=0? Explain in a complete sentence the meaning of these two facts.

(b) Is T increasing or decreasing at t = 0?

(c) What is the approximate temperature at t = 1?

(d) On the graph below, make a plot of dT/dt as a function of T .
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T

dT

dt

(e) For which values of T does T increase? For which values of T does T decrease?

(f) What do you think is the temperature of the room? Explain your thinking.

(g) Verify that T (t) = 75 + 30e−t/15 is the solution to the differential equation with initial
value T (0) = 105. What happens to this solution after a long time?

2. Suppose that the population of a particular species is described by the function P (t), where P
is expressed in millions. Suppose further that the population’s rate of change is governed by
the differential equation

dP

dt
= f(P )

where f(P ) is the function graphed below.
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dP

dt

(a) For which values of the population P does the population increase?

(b) For which values of the population P does the population decrease?

(c) If P (0) = 3, how will the population change in time?

(d) If the initial population satisfies 0 < P (0) < 1, what will happen to the population after
a very long time?

(e) If the initial population satisfies 1 < P (0) < 3, what will happen to the population after
a very long time?

(f) If the initial population satisfies 3 < P (0), what will happen to the population after a
very long time?

(g) This model for a population’s growth is sometimes called “growth with a threshold.”
Explain why this is an appropriate name.

3. In this problem, we test further what it means for a function to be a solution to a given differ-
ential equation.

(a) Consider the differential equation

dy

dt
= y − t.

Determine whether the following functions are solutions to the given differential equa-
tion.

(i) y(t) = t+ 1 + 2et

(ii) y(t) = t+ 1

(iii) y(t) = t+ 2

(b) When you weigh bananas in a scale at the grocery store, the height h of the bananas is
described by the differential equation

d2h

dt2
= −kh
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where k is the spring constant, a constant that depends on the properties of the spring in
the scale. After you put the bananas in the scale, you (cleverly) observe that the height
of the bananas is given by h(t) = 4 sin(3t). What is the value of the spring constant?
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7.2 Qualitative behavior of solutions to differential equations

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is a slope field?

• How can we use a slope field to obtain qualitative information about the solutions of a
differential equation?

• What are stable and unstable equilibrium solutions of an autonomous differential equation?

Introduction

In earlier work, we have used the tangent line to the graph of a function f at a point a to approx-
imate the values of f near a. The usefulness of this approximation is that we need to know very
little about the function; armed with only the value f(a) and the derivative f ′(a), we may find the
equation of the tangent line and the approximation

f(x) ≈ f(a) + f ′(a)(x− a).

Remember that a first-order differential equation gives us information about the derivative
of an unknown function. Since the derivative at a point tells us the slope of the tangent line at
this point, a differential equation gives us crucial information about the tangent lines to the graph
of a solution. We will use this information about the tangent lines to create a slope field for the
differential equation, which enables us to sketch solutions to initial value problems. Our aim
will be to understand the solutions qualitatively. That is, we would like to understand the basic
nature of solutions, such as their long-range behavior, without precisely determining the value of
a solution at a particular point.

Preview Activity 7.2. Let’s consider the initial value problem

dy

dt
= t− 2, y(0) = 1.

(a) Use the differential equation to find the slope of the tangent line to the solution y(t) at
t = 0. Then use the initial value to find the equation of the tangent line at t = 0. Sketch
this tangent line over the interval −0.25 ≤ t ≤ 0.25 on the axes provided.
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(b) Also shown in the given figure are the tangent lines to the solution y(t) at the points t =
1, 2, and 3 (we will see how to find these later). Use the graph to measure the slope of
each tangent line and verify that each agrees with the value specified by the differential
equation.

(c) Using these tangent lines as a guide, sketch a graph of the solution y(t) over the interval
0 ≤ t ≤ 3 so that the lines are tangent to the graph of y(t).

(d) Use the Fundamental Theorem of Calculus to find y(t), the solution to this initial value
problem.

(e) Graph the solution you found in (d) on the axes provided, and compare it to the sketch
you made using the tangent lines.

./

Slope fields

Preview Activity 7.3 shows that we may sketch the solution to an initial value problem if we
know an appropriate collection of tangent lines. Because we may use a given differential equation
to determine the slope of the tangent line at any point of interest, by plotting a useful collection of
these, we can get an accurate sense of how certain solution curves must behave.

Let’s continue looking at the differential equation
dy

dt
= t − 2. If t = 0, this equation says that

dy/dt = 0 − 2 = −2. Note that this value holds regardless of the value of y. We will therefore
sketch tangent lines for several values of y and t = 0 with a slope of −2.
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Let’s continue in the same way: if t = 1, the differential equation tells us that dy/dt = 1− 2 =
−1, and this holds regardless of the value of y. We now sketch tangent lines for several values of
y and t = 1 with a slope of −1.
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Similarly, we see that when t = 2, dy/dt = 0 and when t = 3, dy/dt = 1. We may therefore add
to our growing collection of tangent line plots to achieve the next figure.
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In this figure, you may see the solutions to the differential equation emerge. However, for the
sake of clarity, we will add more tangent lines to provide the more complete picture shown below.
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This most recent figure, which is called a slope field for the differential equation, allows us to
sketch solutions just as we did in the preview activity. Here, we will begin with the initial value
y(0) = 1 and start sketching the solution by following the tangent line, as shown in the next figure.
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We then continue using this principle: whenever the solution passes through a point at which
a tangent line is drawn, that line is tangent to the solution. Doing so leads us to the following
sequence of images.

1 2 3

-2

-1

1

2

3

t

y

1 2 3

-2

-1

1

2

3

t

y

1 2 3

-2

-1

1

2

3

t

y

In fact, we may draw solutions for any possible initial value, and doing this for several different
initial values for y(0) results in the graphs shown next.
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Just as we have done for the most recent example with dy
dt = t − 2, we can construct a slope

field for any differential equation of interest. The slope field provides us with visual information
about how we expect solutions to the differential equation to behave.

Activity 7.4.

Consider the autonomous differential equation

dy

dt
= −1

2
(y − 4).

(a) Make a plot of dydt versus y on the axes provided. Looking at the graph, for what values
of y does y increase and for what values of y does y decrease?
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(b) Next, sketch the slope field for this differential equation on the axes provided.
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(c) Use your work in (b) to sketch the solutions that satisfy y(0) = 0, y(0) = 2, y(0) = 4 and
y(0) = 6.

(d) Verify that y(t) = 4 + 2e−t/2 is a solution to the given differential equation with the
initial value y(0) = 6. Compare its graph to the one you sketched in (c).

(e) What is special about the solution where y(0) = 4?

C

Equilibrium solutions and stability

As our work in Activity 7.5 demonstrates, first-order autonomous solutions may have solutions
that are constant. In fact, these are quite easy to detect by inspecting the differential equation
dy/dt = f(y): constant solutions necessarily have a zero derivative so dy/dt = 0 = f(y).

For example, in Activity 7.5, we considered the equation

dy

dt
= f(y) = −1

2
(y − 4).

Constant solutions are found by setting f(y) = −1
2(y − 4) = 0, which we immediately see implies

that y = 4.

Values of y for which f(y) = 0 in an autonomous differential equation dy
dt = f(y) are usually

called or equilibrium solutions of the differential equation.

Activity 7.5.

Consider the autonomous differential equation

dy

dt
= −1

2
y(y − 4).

(a) Make a plot of dy
dt versus y. Looking at the graph, for what values of y does y increase

and for what values of y does y decrease?
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(b) Identify any equilibrium solutions of the given differential equation.
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(c) Now sketch the slope field for the given differential equation.
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(d) Sketch the solutions to the given differential equation that correspond to initial values
y(0) = −1, 0, 1, . . . , 5.

(e) An equilibrium solution y is called stable if nearby solutions converge to y. This means
that if the inital condition varies slightly from y, then limt→∞ y(t) = y.
Conversely, an equilibrium solution y is called unstable if nearby solutions are pushed
away from y.
Using your work above, classify the equilibrium solutions you found in (b) as either
stable or unstable.

(f) Suppose that y(t) describes the population of a species of living organisms and that the
initial value y(0) is positive. What can you say about the eventual fate of this popula-
tion?

(g) Remember that an equilibrium solution y satisfies f(y) = 0. If we graph dy/dt = f(y) as
a function of y, for which of the following differential equations is y a stable equilibrium
and for which is y unstable? Why?

y

y

dy
dt

= f(y)

y

y

dy
dt

= f(y)

C

Summary

In this section, we encountered the following important ideas:
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• A slope field is a plot created by graphing the tangent lines of many different solutions to a
differential equation.

• Once we have a slope field, we may sketch the graph of solutions by drawing a curve that is
always tangent to the lines in the slope field.

• Autonomous differential equations sometimes have constant solutions that we call equilibrium
solutions. These may be classified as stable or unstable, depending on the behavior of nearby
solutions.

Exercises

1. Consider the differential equation
dy

dt
= t− y.

(a) Sketch a slope field on the plot below:
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(b) Sketch the solutions whose initial values are y(0) = −4,−3, . . . , 4.

(c) What do your sketches suggest is the solution whose initial value is y(0) = −1? Verify
that this is indeed the solution to this initial value problem.

(d) By considering the differential equation and the graphs you have sketched, what is the
relationship between t and y at a point where a solution has a local minimum?

2. Consider the situation from problem 2 of Section 7.1: Suppose that the population of a particu-
lar species is described by the function P (t), where P is expressed in millions. Suppose further
that the population’s rate of change is governed by the differential equation

dP

dt
= f(P )

where f(P ) is the function graphed below.
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(a) Sketch a slope field for this differential equation. You do not have enough information
to determine the actual slopes, but you should have enough information to determine
where slopes are positive, negative, zero, large, or small, and hence determine the qual-
itative behavior of solutions.

(b) Sketch some solutions to this differential equation when the initial population P (0) > 0.

(c) Identify any equilibrium solutions to the differential equation and classify them as sta-
ble or unstable.

(d) If P (0) > 1, what is the eventual fate of the species?

(e) if P (0) < 1, what is the eventual fate of the species?

(f) Remember that we referred to this model for population growth as “growth with a
threshold.” Explain why this characterization makes sense by considering solutions
whose inital value is close to 1.

3. The population of a species of fish in a lake is P (t) where P is measured in thousands of fish
and t is measured in months. The growth of the population is described by the differential
equation

dP

dt
= f(P ) = P (6− P ).

(a) Sketch a graph of f(P ) = P (6 − P ) and use it to determine the equilibrium solutions
and whether they are stable or unstable. Write a complete sentence that describes the
long-term behavior of the fish population.

(b) Suppose now that the owners of the lake allow fishers to remove 1000 fish from the
lake every month (remember that P (t) is measured in thousands of fish). Modify the
differential equation to take this into account. Sketch the new graph of dP/dt versus
P . Determine the new equilibrium solutions and decide whether they are stable or
unstable.

(c) Given the situation in part (b), give a description of the long-term behavior of the fish
population.
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(d) Suppose that fishermen remove h thousand fish per month. How is the differential
equation modified?

(e) What is the largest number of fish that can be removed without eliminating the fish
population? If fish are removed at this maximum rate, what is the eventual population
of fish?

4. Let y(t) be the number of thousands of mice that live on a farm; assume time t is measured in
years.2

(a) The population of the mice grows at a yearly rate that is twenty times the number of
mice. Express this as a differential equation.

(b) At some point, the farmer brings C cats to the farm. The number of mice that the cats
can eat in a year is

M(y) = C
y

2 + y

thousand mice per year. Explain how this modifies the differential equation that you
found in part a).

(c) Sketch a graph of the function M(y) for a single cat C = 1 and explain its features by
looking, for instance, at the behavior of M(y) when y is small and when y is large.

(d) Suppose that C = 1. Find the equilibrium solutions and determine whether they are
stable or unstable. Use this to explain the long-term behavior of the mice population
depending on the initial population of the mice.

(e) Suppose that C = 20. Find the equilibrium solutions and determine whether they are
stable or unstable. Use this to explain the long-term behavior of the mice population
depending on the initial population of the mice.

(f) What is the largest number of cats for which the mice population can survive?

2This problem is based on an ecological analysis presented in a research paper by C.S. Hollings: The Components
of Predation as Revealed by a Study of Small Mammal Predation of the European Pine Sawfly, Canadian Entomology 91:
283-320.
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7.3 Euler’s method

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is Euler’s method and how can we use it to approximate the solution to an initial
value problem?

• How accurate is Euler’s method?

Introduction

In Section ??, we saw how a slope field can be used to sketch solutions to a differential equation.
In particular, the slope field is a plot of a large collection of tangent lines to a large number of
solutions of the differential equation, and we sketch a single solution by simply following these
tangent lines. With a little more thought, we may use this same idea to numerically approximate
the solutions of a differential equation.

Preview Activity 7.3. Consider the initial value problem

dy

dt
=

1

2
(y + 1), y(0) = 0.

(a) Use the differential equation to find the slope of the tangent line to the solution y(t) at
t = 0. Then use the given initial value to find the equation of the tangent line at t = 0.

(b) Sketch the tangent line on the axes below on the interval 0 ≤ t ≤ 2 and use it to approxi-
mate y(2), the value of the solution at t = 2.
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(c) Assuming that your approximation for y(2) is the actual value of y(2), use the differential
equation to find the slope of the tangent line to y(t) at t = 2. Then, write the equation of
the tangent line at t = 2.
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(d) Add a sketch of this tangent line to your plot on the axes above on the interval 2 ≤ t ≤ 4;
use this new tangent line to approximate y(4), the value of the solution at t = 4.

(e) Repeat the same step to find an approximation for y(6).

./

Euler’s Method

Preview Activity ?? demonstrates the essence of an algorithm, which is known as Euler’s Method,
that generates a numerical approximation to the solution of an initial value problem.3 In this
algorithm, we will approximate the solution by taking horizontal steps of a fixed size that we
denote by ∆t.

Before explaining the algorithm in detail, let’s remember how we compute the slope of a line:
the slope is the ratio of the vertical change to the horizontal change, as shown in the following
figure.

t

y

∆t

∆y

In other words, m = ∆y
∆t . Said differently, the vertical change is the product of the slope and the

horizontal change:
∆y = m∆t.

Suppose that we would like to solve the initial value problem

dy

dt
= t− y, y(0) = 1.

While there is an algorithm by which we can find an algebraic formula for the solution to this
initial value problem, and we can check that this solution is y(t) = t − 1 + 2e−t, we are instead
interested in generating an approximate solution by creating a sequence of points (ti, yi), where
yi ≈ y(ti). For this first example, we choose ∆t = 0.2.

3“Euler” is pronounced “Oy-ler.” Among other things, Euler is the mathematician credited with the famous number
e; if you incorrectly pronounce his name “You-ler,” you fail to appreciate his genius and legacy.
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Since we know that y(0) = 1, we will take the initial point to be
(t0, y0) = (0, 1) and move horizontally by ∆t = 0.2 to the point
(t1, y1). Therefore, t1 = t0 + ∆t = 0.2. The differential equation
tells us that the slope of the tangent line at this point is

m =
dy

dt

∣∣∣∣
(0,1)

= 0− 1 = −1.

Therefore, if we move along the tangent line by taking a hori-
zontal step of size ∆t = 0.2, we must also move vertically by

∆y = m∆t = −1 · 0.2 = −0.2.

We then have the approximation y(0.1) ≈ y1 = y0 + ∆y = 1 −
0.2 = 0.8. At this point, we have executed one step of Euler’s
method.
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Now we repeat this process: at (t1, y1) = (0.2, 0.8), the differen-
tial equation tells us that the slope is

m =
dy

dt

∣∣∣∣
(0.2,0.8)

= 0.2− 0.8 = −0.6.

If we move horizontally by ∆t to t2 = t1 + ∆ = 0.4, we must
move vertically by

∆y = −0.6 · 0.2 = −0.12.

We consequently arrive at y2 = y1 + ∆y = 0.8 − 0.12 = 0.68,
which gives y(0.2) ≈ 0.68. Now we have completed the second
step of Euler’s method.
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If we continue in this way, we may generate the points (ti, yi) shown at left in the following
figure. In situations where we are able to find a formula for the actual solution y(t), we can graph
y(t) to compare it to the points generated by Euler’s method, as shown at right.
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Because we need to generate a large number of points (ti, yi), it is convenient to organize the
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implementation of Euler’s method in a table as shown. We begin with the given initial data.

ti yi dy/dt ∆y

0.0000 1.0000

From here, we compute the slope of the tangent line m = dy/dt using the formula for dy/dt from
the differential equation, and then we find ∆y, the change in y, using the rule ∆y = m∆t.

ti yi dy/dt ∆y

0.0000 1.0000 -1.0000 -0.2000

Next, we increase ti by ∆t and yi by ∆y to get

ti yi dy/dt ∆y

0.0000 1.0000 -1.0000 -0.2000
0.2000 0.8000

and then we simply continue the process for however many steps we decide, eventually generat-
ing a table like the one that follows.

ti yi dy/dt ∆y

0.0000 1.0000 -1.0000 -0.2000
0.2000 0.8000 -0.6000 -0.1200
0.4000 0.6800 -0.2800 -0.0560
0.6000 0.6240 -0.0240 -0.0048
0.8000 0.6192 0.1808 0.0362
1.0000 0.6554 0.3446 0.0689
1.2000 0.7243 0.4757 0.0951

Activity 7.6.

Consider the initial value problem

dy

dt
= 2t− 1, y(0) = 0

(a) Use Euler’s method with ∆t = 0.2 to approximate the solution at ti = 0.2, 0.4, 0.6, 0.8,
and 1.0. Record your work in the following table, and sketch the points (ti, yi) on the
axes provided at right.
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ti yi dy/dt ∆y

0.0000 0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0.4 0.8 1.2

-1.0

-0.6

-0.2

0.2
ty

(b) Find the exact solution to the original initial value problem and use this function to find
the error in your approximation at each one of the points ti.

(c) Explain why the value y5 generated by Euler’s method for this initial value problem
produces the same value as a left Riemann sum for the definite integral

∫ 1
0 (2t− 1) dt.

(d) How would your computations differ if the initial value was y(0) = 1? What does this
mean about different solutions to this differential equation?

C

Activity 7.7.

Consider the differential equation:
dy

dt
= 6y − y2

(a) Sketch the slope field for this differential equation on the axes below.
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(b) Identify any equilibrium solutions and determine whether they are stable or unstable.

(c) What is the long-term behavior of the solution that satisfies the initial value y(0) = 1?

(d) Using the initial value y(0) = 1, use Euler’s method with ∆t = 0.2 to approximate the
solution at ti = 0.2, 0.4, 0.6, 0.8, and 1.0. Sketch the points (ti, yi) on the axes provided.
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ti yi dy/dt ∆y
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(e) What happens if we apply Euler’s method to approximate the solution with y(0) = 6?

C

The error in Euler’s method

Since we are approximating the solutions to an initial value problem using tangent lines, we
should expect that the error in the approximation will be less when the step size is smaller. To
explore this observation quantitatively, let’s consider the initial value problem

dy

dt
= y, y(0) = 1

whose solution we can easily find.

Consider the question posed by this initial value problem: “what function do we know that is
the same as its own derivative and has value 1 when t = 0?” It is not hard to see that the solution
is y(t) = et. We now apply Euler’s method to approximate y(1) = e using several values of ∆t.
These approximations will be denoted by E∆t, and these estimates provide us a way to see how
accurate Euler’s Method is.

To begin, we apply Euler’s method with a step size of ∆t = 0.2. In that case, we find that
y(1) ≈ E0.2 = 2.4883. The error is therefore y(1)− E0.2 = e− 2.4883 ≈ 0.2300.

Repeatedly halving ∆t gives the following results, expressed in both tabular and graphical
form.

∆t E∆t Error
0.200 2.4883 0.2300
0.100 2.5937 0.1245
0.050 2.6533 0.0650
0.025 2.6851 0.0332

0.1 0.2

0.1

0.2
Error

∆t
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Notice, both numerically and graphically, that the error is roughly halved when ∆t is halved.
This example illustrates the following general principle.

If Euler’s method is to approximate the solution to an initial value problem at a point t, then
the error is proportional to ∆t. That is,

y(t)− E∆t ≈ K∆t

for some constant of proportionality K.

Summary

In this section, we encountered the following important ideas:

• Euler’s method is an algorithm for approximating the solution to an initial value problem by
following the tangent lines while we take horizontal steps across the t-axis.

• If we wish to approximate y(t) for some fixed t by taking horizontal steps of size ∆t, then the
error in our approximation is proportional to ∆t.

Exercises

1. Newton’s Law of Cooling says that the rate at which an object, such as a cup of coffee, cools is
proportional to the difference in the object’s temperature and room temperature. If T (t) is the
object’s temperature and Tr is room temperature, this law is expressed at

dT

dt
= −k(T − Tr),

where k is a constant of proportionality. In this problem, temperature is measured in degrees
Fahrenheit and time in minutes.

(a) Two calculus students, Alice and Bob, enter a 70◦ classroom at the same time. Each
has a cup of coffee that is 100◦. The differential equation for Alice has a constant of
proportionality k = 0.5, while the constant of proportionality for Bob is k = 0.1.
What is the initial rate of change for Alice’s coffee? What is the initial rate of change for
Bob’s coffee?

(b) What feature of Alice’s and Bob’s cups of coffee could explain this difference?

(c) As the heating unit turns on and off in the room, the temperature in the room is

Tr = 70 + 10 sin t.

Implement Euler’s method with a step size of ∆t = 0.1 to approximate the temperature
of Alice’s coffee over the time interval 0 ≤ t ≤ 50. This will most easily be performed
using a spreadsheet such as Excel. Graph the temperature of her coffee and room tem-
perature over this interval.
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(d) In the same way, implement Euler’s method to approximate the temperature of Bob’s
coffee over the same time interval. Graph the temperature of his coffee and room tem-
perature over the interval.

(e) Explain the similarities and differences that you see in the behavior of Alice’s and Bob’s
cups of coffee.

2. We have seen that the error in approximating the solution to an initial value problem is pro-
portional to ∆t. That is, if E∆t is the Euler’s method approximation to the solution to an initial
value problem at t, then

y(t)− E∆t ≈ K∆t

for some constant of proportionality K.

In this problem, we will see how to use this fact to improve our estimates, using an idea called
accelerated convergence.

(a) We will create a new approximation by assuming the error is exactly proportional to ∆t,
according to the formula

y(t)− E∆t = K∆t.

Using our earlier results from the initial value problem dy/dt = y and y(0) = 1 with
∆t = 0.2 and ∆t = 0.1, we have

y(1)− 2.4883 = 0.2K

y(1)− 2.5937 = 0.1K.

This is a system of two linear equations in the unknowns y(1) and K. Solve this system
to find a new approximation for y(1). (You may remember that the exact value is y(1) =
e = 2.71828 . . . .)

(b) Use the other data, E0.05 = 2.6533 and E0.025 = 2.6851 to do similar work as in (a) to
obtain another approximation. Which gives the better approximation? Why do you
think this is?

(c) Let’s now study the initial value problem

dy

dt
= t− y, y(0) = 0.

Approximate y(0.3) by applying Euler’s method to find approximations E0.1 and E0.05.
Now use the idea of accelerated convergence to obtain a better approximation. (For the
sake of comparison, you want to note that the actual value is y(0.3) = 0.0408.)

3. In this problem, we’ll modify Euler’s method to obtain better approximations to solutions of
initial value problems. This method is called the Improved Euler’s method.
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In Euler’s method, we walk across an interval of width ∆t using the slope obtained from the
differential equation at the left endpoint of the interval. Of course, the slope of the solution
will most likely change over this interval. We can improve our approximation by trying to
incorporate the change in the slope over the interval.

Let’s again consider the initial value problem dy/dt = y and y(0) = 1, which we will approx-
imate using steps of width ∆t = 0.2. Our first interval is therefore 0 ≤ t ≤ 0.2. At t = 0, the
differential equation tells us that the slope is 1, and the approximation we obtain from Euler’s
method is that y(0.2) ≈ y1 = 1 + 1(0.2) = 1.2.

This gives us some idea for how the slope has changed over the interval 0 ≤ t ≤ 0.2. We
know the slope at t = 0 is 1, while the slope at t = 0.2 is 1.2, trusting in the Euler’s method
approximation. We will therefore refine our estimate of the initial slope to be the average of
these two slopes; that is, we will estimate the slope to be (1 + 1.2)/2 = 1.1. This gives the new
approximation y(1) = y1 = 1 + 1.1(0.2) = 1.22.

The first few steps look like this:

ti yi Slope at (ti+1, yi+1) Average slope
0.0 1.0000 1.2000 1.1000
0.2 1.2200 1.4640 1.3420
0.4 1.4884 1.7861 1.6372

...
...

...
...

(a) Continue with this method to obtain an approximation for y(1) = e.

(b) Repeat this method with ∆t = 0.1 to obtain a better approximation for y(1).

(c) We saw that the error in Euler’s method is proportional to ∆t. Using your results from
parts (a) and (b), what power of ∆t appears to be proportional to the error in the Im-
proved Euler’s Method?
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7.4 Separable differential equations

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is a separable differential equation?

• How can we find solutions to a separable differential equation?

• Are some of the differential equations that arise in applications separable?

Introduction

In Sections 7.2 and ??, we have seen several ways to approximate the solution to an initial value
problem. Given the frequency with which differential equations arise in the world around us, we
would like to have some techniques for finding explicit algebraic solutions of certain initial value
problems. In this section, we focus on a particular class of differential equations (called separable)
and develop a method for finding algebraic formulas for solutions to these equations.

A separable differential equation is a differential equation whose algebraic structure permits the
variables present to be separated in a particular way. For instance, consider the equation

dy

dt
= ty.

We would like to separate the variables t and y so that all occurrences of t appear on the right-
hand side, and all occurrences of y appears on the left and multiply dy/dt. We may do this in the
preceding differential equation by dividing both sides by y:

1

y

dy

dt
= t.

Note particularly that when we attempt to separate the variables in a differential equation, we
require that the left-hand side be a product in which the derivative dy/dt is one term.

Not every differential equation is separable. For example, if we consider the equation

dy

dt
= t− y,

it may seem natural to separate it by writing

y +
dy

dt
= t.

As we will see, this will not be helpful since the left-hand side is not a product of a function of y
with dy

dt .
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Preview Activity 7.4. In this preview activity, we explore whether certain differential equations
are separable or not, and then revisit some key ideas from earlier work in integral calculus.

(a) Which of the following differential equations are separable? If the equation is separable,
write the equation in the revised form g(y)dydt = h(t).

1.
dy

dt
= −3y.

2.
dy

dt
= ty − y.

3.
dy

dt
= t+ 1.

4.
dy

dt
= t2 − y2.

(b) Explain why any autonomous differential equation is guaranteed to be separable.

(c) Why do we include the term “+C” in the expression
∫
x dx =

x2

2
+ C?

(d) Suppose we know that a certain function f satisfies the equation
∫
f ′(x) dx =

∫
x dx.

What can you conclude about f?

./

Solving separable differential equations

Before we discuss a general approach to solving a separable differential equation, it is instructive
to consider an example.

Example 7.1. Find all functions y that are solutions to the differential equation

dy

dt
=

t

y2
.

Solution. We begin by separating the variables and writing

y2dy

dt
= t.
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Integrating both sides of the equation with respect to the independent variable t shows that
∫
y2dy

dt
dt =

∫
t dt.

Next, we notice that the left-hand side allows us to change the variable of antidifferentiation4 from
t to y. In particular, dy = dy

dt dt, so we now have
∫
y2 dy =

∫
t dt.

This most recent equation says that two families of antiderivatives are equal to one another. There-
fore, when we find representative antiderivatives of both sides, we know they must differ by ar-
bitrary constant C. Antidifferentiating and including the integration constant C on the right, we
find that

y3

3
=
t2

2
+ C.

Again, note that it is not necessary to include an arbitrary constant on both sides of the equation;
we know that y3/3 and t2/2 are in the same family of antiderivatives and must therefore differ by
a single constant.

Finally, we may now solve the last equation above for y as a function of t, which gives

y(t) =
3

√
3

2
t2 + 3C.

Of course, the term 3C on the right-hand side represents 3 times an unknown constant. It is,
therefore, still an unknown constant, which we will rewrite as C. We thus conclude that the
funtion

y(t) =
3

√
3

2
t2 + C

is a solution to the original differential equation for any value of C.

Notice that because this solution depends on the arbitrary constant C, we have found an in-
finite family of solutions. This makes sense because we expect to find a unique solution that
corresponds to any given initial value.

For example, if we want to solve the initial value problem

dy

dt
=

t

y2
, y(0) = 2,

we know that the solution has the form y(t) = 3

√
3
2 t

2 + C for some constant C. We therefore must
find the appropriate value for C that gives the initial value y(0) = 2. Hence,

2 = y(0)
3

√
3

2
02 + C =

3
√
C,

4This is why we required that the left-hand side be written as a product in which dy/dt is one of the terms.
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which shows that C = 23 = 8. The solution to the initial value problem is then

y(t) =
3

√
3

2
t2 + 8.

The strategy of Example 7.1 may be applied to any differential equation of the form dy
dt =

g(y) · h(t), and any differential equation of this form is said to be separable. We work to solve a
separable differential equation by writing

1

g(y)

dy

dt
= h(t),

and then integrating both sides with respect to t. After integrating, we strive to solve algebraically
for y in order to write y as a function of t.

We consider one more example before doing further exploration in some activities.

Example 7.2. Solve the differential equation

dy

dt
= 3y.

Solution. Following the same strategy as in Example 7.1, we have

1

y

dy

dt
= 3.

Integrating both sides with respect to t,
∫

1

y

dy

dt
dt =

∫
3 dt,

and thus ∫
1

y
dy =

∫
3 dt.

Antidifferentiating and including the integration constant, we find that

ln |y| = 3t+ C.

Finally, we need to solve for y. Here, one point deserves careful attention. By the definition of the
natural logarithm function, it follows that

|y| = e3t+C = e3teC .
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Since C is an unknown constant, eC is as well, though we do know that it is positive (because ex

is positive for any x). When we remove the absolute value in order to solve for y, however, this
constant may be either positive or negative. We will denote this updated constant (that accounts
for a possible + or −) by C to obtain

y(t) = Ce3t.

There is one more slightly technical point to make. Notice that y = 0 is an equilibrium solution
to this differential equation. In solving the equation above, we begin by dividing both sides by
y, which is not allowed if y = 0. To be perfectly careful, therefore, we will typically consider the
equilibrium solutions separably. In this case, nootice that the final form of our solution captures
the equilibrium solution by allowing C = 0.

Activity 7.8.

Suppose that the population of a town is increases by 3% every year.

(a) Let P (t) be the population of the town in year t. Write a differential equation that
describes the annual growth rate.

(b) Find the solutions of this differential equation.

(c) If you know that the town’s population in year 0 is 10,000, find the population P (t).

(d) How long does it take for the population to double? This time is called the doubling
time.

(e) Working more generally, find the doubling time if the annual growth rate is k times the
population.

C

Activity 7.9.

Suppose that a cup of coffee is initially at a temperature of 105◦ and is placed in a 75◦ room.
Newton’s law of cooling says that

dT

dt
= −k(T − 75),

where k is a constant of proportionality.

(a) Suppose you measure that the coffee is cooling at one degree per minute at the time the
coffee is brought into the room. Use the differential equation to determine the value of
the constant k.

(b) Find all the solutions of this differential equation.

(c) What happens to all the solutions as t → ∞? Explain how this agrees with your intu-
ition.
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(d) What is the temperature of the cup of coffee after 20 minutes?

(e) How long does it take for the coffee to cool to 80◦?

C

Activity 7.10.

Solve each of the following differential equations or initial value problems.

(a)
dy

dt
− (2− t)y = 2− t

(b)
1

t

dy

dt
= et

2−2y

(c) y′ = 2y + 2, y(0) = 2

(d) y′ = 2y2, y(−1) = 2

(e)
dy

dt
=
−2ty

t2 + 1
, y(0) = 4

C

Summary

In this section, we encountered the following important ideas:

• A separable differential equation is one that may be rewritten with all occurrences of the de-
pendent variable multiplying the derivative and all occurrences of the independent variable on
the other side of the equation.

• We may find the solutions to certain separable differential equations by separating variables,
integrating with respect to t, and ultimately solving the resulting algebraic equation for y.

• This technique allows us to solve many important differential equations that arise in the world
around us. For instance, questions of growth and decay and Newton’s Law of Cooling give rise
to separable differential equations. Later, we will learn in Section 7.6 that the important logistic
differential equation is also separable.

Exercises

1. The mass of a radioactive sample decays at a rate that is proportional to its mass.

(a) Express this fact as a differential equation for the mass M(t) using k for the constant of
proportionality.

(b) If the initial mass is M0, find an expression for the mass M(t).

(c) The half-life of the sample is the amount of time required for half of the mass to decay.
Knowing that the half-life of Carbon-14 is 5730 years, find the value of k for a sample of
Carbon-14.
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(d) How long does it take for a sample of Carbon-14 to be reduced to one-quarter its original
mass?

(e) Carbon-14 naturally occurs in our environment; any living organism takes in Carbon-
14 when it eats and breathes. Upon dying, however, the organism no longer takes in
Carbon-14.
Suppose that you find remnants of a pre-historic firepit. By analyzing the charred wood
in the pit, you determine that the amount of Carbon-14 is only 30% of the amount in
living trees. Estimate the age of the firepit.5

2. Consider the initial value problem

dy

dt
= − t

y
, y(0) = 8

(a) Find the solution of the initial value problem and sketch its graph.

(b) For what values of t is the solution defined?

(c) What is the value of y at the last time that the solution is defined?

(d) By looking at the differential equation, explain why we should not expect to find solu-
tions with the value of y you noted in (c).

3. Suppose that a cylindrical water tank with a hole in the bottom is filled with water. The water,
of course, will leak out and the height of the water will decrease. Let h(t) denote the height of
the water. A physical principle called Torricelli’s Law implies that the height decreases at a rate
proportional to the square root of the height.

(a) Express this fact using k as the constant of proportionality.

(b) Suppose you have two tanks, one with k = 1 and another with k = 10. What physical
differences would you expect to find?

(c) Suppose you have a tank for which the height decreases at 20 inches per minute when
the water is filled to a depth of 100 inches. Find the value of k.

(d) Solve the initial value problem for the tank in part (c).

(e) Find h(t), the height of the water in the tank and sketch a graph of it.

(f) How long does it take for the water to run out of the tank?

(g) Is the solution that you found valid for all time t? If so, explain how you know this. If
not, explain why not.

5This approach is the basic idea behind radiocarbon dating.
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4. The Gompertz equation is a model that is used to describe the growth of certain populations.
Suppose that P (t) is the population of some organism and that

dP

dt
= −P ln

(
P

3

)
= −P (lnP − ln 3).

(a) Sketch a slope field for P (t) over the range 0 ≤ P ≤ 6.

(b) Identify any equilibrium solutions and determine whether they are stable or unstable.

(c) Find the population P (t) assuming that P (0) = 1 and sketch its graph. What happens
to P (t) after a very long time?

(d) Find the population P (t) assuming that P (0) = 6 and sketch its graph. What happens
to P (t) after a very long time?

(e) Verify that the long-term behavior of your solutions agrees with what you predicted by
looking at the slope field.
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7.5 Modeling with differential equations

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How can we use differential equations to describe phenomena in the world around us?

• How can we use differential equations to better understand these phenomena?

Introduction

In our work to date, we have seen several ways that differential equations arise in the natural
world, from the growth of a population to the temperature of a cup of coffee. In this section,
we will look more closely at how differential equations give us a natural way to describe various
phenoma. As we’ll see, the key is to focus on understanding the different factors that cause a
quantity to change.

Preview Activity 7.5. Any time that the rate of change of a quantity is related to the amount of a
quantity, a differential equation naturally arises. In the following two problems, we see two such
scenarios; for each, we want to develop a differential equation whose solution is the quantity of
interest.

(a) Suppose you have a bank account in which money grows at an annual rate of 3%.

(i) If you have $10,000 in the account, at what rate is your money growing?

(ii) Suppose that you are also withdrawing money from the account at $1,000 per year.
What is the rate of change in the amount of money in the account? What are the units
on this rate of change?

(b) Suppose that a water tank holds 100 gallons and that a salty solution, which contains 20
grams of salt in every gallon, enters the tank at 2 gallons per minute.

(i) How much salt enters the tank each minute?

(ii) Suppose that initially there are 300 grams of salt in the tank. How much salt is in each
gallon at this point in time?

(iii) Finally, suppose that evenly mixed solution is pumped out of the tank at the rate of 2
gallons per minute. How much salt leaves the tank each minute?

(iv) What is the total rate of change in the amount of salt in the tank?

./
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Developing a differential equation

Preview activity 7.5 demonstrates the kind of thinking we will be doing in this section. In each
of the two examples we considered, there is a quantity, such as the amount of money in the bank
account or the amount of salt in the tank, that is changing due to several factors. The governing
differential equation results from the total rate of change being the difference between the rate of
increase and the rate of decrease.

Example 7.3. In the Great Lakes region, rivers flowing into the lakes carry a great deal of pollution
in the form of small pieces of plastic averaging 1 millimeter in diameter. In order to understand
how the amount of plastic in Lake Michigan is changing, construct a model for how this type
pollution has built up in the lake.

Solution.

First, some basic facts about Lake Michigan.

• The volume of the lake is 5 · 1012 cubic meters.

• Water flows into the lake at a rate of 5 · 1010 cubic meters per year. It flows out of the lake at
the same rate.

• Each cubic meter flowing into the lake contains roughly 3 · 10−8 cubic meters of plastic pol-
lution.

Let’s denote the amount of pollution in the lake by P (t), where P is measured in cubic meters
of plastic and t in years. Our goal is to describe the rate of change of this function; in other words,
we want to develop a differential equation describing P (t).

First, we will measure how P (t) increases due to pollution flowing into the lake. We know that
5 · 1010 cubic meters of water enters the lake every year and each cubic meter of water contains
3 · 10−8 cubic meters of pollution. Therefore, pollution enters the lake at the rate of

(
5 · 1010m

3 water
year

)
·
(

3 · 10−8m
3 plastic

m3 water

)
= 1.5 · 103 cubic meters of plastic per year.

Second, we will measure how P (t) decreases due to pollution flowing out of the lake. If the
total amount of pollution is P cubic meters and the volume of Lake Michigan is 5 · 1012 cubic
meters, then the concentration of plastic pollution in Lake Michigan is

P

5 · 1012
cubic meters of plastic per cubic meter of water.
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Since 5 · 1010 cubic meters of water flow out each year6, then the plastic pollution leaves the lake
at the rate of

(
P

5 · 1012

m3 plastic
m3 water

)
·
(

5 · 1010m
3 water
year

)
=

P

100
cubic meters of plastic per year.

The total rate of change of P is thus the difference between the rate at which pollution enters
the lake minus the rate at which pollution leaves the lake; that is,

dP

dt
= 1.5 · 103 − P

100

=
1

100
(1.5 · 105 − P ).

We have now found a differential equation that describes the rate at which the amount of
pollution is changing. To better understand the behavior of P (t), we now apply some of the
techniques we have recently developed.

Since this is an autonomous differential equation, we can sketch dP/dt as a function of P and
then construct a slope field, as shown in Figure 7.2.

P

dP/dt

1.5 · 105

t

P

Figure 7.2: Plots of dPdt vs. P and the slope field for the differential equation dP
dt = 1

100 (1.5 · 105 − P ).

These plots both show that P = 1.5 · 105 is a stable equilibrium. Therefore, we should expect
that the amount of pollution in Lake Michigan will stabilize near 1.5·105 cubic meters of pollution.

Next, assuming that there is initially no pollution in the lake, we will solve the initial value
problem

dP

dt
=

1

100
(1.5 · 105 − P ), P (0) = 0.

Separating variables, we find that

1

1.5 · 105 − P
dP

dt
=

1

100
.

6and we assume that each cubic meter of water that flows out carries with it the plastic pollution it contains
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Integrating with respect to t, we have
∫

1

1.5 · 105 − P
dP

dt
dt =

∫
1

100
dt,

and thus changing variables on the left and antidifferentiating on both sides, we find that
∫

dP

1.5 · 105 − P =

∫
1

100
dt

− ln |1.5 · 105 − P | =
1

100
t+ C

Finally, multiplying both sides by −1 and using the definition of the logarithm, we find that

1.5 · 105 − P = Ce−t/100. (7.1)

This is a good time to determine the constant C. Since P = 0 when t = 0, we have

1.5 · 105 − 0 = Ce0 = C.

In other words, C = 1.5 · 105.

Using this value of C in Equation (7.1) and solving for P , we arrive at the solution

P (t) = 1.5 · 105(1− e−t/100).

Superimposing the graph of P on the slope field we saw in Figure 7.2, we see, as shown in Fig-
ure 7.3 We see that, as expected, the amount of plastic pollution stabilizes around 1.5 · 105 cubic

t

P

Figure 7.3: The solution P (t) and the slope field for the differential equation dP
dt = 1

100 (1.5 · 105 − P ).

meters.
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There are many important lessons to learn from Example 7.3. Foremost is how we can develop
a differential equation by thinking about the “total rate = rate in - rate out” model. In addition,
we note how we can bring together all of our available understanding (plotting dP

dt vs. P , creating
a slope field, solving the differential equation) to see how the differential equation describes the
behavior of a changing quantity.

Of course, we can also explore what happens when certain aspects of the problem change.
For instance, let’s suppose we are at a time when the plastic pollution entering Lake Michigan
has stabilized at 1.5 · 105 cubic meters, and that new legislation is passed to prevent this type of
pollution entering the lake. So, there is no longer any inflow of plastic pollution to the lake. How
does the amount of plastic pollution in Lake Michigan now change?

Restarting the problem at time t = 0, we now have the modified initial value problem

dP

dt
= − 1

100
P, P (0) = 1.5 · 105.

It is a straightforward and familiar exercise to find that the solution to this equation is P (t) =
1.5 · 105e−t/100. The time that it takes for half of the pollution to flow out of the lake is given by T
where P (T ) = 0.75 · 105. Thus, we must solve the equation

0.75 · 105 = 1.5 · 105e−T/100,

or
1

2
= e−T/100.

It follows that

T = −100 ln

(
1

2

)
≈ 69.3 years.

In the activities that follow, we explore some other natural settings in which differential equa-
tion model changing quantities.

Activity 7.11.

Suppose you have a bank account that grows by 5% every year.

(a) Let A(t) be the amount of money in the account in year t. What is the rate of change of
A?

(b) Suppose that you are also withdrawing $10,000 per year. Write a differential equation
that expresses the total rate of change of A.

(c) Sketch a slope field for this differential equation, find any equilibrium solutions, and
identify them as either stable or unstable. Write a sentence or two that describes the
significance of the stability of the equilibrium solution.

(d) Suppose that you initially deposit $100,000 into the account. How long does it take for
you to deplete the account?
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(e) What is the smallest amount of money you would need to have in the account to guar-
antee that you never deplete the money in the account?

(f) If your initial deposit is $300,000, how much could you withdraw every year without
depleting the account?

C

Activity 7.12.

A dose of morphine is absorbed from the bloodstream of a patient at a rate proportional to the
amount in the bloodstream.

(a) Write a differential equation for M(t), the amount of morphine in the patient’s blood-
stream, using k as the constant proportionality.

(b) Assuming that the initial dose of morphine isM0, solve the initial value problem to find
M(t). Use the fact that the half-life for the absorption of morphine is two hours to find
the constant k.

(c) Suppose that a patient is given morphine intraveneously at the rate of 3 milligrams per
hour. Write a differential equation that combines the intraveneous administration of
morphine with the body’s natural absorption.

(d) Find any equilibrium solutions and determine their stability.

(e) Assuming that there is initially no morphine in the patient’s bloodstream, solve the
initial value problem to determine M(t).

(f) What happens to M(t) after a very long time?

(g) Suppose that a doctor asks you to reduce the intraveneous rate so that there is even-
tually 7 milligrams of morphine in the patient’s bloodstream. To what rate would you
reduce the intraveneous flow?

C

Summary

In this section, we encountered the following important ideas:

• Differential equations arise in a situation when we understand how various factors cause a
quantity to change.

• We may use the tools we have developed so far—slope fields, Euler’s methods, and our method
for solving separable equations—to understand a quantity described by a differential equation.

Exercises

1. Congratulations, you just won the lottery! In one option presented to you, you will be paid one
million dollars a year for the next 25 years. You can deposit this money in an account that will
earn 5% each year.
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(a) Set up a differential equation that describes the rate of change in the amount of money
in the account. Two factors cause the amount to grow—first, you are depositing one
millon dollars per year and second, you are earning 5% interest.

(b) If there is no amount of money in the account when you open it, how much money will
you have in the account after 25 years?

(c) The second option presented to you is to take a lump sum of 10 million dollars, which
you will deposit into a similar account. How much money will you have in that account
after 25 years?

(d) Do you prefer the first or second option? Explain your thinking.

(e) At what time does the amount of money in the account under the first option overtake
the amount of money in the account under the second option?

2. When a skydiver jumps from a plane, gravity causes her downward velocity to increase at
the rate of g ≈ 9.8 meters per second squared. At the same time, wind resistance causes her
velocity to decrease at a rate proportional to the velocity.

(a) Using k to represent the constant of proportionality, write a differential equation that
describes the rate of change of the skydiver’s velocity.

(b) Find any equilibrium solutions and decide whether they are stable or unstable. Your
result should depend on k.

(c) Suppose that the initial velocity is zero. Find the velocity v(t).

(d) A typical terminal velocity for a skydiver falling face down is 54 meters per second.
What is the value of k for this skydiver?

(e) How long does it take to reach 50% of the terminal velocity?

3. During the first few years of life, the rate at which a baby gains rate is proportional to the
reciprocal of its weight.

(a) Express this fact as a differential equation.

(b) Suppose that a baby weighs 8 pounds at birth and 9 pounds one month later. How
much will he weigh at one year?

(c) Do you think this is a realistic model for a long time?

4. Suppose that you have a water tank that holds 100 gallons of water. A briny solution, which
contains 20 grams of salt per gallon, enters the tank at the rate of 3 gallons per minute.

At the same time, the solution is well mixed, and water is pumped out of the tank at the rate of
3 gallons per minute.

(a) Since 3 gallons enters the tank every minute and 3 gallons leaves every minute, what
can you conclude about the volume of water in the tank.
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(b) How many grams of salt enters the tank every minute?

(c) Suppose that S(t) denotes the number of grams of salt in the tank in minute t. How
many grams are there in each gallon in minute t?

(d) Since water leaves the tank at 3 gallons per minute, how many grams of salt leave the
tank each minute?

(e) Write a differential equation that expresses the total rate of change of S.

(f) Identify any equilibrium solutions and determine whether they are stable or unstable.

(g) Suppose that there is initially no salt in the tank. Find the amount of salt S(t) in minute
t.

(h) What happens to S(t) after a very long time? Explain how you could have predicted
this only knowing how much salt there is in each gallon of the briny solution that enters
the tank.
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7.6 Population Growth and the Logistic Equation

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How can we use differential equations to realistically model the growth of a population?

• How can we assess the accuracy of our models?

Introduction

The growth of the earth’s population is one of the pressing issues of our time. Will the population
continue to grow? Or will it perhaps level off at some point, and if so, when? In this section, we
will look at two ways in which we may use differential equations to help us address questions
such as these.

Before we begin, let’s consider again two important differential equations that we have seen
in earlier work this chapter.

Preview Activity 7.6. Recall that one model for population growth states that a population grows
at a rate proportional to its size.

(a) We begin with the differential equation

dP

dt
=

1

2
P.

Sketch a slope field below as well as a few typical solutions on the axes provided.

2 4

1

2

3

4

t

P

(b) Find all equilibrium solutions of the equation dP
dt = 1

2P and classify them as stable or
unstable.
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(c) If P (0) is positive, describe the long-term behavior of the solution to dP
dt = 1

2P .

(d) Let’s now consider a modified differential equation given by

dP

dt
=

1

2
P (3− P ).

As before, sketch a slope field as well as a few typical solutions on the following axes
provided.

2 4

1

2

3

4

t

P

(e) Find any equilibrium solutions and classify them as stable or unstable.

(f) If P (0) is positive, describe the long-term behavior of the solution.

./

The earth’s population

We will now begin studying the earth’s population. To get started, here are some data for the
earth’s population in recent years that we will use in our investigations.

Year Population (in billions)
1998 5.932
1999 6.008
2000 6.084
2001 6.159
2002 6.234
2005 6.456
2006 6.531
2007 6.606
2008 6.681
2009 6.756
2010 6.831



7.6. POPULATION GROWTH AND THE LOGISTIC EQUATION 419

Activity 7.13.

Our first model will be based on the following assumption:

The rate of change of the population is proportional to the population.

On the face of it, this seems pretty reasonable. When there is a relatively small number of
people, there will be fewer births and deaths so the rate of change will be small. When there
is a larger number of people, there will be more births and deaths so we expect a larger rate of
change.

If P (t) is the population t years after the year 2000, we may express this assumption as

dP

dt
= kP

where k is a constant of proportionality.

(a) Use the data in the table to estimate the derivative P ′(0) using a central difference.
Assume that t = 0 corresponds to the year 2000.

(b) What is the population P (0)?

(c) Use these two facts to estimate the constant of proportionality k in the differential equa-
tion.

(d) Now that we know the value of k, we have the initial value problem

dP

dt
= kP, P (0) = 6.084.

Find the solution to this initial value problem.

(e) What does your solution predict for the population in the year 2010? Is this close to the
actual population given in the table?

(f) When does your solution predict that the population will reach 12 billion?

(g) What does your solution predict for the population in the year 2500?

(h) Do you think this is a reasonable model for the earth’s population? Why or why not?
Explain your thinking using a couple of complete sentences.

C

Our work in Activity 7.13 shows that that the exponential model is fairly accurate for years
relatively close to 2000. However, if we go too far into the future, the model predicts increasingly
large rates of change, which causes the population to grow arbitrarily large. This does not make
much sense since it is unrealistic to expect that the earth would be able to support such a large
population.
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The constant k in the differential equation has an important interpretation. Let’s rewrite the
differential equation dP

dt = kP by solving for k, so that we have

k =
dP/dt

P
.

Viewed in this light, k is the ratio of the rate of change to the population; in other words, it is the
contribution to the rate of change from a single person. We call this the per capita growth rate.

In the exponential model we introduced in Activity 7.13, the per capita growth rate is constant.
In particular, we are assuming that when the population is large, the per capita growth rate is the
same as when the population is small. It is natural to think that the per capita growth rate should
decrease when the population becomes large, since there will not be enough resources to support
so many people. In other words, we expect that a more realistic model would hold if we assume
that the per capita growth rate depends on the population P .

In the previous activity, we computed the per capita growth rate in a single year by computing
k, the quotient of dPdt and P (which we did for t = 0). If we return data and compute the per capita
growth rate over a range of years, we generate the data shown in Figure 7.4, which shows how the
per capita growth rate is a function of the population, P . From the data, we see that the per capita

6.0 6.2 6.4 6.6 6.8 7.0
0.010

0.011

0.012

0.013

0.014

0.015
per capita growth rate

Figure 7.4: A plot of per capita growth rate vs. population P .

growth rate appears to decrease as the population increases. In fact, the points seem to lie very
close to a line, which is shown at two different scales in Figure 7.5. Looking at this line carefully,
we can find its equation to be

dP/dt

P
= 0.025− 0.002P.

If we multiply both sides by P , we arrive at the differential equation

dP

dt
= P (0.025− 0.002P ).

Graphing the dependence of dP/dt on the population P , we see that this differential equation
demonstrates a quadratic relationship between dP

dt and P , as shown in Figure 7.6. The equation
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6.0 6.2 6.4 6.6 6.8 7.0
0.010

0.011

0.012

0.013
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0.015
per capita growth rate

2 4 6 8 10 12 14 16 18 20

-0.01
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0.03

P

per capita growth rate

Figure 7.5: The line that approximates per capita growth as a function of population, P .

2 4 6 8 10 12 14 16 18 20

-0.10

-0.05

0.05

0.10

P

dP
dt

Figure 7.6: A plot of dPdt vs. P for the differential equation dP
dt = P (0.025− 0.002P ).

dP
dt = P (0.025− 0.002P ) is an example of the logistic equation, and is the second model for popula-

tion growth that we will consider. We have reason to believe that it will be more realistic since the
per capita growth rate is a decreasing function of the population.

Indeed, the graph in Figure 7.6 shows that there are two equilibrium solutions, P = 0, which
is unstable, and P = 12.5, which is a stable equilibrium. The graph shows that any solution with
P (0) > 0 will eventually stabilize around 12.5. In other words, our model predicts the the world’s
population will eventually stabilize around 12.5 billion.

A prediction for the long-term behavior of the population is a valuable conclusion to draw
from our differential equation. We would, however, like to answer some quantitative questions.
For instance, how long will it take to reach a population of 10 billion? To determine this, we need
to find an explicit solution of the equation.
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Solving the logistic differential equation

Since we would like to apply the logistic model in more general situations, we state the logistic
equation in its more general form,

dP

dt
= kP (N − P ). (7.2)

The equilibrium solutions here are when P = 0 and 1 − P
N = 0, which shows that P = N . The

equilibrium at P = N is called the carrying capacity of the population for it represents the stable
population that can be sustained by the environment.

We now solve the logistic equation (7.2). The equation is separable, so we separate the variables

1

P (N − P )

dP

dt
= k,

and integrate to find that ∫
1

P (N − P )
dP =

∫
k dt.

To find the antiderivative on the left, we use the partial fraction decomposition

1

P (N − P )
=

1

N

[
1

P
+

1

N − P

]
.

Now we are ready to integrate, with
∫

1

N

[
1

P
+

1

N − P

]
dP =

∫
k dt.

On the left, observe that N is constant, so we can remove the factor of 1
N and antidifferentiate to

find that
1

N
(ln |P | − ln |N − P |) = kt+ C.

Multiplying both sides of this last equation by N and using an important rule of logarithms, we
next find that

ln

∣∣∣∣
P

N − P

∣∣∣∣ = kNt+ C.

From the definition of the logarithm, replacing eC with C, and letting C absorb the absolute value
signs, we now know that

P

N − P = CekNt.

At this point, all that remains is to determine C and solve algebraically for P .

If the initial population is P (0) = P0, then it follows that C = P0
N−P0

, so

P

N − P =
P0

N − P0
ekNt.
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We will solve this most recent equation for P by multiplying both sides by (N − P )(N − P0) to
obtain

P (N − P0) = P0(N − P )ekNt

= P0Ne
kNt − P0Pe

kNt.

Swapping the left and right sides, expanding, and factoring, it follows that

P0Ne
kNt = P (N − P0) + P0Pe

kNt

= P (N − P0 + P0e
kNt).

Dividing to solve for P , we see that

P =
P0Ne

kNt

N − P0 + P0ekNt
.

Finally, we choose to multiply the numerator and denominator by 1
P0
e−kNt to obtain

P (t) =
N(

N−P0
P0

)
e−kNt + 1

.

While that was a lot of algebra, notice the result: we have found an explicit solution to the
initial value problem

dP

dt
= kP (N − P ), P (0) = P0,

and that solution is
P (t) =

N(
N−P0
P0

)
e−kNt + 1

. (7.3)

For the logistic equation describing the earth’s population that we worked with earlier in this
section, we have

k = 0.002, N = 12.5, and P0 = 6.084.

This gives the solution

P (t) =
12.5

1.0546e−0.025t + 1
,

whose graph is shown in Figure 7.7 Notice that the graph shows the population leveling off at 12.5
billion, as we expected, and that the population will be around 10 billion in the year 2050. These
results, which we have found using a relatively simple mathematical model, agree fairly well with
predictions made using a much more sophisticated model developed by the United Nations.

The logistic equation is useful in other situations, too, as it is good for modeling any situation
in which limited growth is possible. For instance, it could model the spread of a flu virus through
a population contained on a cruise ship, the rate at which a rumor spreads within a small town, or
the behavior of an animal population on an island. Again, it is important to realize that through
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Figure 7.7: The solution to the logistic equation modeling the earth’s population.

our work in this section, we have completely solved the logistic equation, regardless of the values
of the constantsN , k, and P0. Anytime we encounter a logistic equation, we can apply the formula
we found in Equation (7.3).

Activity 7.14.

Consider the logistic equation
dP

dt
= kP (N − P )

with the graph of dPdt vs. P shown below.

P

dP
dt

N

N/2

(a) At what value of P is the rate of change greatest?

(b) Consider the model for the earth’s population that we created. At what value of P is
the rate of change greatest? How does that compare to the population in recent years?

(c) According to the model we developed, what will the population be in the year 2100?

(d) According to the model we developed, when will the population reach 9 billion?
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(e) Now consider the general solution to the general logistic initial value problem that we
found, given by

P (t) =
N(

N−P0
P0

)
e−kNt + 1

.

Verify algebraically that P (0) = P0 and that limt→∞ P (t) = N .

C

Summary

In this section, we encountered the following important ideas:

• If we assume that the rate of growth of a population is proportional to the population, we are
led to a model in which the population grows without bound and at a rate that grows without
bound.

• By assuming that the per capita growth rate decreases as the population grows, we are led to
the logistic model of population growth, which predicts that the population will eventually
stabilize at the carrying capacity.

Exercises

1. The logistic equation may be used to model how a rumor spreads through a group of people.
Suppose that p(t) is the fraction of people that have heard the rumor on day t. The equation

dp

dt
= 0.2p(1− p)

describes how p changes. Suppose initially that one-tenth of the people have heard the rumor;
that is, p(0) = 0.1.

(a) What happens to p(t) after a very long time?

(b) Determine a formula for the function p(t).

(c) At what time is p changing most rapidly?

(d) How long does it take before 80% of the people have heard the rumor?

2. Suppose that b(t) measures the number of bacteria living in a colony in a Petri dish, where b is
measured in thousands and t is measured in days. One day, you measure that there are 6,000
bacteria and the per capita growth rate is 3. A few days later, you measure that there are 9,000
bacteria and the per capita growth rate is 2.

(a) Assume that the per capita growth rate db/dt
b is a linear function of b. Use the measure-

ments to find this function and write a logistic equation to describe db
dt .

(b) What is the carrying capacity for the bacteria?
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(c) At what population is the number of bacteria increasing most rapidly?

(d) If there are initially 1,000 bacteria, how long will it take to reach 80% of the carrying
capacity?

3. Suppose that the population of a species of fish is controlled by the logistic equation

dP

dt
= 0.1P (10− P ),

where P is measured in thousands of fish and t is measured in years.

(a) What is the carrying capacity of this population?

(b) Suppose that a long time has passed and that the fish population is stable at the carrying
capacity. At this time, humans begin harvesting 20% of the fish every year. Modify the
differential equation by adding a term to incorporate the harvesting of fish.

(c) What is the new carrying capacity?

(d) What will the fish population be one year after the harvesting begins?

(e) How long will it take for the population to be within 10% of the carrying capacity?



Chapter 8

Sequences and Series

8.1 Sequences

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is a sequence?

• What does it mean for a sequence to converge?

• What does it mean for a sequence to diverge?

Introduction

We encounter sequences every day. Your monthly rent payments, the annual interest you earn
on investments, a list of your car’s miles per gallon every time you fill up; all are examples of
sequences. Other sequences with which you may be familiar include the Fibonacci sequence

1, 1, 2, 3, 5, 8, . . .

in which each entry is the sum of the two preceding entries and the triangular numbers

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, . . .

which are numbers that correspond to the number of vertices seen in the triangles in Figure 8.1.
Sequences of integers are of such interest to mathematicians and others that they have a journal1

devoted to them and an on-line encyclopedia2 that catalogs a huge number of integer sequences
and their connections. Sequences are also used in digital recordings and digital images.

1The Journal of Integer Sequences at http://www.cs.uwaterloo.ca/journals/JIS/
2The On-Line Encyclopedia of Integer Sequences at http://oeis.org/

427
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Figure 8.1: Triangular numbers

To this point, most of our studies in calculus have dealt with continuous information (e.g., con-
tinuous functions). The major difference we will see now is that sequences model discrete instead
of continuous information. We will study ways to represent and work with discrete information
in this chapter as we investigate sequences and series, and ultimately see key connections between
the discrete and continuous.

Preview Activity 8.1. Suppose you receive $5000 through an inheritance. You decide to invest this
money into a fund that pays 8% annually, compounded monthly. That means that each month
your investment earns 0.08

12 · P additional dollars, where P is your principal balance at the start of
the month. So in the first month your investment earns

5000

(
0.08

12

)

or $33.33. If you reinvest this money, you will then have $5033.33 in your account at the end of the
first month. From this point on, assume that you reinvest all of the interest you earn.

(a) How much interest will you earn in the second month? How much money will you have
in your account at the end of the second month?

(b) Complete Table 8.1 to determine the interest earned and total amount of money in this
investment each month for one year.

(c) As we will see later, the amount of money Pn in the account after month n is given by

Pn = 5000

(
1 +

0.08

12

)n
.

Use this formula to check your calculations in Table 8.1. Then find the amount of money
in the account after 5 years.

(d) How many years will it be before the account has doubled in value to $10000?

./
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Month Interest earned Total amount of money in the account

0 $0 $5000.00

1 $33.33 $5033.33

2

3

4

5

6

7

8

9

10

11

12

Table 8.1: Interest

Sequences

As our discussion in the introduction and Preview Activity 8.1 illustrate, many discrete phenom-
ena can be represented as lists of numbers (like the amount of money in an account over a period
of months). We call these any such list a sequence. In other words, a sequence is nothing more than
list of terms in some order. To be able to refer to a sequence in a general sense, we often list the
entries of the sequence with subscripts,

s1, s2, . . . , sn . . . ,

where the subscript denotes the position of the entry in the sequence. More formally,

Definition 8.1. A sequence is a list of terms s1, s2, s3, . . . in a specified order.

As an alternative to Definition 8.1, we can also consider a sequence to be a function f whose
domain is the set of positive integers. In this context, the sequence s1, s2, s3, . . . would correspond
to the function f satisfying f(n) = sn for each positive integer n. This alternative view will be be
useful in many situations.

We will often write the sequence
s1, s2, s3, . . .
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using the shorthand notation {sn}. The value sn (alternatively s(n)) is called the nth term in the
sequence. If the terms are all 0 after some fixed value of n, we say the sequence is finite. Otherwise
the sequence is infinite. We will work with both finite and infinite sequences, but focus more on
the infinite sequences. With infinite sequences, we are often interested in their end behavior and
the idea of convergent sequences.

Activity 8.1.
(a) Let sn be the nth term in the sequence 1, 2, 3, . . ..

Find a formula for sn and use appropriate technological tools to draw a graph of entries
in this sequence by plotting points of the form (n, sn) for some values of n. Monst
graphing calculators can plot sequences; directions follow for the TI-84.
• In the MODE menu, highlight SEQ in the FUNC line and press ENTER.
• In the Y= menu, you will now see lines to enter sequences. Enter a value for nMin

(where the sequence starts), a function for u(n) (the nth term in the sequence), and
the value of unMin.
• Set your window coordinates (this involves choosing limits for n as well as the

window coordinates XMin, XMax, YMin, and YMax.
• The GRAPH key will draw a plot of your sequence.

Using your knowledge of limits of continuous functions as x → ∞, decide if this se-
quence {sn} has a limit as n→∞. Explain your reasoning.

(b) Let sn be the nth term in the sequence 1, 1
2 ,

1
3 , . . .. Find a formula for sn. Draw a graph of

some points in this sequence. Using your knowledge of limits of continuous functions
as x→∞, decide if this sequence {sn} has a limit as n→∞. Explain your reasoning.

(c) Let sn be the nth term in the sequence 2, 3
2 ,

4
3 ,

5
4 , . . .. Find a formula for sn. Using your

knowledge of limits of continuous functions as x→∞, decide if this sequence {sn} has
a limit as n→∞. Explain your reasoning.

C

Next we formalize the ideas from Activity 8.1.

Activity 8.2.
(a) Recall our earlier work with limits involving infinity in Section 2.8. State clearly what it

means for a continuous function f to have a limit L as x→∞.

(b) Given that an infinite sequence of real numbers is a function from the integers to the
real numbers, apply the idea from part (a) to explain what you think it means for a
sequence {sn} to have a limit as n→∞.

(c) Based on your response to (b), decide if the sequence
{

1+n
2+n

}
has a limit as n → ∞. If

so, what is the limit? If not, why not?

C

In Activities 8.1 and 8.2 we investigated the notion of a sequence {sn} having a limit as n goes
to infinity. If a sequence {sn} has a limit as n goes to infinity, we say that the sequence converges
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or is a convergent sequence. If the limit of a convergent sequence is the number L, we use the same
notation as we did for continuous functions and write

lim
n→∞

sn = L.

If a sequence {sn} does not converge then we say that the sequence {sn} diverges. Convergence of
sequences is a major idea in this section and we describe it more formally as follows.

A sequence {sn} of real numbers converges to a number L if we can make all value of sk for
k ≥ n as close to L as we want by choosing n to be sufficiently large.

Remember, the idea of sequence having a limit as n→∞ is the same as the idea of a continuous
function having a limit as x → ∞. The only new wrinkle here is that our sequences are discrete
instead of continuous.

We conclude this section with a few more examples in the following activity.

Activity 8.3.

Use graphical and/or algebraic methods to determine whether each of the following sequences
converges or diverges.

(a)
{

1+2n
3n−2

}

(b)
{

5+3n

10+2n

}

(c)
{

10n

n!

}
(where ! is the factorial symbol and n! = n(n− 1)(n− 2) · · · (2)(1) for any positive

integer n (as convention we define 0! to be 1)).

C

Summary

In this section, we encountered the following important ideas:

• A sequence is a list of objects in a specified order. We will typically work with sequences of real
numbers and can also think of a sequence as a function from the positive integers to the set of
real numbers.

• A sequence {sn} of real numbers converges to a number L if we can make every value of sk for
k ≥ n as close as we want to L by choosing n sufficiently large.

• A sequence diverges if it does not converge.

Exercises
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1. Finding limits of convergent sequences can be a challenge. However, there is a useful tool we
can adapt from our study of limits of continuous functions at infinity to use to find limits of
sequences. We illustrate in this exercise with the example of the sequence

ln(n)

n
.

(a) Calculate the first 10 terms of this sequence. Based on these calculations, do you think
the sequence converges or diverges? Why?

(b) For this sequence, there is a corresponding continuous function f defined by

f(x) =
ln(x)

x
.

Draw the graph of f(x) on the interval [0, 10] and then plot the entries of the sequence
on the graph. What conclusion do you think we can draw about the sequence

{
ln(n)
n

}

if limx→∞ f(x) = L? Explain.

(c) Note that f(x) has the indeterminate form ∞
∞ as x goes to infinity. What idea from

differential calculus can we use to calculate limx→∞ f(x)? Use this method to find
limx→∞ f(x). What, then, is limn→∞

ln(n)
n ?

2. We return to the example begun in Preview Activity 8.1 to see how to derive the formula for the
amount of money in an account at a given time. We do this in a general setting. Suppose you
invest P dollars (called the principal) in an account paying r% interest compounded monthly.
In the first month you will receive r

12 (here r is in decimal form; e.g., if we have 8% interest, we
write 0.08

12 ) of the principal P in interest, so you earn

P
( r

12

)

dollars in interest. Assume that you reinvest all interest. Then at the end of the first month
your account will contain the original principal P plus the interest, or a total of

P1 = P + P
( r

12

)
= P

(
1 +

r

12

)

dollars.

(a) Given that your principal is now P1 dollars, how much interest will you earn in the
second month? If P2 is the total amount of money in your account at the end of the
second month, explain why

P2 = P1

(
1 +

r

12

)
= P

(
1 +

r

12

)2
.

(b) Find a formula for P3, the total amount of money in the account at the end of the third
month in terms of the original investment P .
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(c) There is a pattern to these calculations. Let Pn the total amount of money in the account
at the end of the third month in terms of the original investment P . Find a formula for
Pn.

3. Sequences have many applications in mathematics and the sciences. In a recent paper3 the
authors write

The incretin hormone glucagon-like peptide-1 (GLP-1) is capable of ameliorating
glucose-dependent insulin secretion in subjects with diabetes. However, its very
short half-life (1.5-5 min) in plasma represents a major limitation for its use in the
clinical setting.

The half-life of GLP-1 is the time it takes for half of the hormone to decay in its medium. For
this exercise, assume the half-life of GLP-1 is 5 minutes. So if A is the amount of GLP-1 in
plasma at some time t, then only A

2 of the hormone will be present after t+ 5 minutes. Suppose
A0 = 100 grams of the hormone are initially present in plasma.

(a) Let A1 be the amount of GLP-1 present after 5 minutes. Find the value of A1.

(b) Let A2 be the amount of GLP-1 present after 10 minutes. Find the value of A2.

(c) Let A3 be the amount of GLP-1 present after 15 minutes. Find the value of A3.

(d) Let A4 be the amount of GLP-1 present after 20 minutes. Find the value of A4.

(e) Let An be the amount of GLP-1 present after 5n minutes. Find a formula for An.

(f) Does the sequence {An} converge or diverge? If the sequence converges, find its limit
and explain why this value makes sense in the context of this problem.

(g) Determine the number of minutes it takes until the amount of GLP-1 in plasma is 1
gram.

4. Continuous data is the basis for analog information, like music stored on old cassette tapes or
vinyl records. A digital signal like on a CD or MP3 file is obtained by sampling an analog signal
at some regular time interval and storing that information. For example, the sampling rate of
a compact disk is 44,100 samples per second. So a digital recording is only an approximation
of the actual analog information. Digital information can be manipulated in many useful ways
that allow for, among other things, noisy signals to be cleaned up and large collections of infor-
mation to be compressed and stored in much smaller space. While we won’t investigate these
techniques in this chapter, this exercise is intended to give an idea of the importance of discrete
(digital) techniques.

Let f be the continuous function defined by f(x) = sin(4x) on the interval [0, 10]. A graph of f
is shown in Figure 8.2. We approximate f by sampling, that is by partitioning the interval [0, 10]
into uniform subintervals and recording the values of f at the endpoints.

3Hui H, Farilla L, Merkel P, Perfetti R. The short half-life of glucagon-like peptide-1 in plasma does not reflect its
long-lasting beneficial effects, Eur J Endocrinol 2002 Jun;146(6):863-9.
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Figure 8.2: The graph of f(x) = sin(4x) on the interval [0, 10]

(a) Ineffective sampling can lead to several problems in reproducing the original signal.
As an example, partition the interval [0, 10] into 8 equal length subintervals and create
a list of points (the sample) using the endpoints of each subinterval. Plot your sample
on graph of f in Figure Figure 8.2. What can you say about the period of your sample
as compared to the period of the original function?

(b) The sampling rate is the number of samples of a signal taken per second. As part (a)
illustrates, sampling at too small a rate can cause serious problems with reproducing
the original signal (this problem of inefficient sampling leading to an inaccurate ap-
proximation is called aliasing). There is an elegant theorem called the Nyquist-Shannon
Sampling Theorem that says that human perception is limited, which allows that re-
placement of a continuous signal with a digital one without any perceived loss of in-
formation. This theorem also provides the lowest rate at which a signal can be sampled
(called the Nyquist rate) without such a loss of information. The theorem states that
we should sample at double the maximum desired frequency so that every cycle of the
original signal will be sampled at at least two points.
Recall that the frequency of a sinusoidal function is the reciprocal of the period. Identify
the frequency of the function f and determine the number of partitions of the interval
[0, 10] that give us the Nyquist rate.

(c) Humans cannot typically pick up signals above 20 kHz. Explain why, then, that infor-
mation on a compact disk is sampled at 44,100 Hz.
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8.2 Geometric Series

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is a geometric series?

• What is a partial sum of a geometric series? What is a simplified form of the nth partial sum
of a geometric series?

• Under what conditions does a geometric series converge? What is the sum of a convergent
geometric series?

Introduction

Many important sequences are generated through the process of addition. In Preview Activity 8.2,
we see a particular example of a special type of sequence that is connected to a sum.

Preview Activity 8.2. Warfarin is an anticoagulant that prevents blood clotting; often it is pre-
scribed to stroke victims in order to help ensure blood flow. The level of warfarin has to reach a
certain concentration in the blood in order to be effective.

Suppose warfarin is taken by a particular patient in a 5 mg dose each day. The drug is absorbed
by the body and some is excreted from the system between doses. Assume that at the end of a 24
hour period, 8% of the drug remains in the body. Let Q(n) be the amount (in mg) of warfarin in
the body before the (n+ 1)st dose of the drug is administered.

(a) Explain why Q(1) = 5× 0.08 mg.

(b) Explain why Q(2) = (5 +Q(1))× 0.08 mg. Then show that

Q(2) = (5× 0.08) (1 + 0.08) mg.

(c) Explain why Q(3) = (5 +Q(2))× 0.08 mg. Then show that

Q(3) = (5× 0.08)
(
1 + 0.08 + 0.082

)
mg.

(d) Explain why Q(4) = (5 +Q(3))× 0.08 mg. Then show that

Q(4) = (5× 0.08)
(
1 + 0.08 + 0.082 + 0.083

)
mg.

(e) There is a pattern that you should see emerging. Use this pattern to find a formula for
Q(n), where n is an arbitrary positive integer.

(f) Complete Table 8.2 with values of Q(n) for the provided n-values (reporting Q(n) to 10
decimal places). What appears to be happening to the sequence Q(n) as n increases?

./
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Q(1) 0.40

Q(2)

Q(3)

Q(4)

Q(5)

Q(6)

Q(7)

Q(8)

Q(9)

Q(10)

Table 8.2: Values of Q(n) for selected values of n

Geometric Sums

In Preview Activity 8.2 we encounter the sum

(5× 0.08)
(
1 + 0.08 + 0.082 + 0.083 + · · ·+ 0.08n−1

)
.

In order to evaluate the long-term level of Warfarin in the patient’s system, we will want to fully
understand the sum in this expression. This sum has the form

a+ ar + ar2 + · · ·+ arn−1 (8.1)

where a = 5×0.08 and r = 0.08. Such a sum is called a geometric sum with ratio r. We will analyze
this sum in more detail in the next activity.

Activity 8.4.

Let a and r be real numbers (with r 6= 0) and let

Sn = a+ ar + ar2 + · · ·+ arn−1.

In this activity we will find a shortcut formula for Sn that does not involve a sum of n terms.

(a) Multiply Sn by r. What does the resulting sum look like?

(b) Subtract rSn from Sn and explain why

Sn − rSn = a− arn. (8.2)

(c) Solve equation (8.2) for Sn to find a simple formula for Sn that does not involve adding
n terms.
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C

We can summarize the result of Activity 8.4 in the following way.

A geometric sum Sn is a sum of the form

Sn = a+ ar + ar2 + · · ·+ arn−1, (8.3)

where a and r are real numbers. The geometric sum Sn can be written more simply as

Sn = a+ ar + ar2 + · · ·+ arn−1 = a
1− rn
1− r . (8.4)

We now apply equation (8.4) to the example involving warfarin from Preview Activity 8.2.
Recall that

Q(n) = (5× 0.08)
(
1 + 0.08 + 0.082 + 0.083 + · · ·+ 0.08n−1

)
mg,

so Q(n) is a geometric sum with a = 5× 0.08 = 0.4 and r = 0.08. Thus,

Q(n) = 0.4

(
1− 0.08n

1− 0.08

)
=

1

2.3
(1− 0.08n) .

Notice that as n goes to infinity, the value of 0.08n goes to 0. So,

lim
n→∞

Q(n) = lim
n→∞

1

2.3
(1− 0.08n) =

1

2.3
≈ 0.435.

Therefore, the long-term level of Warfarin in the blood under these conditions is 1
2.3 , which is

approximately 0.435 mg.

To determine the long-term effect of Warfarin, we considered a geometric sum of n terms, and
then considered what happened as n was allowed to grow without bound. In this sense, we were
actually interested in an infinite geometric sum (the result of letting n go to infinity in the finite
sum). We call such an infinite geometric sum a geometric series.

Definition 8.2. A geometric series is an infinite sum of the form

a+ ar + ar2 + · · · =
∞∑

n=0

arn. (8.5)

The value of r in the geometric series (8.5) is called the common ratio of the series because the
ratio of the (n+ 1)st term arn to the nth term arn−1 is always r.

Geometric series are very common in mathematics and arise naturally in many different sit-
uations. As a familiar example, suppose we want to write the number with repeating decimal
expansion

N = 0.121212
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as a rational number. Observe that

N = 0.12 + 0.0012 + 0.000012 + · · ·

=

(
12

100

)
+

(
12

100

)(
1

100

)
+

(
12

100

)(
1

100

)2

+ · · · ,

which is an infinite geometric series with a = 12
100 and r = 1

100 . In the same way that we were able
to find a shortcut formula for the value of a (finite) geometric sum, we would like to develop a
formula for the value of a (infinite) geometric series. We explore this idea in the following activity.

Activity 8.5.

Let r > 0 and a be real numbers and let

S = a+ ar + ar2 + · · · arn−1 + · · ·

be an infinite geometric series. For each positive integer n, let

Sn = a+ ar + ar2 + · · ·+ arn−1.

Recall that
Sn = a

1− rn
1− r .

(a) What should we allow n to approach in order to have Sn approach S?

(b) What is the value of lim
n→∞

rn for

• |r| > 1?
• |r| < 1?

Explain.

(c) If |r| < 1, use the formula for Sn and your observations in (a) and (b) to explain why S
is finite and find a resulting formula for S.

C

From our work in Activity 8.5, we can now find the value of the geometric series N =
(

12
100

)
+(

12
100

) (
1

100

)
+
(

12
100

) (
1

100

)2
+ · · · . In particular, using a = 12

100 and r = 1
100 , we see that

N =
12

100

(
1

1− 1
100

)
=

12

100

(
100

99

)
=

4

33
.

It is important to notice that a geometric sum is simply the sum of a finite number of terms of
a geometric series. In other words, the geometric sum Sn for the geometric series

∞∑

k=0

ark
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is

Sn = a+ ar + ar2 + · · ·+ arn−1 =

n−1∑

k=0

ark.

We also call this sum Sn the nth partial sum of the geometric series. We summarize our recent work
with geometric series as follows.

• A geometric series is an infinite sum of the form

a+ ar + ar2 + · · · =
∞∑

n=0

arn, (8.6)

where a and r are real numbers such that r 6= 0.

• The nth partial sum Sn of the geometric series is

Sn = a+ ar + ar2 + · · ·+ arn−1.

• If |r| < 1, then using the fact that Sn = a1−rn
1−r , it follows that the sum S of the geometric

series (8.6) is

S = lim
n→∞

Sn = lim
n→∞

a
1− rn
1− r =

a

1− r

Activity 8.6.

The formulas we have derived for the geometric series and its partial sum so far have assumed
we begin indexing our sums at n = 0. If instead we have a sum that does not begin at n = 0,
we can factor out common terms and use our established formulas. This process is illustrated
in the examples in this activity.

(a) Consider the sum

∞∑

k=1

(2)

(
1

3

)k
= (2)

(
1

3

)
+ (2)

(
1

3

)2

+ (2)

(
1

3

)3

+ · · · .

Remove the common factor of (2)
(

1
3

)
from each term and hence find the sum of the

series.

(b) Next let a and r be real numbers with −1 < r < 1. Consider the sum

∞∑

k=3

ark = ar3 + ar4 + ar5 + · · · .

Remove the common factor of ar3 from each term and find the sum of the series.
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(c) Finally, we consider the most general case. Let a and r be real numbers with−1 < r < 1,
let n be a positive integer, and consider the sum

∞∑

k=n

ark = arn + arn+1 + arn+2 + · · · .

Remove the common factor of arn from each term to find the sum of the series.

C

Summary

In this section, we encountered the following important ideas:

• A geometric series is an infinite sum of the form

∞∑

k=0

ark

where a and r are real numbers and r 6= 0.

• For the geometric series
∞∑

k=0

ark, its nth partial sum is

Sn =
n−1∑

k=0

ark.

An alternate formula for the nth partial sum is

Sn = a
1− rn
1− r .

Whenever |r| < 1, the infinite geometric series
∑∞

k=0 ar
k has the finite sum a

1−r .

Exercises

1. There is an old question that is often used to introduce the power of geometric growth. Here is
one version. Suppose you are hired for a one month (30 days, working every day) job and are
given two options to be paid.

Option 1. You can be paid $500 per day or

Option 2. You can be paid 1 cent the first day, 2 cents the second day, 4 cents the third day, 8
cents the fourth day, and so on, doubling the amount you are paid each day.

(a) How much will you be paid for the job in total under Option 1?
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Day Pay on this day Total amount paid to date

1 $0.01 $0.01

2 $0.02 $0.03

3

4

5

6

7

8

9

10

Table 8.3: Option 2 payments

(b) Complete Table 8.3 to determine the pay you will receive under Option 2 for the first 10
days.

(c) Find a formula for the amount paid on day n, as well as for the total amount paid by
day n. Use this formula to determine which option (1 or 2) you should take.

2. Suppose you drop a golf ball onto a hard surface from a height h. The collision with the ground
is causes the ball to lose energy and so it will not bounce back to its original height. The ball
will then fall again to the ground, bounce back up, and continue. Assume that at each bounce
the ball rises back to a height 3

4 of the height from which it dropped. Let hn be the height of the
ball on the nth bounce, with h0 = h. In this exercise we will determine the distance traveled by
the ball and the time it takes to travel that distance.

(a) Determine a formula for h1 in terms of h.

(b) Determine a formula for h2 in terms of h.

(c) Determine a formula for h3 in terms of h.

(d) Determine a formula for hn in terms of h.

(e) Write an infinite series that represents the total distance traveled by the ball. Then
determine the sum of this series.

(f) Next, let’s determine the total amount of time the ball is in the air.

(i) When the ball is dropped from a height H , if we assume the only force acting on it
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is the acceleration due to gravity, then the height of the ball at time t is given by

H − 1

2
gt2.

Use this formula to determine the time it takes for the ball to hit the ground after
being dropped from height H .

(ii) Use your work in the preceding item, along with that in (a)-(e) above to determine
the total amount of time the ball is in the air.

3. Suppose you play a game with a friend that involves rolling a standard six-sided die. Before a
player can participate in the game, he or she must roll a six with the die. Assume that you roll
first and that you and your friend take alternate rolls. In this exercise we will determine the
probability that you roll the first six.

(a) Explain why the probability of rolling a six on any single roll (including your first turn)
is 1

6 .

(b) If you don’t roll a six on your first turn, then in order for you to roll the first six on
your second turn, both you and your friend had to fail to roll a six on your first turns,
and then you had to succeed in rolling a six on your second turn. Explain why the
probability of this event is

(
5

6

)(
5

6

)(
1

6

)
=

(
5

6

)2(1

6

)
.

(c) Now suppose you fail to roll the first six on your second turn. Explain why the proba-
bility is (

5

6

)(
5

6

)(
5

6

)(
5

6

)(
1

6

)
=

(
5

6

)4(1

6

)

that you to roll the first six on your third turn.

(d) The probability of you rolling the first six is the probability that you roll the first six on
your first turn plus the probability that you roll the first six on your second turn plus
the probability that your roll the first six on your third turn, and so on. Explain why
this probability is

1

6
+

(
5

6

)2(1

6

)
+

(
5

6

)4(1

6

)
+ · · · .

Find the sum of this series and determine the probability that you roll the first six.

4. The goal of a federal government stimulus package is to positively affect the economy. Economists
and politicians quote numbers like “kmillion jobs and a net stimulus to the economy of n billion
of dollars.” Where do they get these numbers? Let’s consider one aspect of a stimulus package:
tax cuts. Economists understand that tax cuts or rebates can result in long-term spending that
is many times the amount of the rebate. For example, assume that for a typical person, 75% of
her entire income is spent (that is, put back into the economy). Further, assume the government
provides a tax cut or rebate that totals P dollars for each person.
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(a) The tax cut of P dollars is income for its recipient. How much of this tax cut will be
spent?

(b) In this simple model, we will say that the spent portion of the tax cut/rebate from part
(a) then becomes income for another person who, in turn, spends 75% of this income.
After this “second round” of spent income, how many total dollars have been added to
the economy as a result of the original tax cut/rebate?

(c) This second round of spending becomes income for another group who spend 75% of
this income, and so on. In economics this is called the multiplier effect. Explain why an
original tax cut/rebate of P dollars will result in multiplied spending of

0.75P (1 + 0.75 + 0.752 + · · · ).

dollars.

(d) Based on these assumptions, how much stimulus will a 200 billion dollar tax cut/rebate
to consumers add to the economy, assuming consumer spending remains consistent
forever.

5. Like stimulus packages, home mortgages and foreclosures also impact the economy. A problem
for many borrowers is the adjustable rate mortgage, in which the interest rate can change (and
usually increases) over the duration of the loan, causing the monthly payments to increase
beyond the ability of the borrower to pay. Most financial analysts recommend fixed rate loans,
ones for which the monthly payments remain constant throughout the term of the loan. In this
exercise we will analyze fixed rate loans.

When most people buy a large ticket item like car or a house, they have to take out a loan
to make the purchase. The loan is paid back in monthly installments until the entire amount
of the loan, plus interest, is paid. With a loan, we borrow money, say P dollars (called the
principal), and pay off the loan at an interest rate of r%. To pay back the loan we make regular
monthly payments, some of which goes to pay off the principal and some of which is charged as
interest. In most cases, the interest is computed based on the amount of principal that remains
at the beginning of the month. We assume a fixed rate loan, that is one in which the we make a
constant monthly payment M on our loan, beginning in the original month of the loan.

Suppose you want to buy a house. You have a certain amount of money saved to make a down
payment, and you will borrow the rest to pay for the house. Of course, for the privilege of
loaning you the money, the bank will charge you interest on this loan, so the amount you pay
back to the bank is more than the amount you borrow. In fact, the amount you ultimately pay
depends on three things: the amount you borrow (called the principal), the interest rate, and the
length of time you have to pay off the loan plus interest (called the duration of the loan). For
this example, we assume that the interest rate is fixed at r%.

To pay off the loan, each month you make a payment of the same amount (called installments).
Suppose we borrow P dollars (our principal) and pay off the loan at an interest rate of r% with
regular monthly installment payments of M dollars. So in month 1 of the loan, before we make
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any payments, our principal is P dollars. Our goal in this exercise is to find a formula that
relates these three parameters to the time duration of the loan.

We are charged interest every month at an annual rate of r%, so each month we pay r
12% interest

on the principal that remains. Given that the original principal is P dollars, we will pay
(

0.0r
12

)
P

dollars in interest on our first payment. Since we paid M dollars in total for our first payment,
the remainder of the payment (M −

(
r
12

)
P ) goes to pay down the principal. So the principal

remaining after the first payment (let’s call it P1) is the original principal minus what we paid
on the principal, or

P1 = P −
(
M −

( r
12

)
P
)

=
(

1 +
r

12

)
P −M.

As long as P1 is positive, we still have to keep making payments to pay off the loan.

(a) Recall that the amount of interest we pay each time depends on the principal that re-
mains. How much interest, in terms of P1 and r, do we pay in the second installment?

(b) How much of our second monthly installment goes to pay off the principal? What is
the principal P2, or the balance of the loan, that we still have to pay off after making
the second installment of the loan? Write your response in the form P2 = ( )P1 − ( )M ,
where you fill in the parentheses.

(c) Show that P2 =
(
1 + r

12

)2
P −

[
1 +

(
1 + r

12

)]
M .

(d) Let P3 be the amount of principal that remains after the third installment. Show that

P3 =
(

1 +
r

12

)3
P −

[
1 +

(
1 +

r

12

)
+
(

1 +
r

12

)2
]
M.

(e) If we continue in the manner described in the problems above, then the remaining prin-
cipal of our loan after n installments is

Pn =
(

1 +
r

12

)n
P −

[
n−1∑

k=0

(
1 +

r

12

)k
]
M. (8.7)

This is a rather complicated formula and one that is difficult to use. However, we can
simplify the sum if we recognize part of it as a partial sum of a geometric series. Find a
formula for the sum

n−1∑

k=0

(
1 +

r

12

)k
. (8.8)

and then a general formula for Pn that does not involve a sum.

(f) It is usually more convenient to write our formula for Pn in terms of years rather than
months. Show that P (t), the principal remaining after t years, can be written as

P (t) =

(
P − 12M

r

)(
1 +

r

12

)12t
+

12M

r
. (8.9)
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(g) Now that we have analyzed the general loan situation, we apply formula (8.9) to an
actual loan. Suppose we charge $1,000 on a credit card for holiday expenses. If our
credit card charges 20% interest and we pay only the minimum payment of $25 each
month, how long will it take us to pay off the $1,000 charge? How much in total will
we have paid on this $1,000 charge? How much total interest will we pay on this loan?

(h) Now we consider larger loans, e.g. automobile loans or mortgages, in which we borrow
a specified amount of money over a specified period of time. In this situation, we need
to determine the amount of the monthly payment we need to make to pay off the loan
in the specified amount of time. In this situation, we need to find the monthly payment
M that will take our outstanding principal to 0 in the specified amount of time. To do
so, we want to know the value of M that makes P (t) = 0 in formula (8.9). If we set
P (t) = 0 and solve for M , it follows that

M =
rP
(
1 + r

12

)12t

12
((

1 + r
12

)12t − 1
) .

(i) Suppose we want to borrow $15,000 to buy a car. We take out a 5 year loan at 6.25%.
What will our monthly payments be? How much in total will we have paid for this
$15,000 car? How much total interest will we pay on this loan?

(ii) Suppose you charge your books for winter semester on your credit card. The total
charge comes to $525. If your credit card has an interest rate of 18% and you pay
$20 per month on the card, how long will it take before you pay off this debt? How
much total interest will you pay?

(iii) Say you need to borrow $100,000 to buy a house. You have several options on the
loan:

– 30 years at 6.5%
– 25 years at 7.5%
– 15 years at 8.25%.

(a) What are the monthly payments for each loan?
(b) Which mortgage is ultimately the best deal (assuming you can afford the monthly

payments)? In other words, for which loan do you pay the least amount of total
interest?
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8.3 Series of Real Numbers

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is an infinite series?

• What is the nth partial sum of an infinite series?

• How do we add up an infinite number of numbers? In other words, what does is mean for
an infinite series of real numbers to converge?

• What does is mean for an infinite series of real numbers to diverge?

Introduction

In Section 8.2, we encountered several situations where we naturally considered an infinite sum
of numbers called a geometric series. For example, by writing

N = 0.1212121212 · · · = 12

100
+

12

100
· 1

100
+

12

100
· 1

1002
+ · · ·

as a geometric series, we found a way to write the repeating decimal expansion of N as a single
fraction: N = 4

33 . There are many other situations in mathematics where infinite sums of numbers
arise, but often these are not geometric. In this section, we begin exploring these other types of
infinite sums. Preview Activity 8.3 provides a context in which we see how one such sum is related
to the famous number e.

Preview Activity 8.3. Have you ever wondered how your calculator can produce a numeric ap-
proximation for complicated numbers like e, π or ln(2)? After all, the only operations a calculator
can really perform are addition, subtraction, multiplication, and division, the operations that make
up polynomials. This activity provides the first steps in understanding how this process works.
Throughout the activity, let f(x) = ex.

(a) Find the tangent line to f at x = 0 and use this linearization to approximate e. That is, find
a formula L(x) for the tangent line, and compute L(1), since L(1) ≈ f(1) = e.

(b) The linearization of ex does not provide a good approximation to e since 1 is not very
close to 0. To obtain a better approximation, we alter our approach a bit. Instead of using
a straight line to approximate e, we put an appropriate bend in our estimating function
to make it better fit the graph of ex for x close to 0. With the linearization, we had both
f(x) and f ′(x) share the same value as the linearization at x = 0. We will now use a
quadratic approximation P2(x) to f(x) = ex centered at x = 0 which has the property that
P2(0) = f(0), P ′2(0) = f ′(0), and P ′′2 (0) = f ′′(0).
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(i) Let P2(x) = 1 + x + x2

2 . Show that P2(0) = f(0), P ′2(0) = f ′(0), and P ′′2 (0) = f ′′(0).
Then, use P2(x) to approximate e by observing that P2(1) ≈ f(1).

(ii) We can continue approximating e with polynomials of larger degree whose higher
derivatives agree with those of f at 0. This turns out to make the polynomials fit the
graph of f better for more values of x around 0. For example, letP3(x) = 1+x+x2

2 +x3

6 .
Show that P3(0) = f(0), P ′3(0) = f ′(0), P ′′3 (0) = f ′′(0), and P ′′′3 (0) = f ′′′(0). Use P3(x)
to approximate e in a way similar to how you did so with P2(x) above.

./

Preview Activity 8.3 shows that an approximation to e using a linear polynomial is 2, an ap-
proximation to e using a quadratic polynomial is 2.5, and an approximation using a cubic poly-
nomial is 2.6667. As we will see later, if we continue this process we can obtain approximations
from quartic (degree 4), quintic (degree 5), and higher degree polynomials giving us the following
approximations to e:

linear 2 2

quadratic 1 + 1 + 1
2 2.5

cubic 1 + 1 + 1
2 + 1

6 2.6

quartic 1 + 1 + 1
2 + 1

6 + 1
24 2.7083

quintic 1 + 1 + 1
2 + 1

6 + 1
24 + 1

120 2.716

We see an interesting pattern here. The number e is being approximated by the sum

1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+ · · ·+ 1

n!
(8.11)

for increasing values of n. And just as we did with Riemann sums, we can use the summation
notation as a shorthand4 for writing the sum in Equation (8.11) so that

e ≈ 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+ · · ·+ 1

n!
=

n∑

k=0

1

k!
. (8.12)

We can calculate this sum using as large an n as we want, and the larger n is the more accurate the
approximation (8.12) is. Ultimately, this argument shows that we can write the number e as the
infinite sum

e =

∞∑

k=0

1

k!
. (8.13)

This sum is an example of a series (or an infinite series). Note that thie series (8.13) is the sum of the
terms of the (infinite) sequence

{
1
n!

}
.

4Note that 0! appears in Equation (8.12). By definition, 0! = 1.
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We will normally use summation notation to identify a series. If the series adds the entries of
a sequence {an}n≥1, then we will write the series as

∑

k≥1

ak

or
∞∑

k=1

ak.

Note well: each of these notations is simply shorthand for the infinite sum a1 + a2 + · · ·+ an + · · · .
Is it even possible to sum an infinite list of numbers? This question is one whose answer

shouldn’t come as a surprise. After all, we have used the definite integral to add up continuous
(infinite) collections of numbers, so summing the entries of a sequence might be even easier. More-
over, we have already examined the special case of geometric series in the previous section. The
next activity provides some more insight into how we make sense of the process of summing an
infinite list of numbers.

Activity 8.7.

Consider the series
∞∑

k=1

1

k2
.

While it is physically impossible to add an infinite collection of numbers, we can, of course,
add any finite collection of them. In what follows, we investigate how understanding how to
find the nth partial sum (that is, the sum of the first n terms) enables us to make sense of what
the infinite sum.

(a) Sum the first two numbers in this series. That is, find a numeric value for

2∑

k=1

1

k2

(b) Next, add the first three numbers in the series.

(c) Continue adding terms in this series to complete Table 3. Carry each sum to at least 8
decimal places.

(d) The sums in the table in (c) form a sequence whose nth term is Sn =
n∑

k=1

1

k2
. Based on

your calculations in the table, do you think the sequence {Sn} converges or diverges?

Explain. How do you think this sequence {Sn} is related to the series
∞∑

k=1

1

k2
?

C
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1∑

k=1

1

k2
= 1

6∑

k=1

1

k2
=

2∑

k=1

1

k2
=

7∑

k=1

1

k2
=

3∑

k=1

1

k2
=

8∑

k=1

1

k2
=

4∑

k=1

1

k2
=

9∑

k=1

1

k2
=

5∑

k=1

1

k2
=

10∑

k=1

1

k2
=

Table 8.4: Sums of some of the first terms of the series
∑∞
k=1

1
k2

The example in Activity 8.7 illustrates how we define the sum of an infinite series. We can add
up the first n terms of the series to obtain a new sequence of numbers (called the sequence of partial
sums). Provide that sequence converges, the corresponding infinite series is said to converge, and
we say that we can find the sum of the series.

Definition 8.3. The nth partial sum of the series
∑∞

k=1 ak is the finite sum Sn =
∑n

k=1 ak.

In other words, the nth partial sum Sn of a series is the sum of the first n terms in the series, or

Sn = a1 + a2 + · · ·+ an.

We then investigate the behavior of a given series by examining the sequence

S1, S2, . . . , Sn, . . .

of its partial sums. If the sequence of partial sums converges to some finite number, then we say
that the corresponding series converges. Otherwise, we say the series diverges. From our work in
Activity 8.7, the series

∞∑

k=1

1

k2

appears to converge to approximately 1.54977. We formalize the concept of convergence and
divergence of an infinite series in the following definition.

Definition 8.4. The infinite series ∞∑

k=1

ak

converges (or is convergent) if the sequence {Sn} of partial sums converges, where

Sn =
n∑

k=1

ak.
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If limn→∞ Sn = S, then we call S the sum of the series
∞∑

k=1

ak. That is,

∞∑

k=1

ak = lim
n→∞

Sn = S.

If the sequence of partial sums does not converge, then the series
∞∑

k=1

ak

diverges (or is divergent).

The early terms in a series do not contribute to whether or not the series converges or diverges.
Rather, the convergence or divergence of a series

∞∑

k=1

ak

is determined by what happens to the terms ak for very large values of k. To see why, suppose
that m is some constant larger than 1. Then

∞∑

k=1

ak = (a1 + a2 + · · ·+ am) +
∞∑

k=m+1

ak.

Since a1 + a2 + · · · + am is a finite number, the series
∞∑

k=1

ak will converge if and only if the series

∞∑

k=m+1

ak converges. Because the starting index of the series doesn’t affect whether the series

converges or diverges, we will often just write
∑

ak

when we are interested in questions of convergence/divergence and not necessarily the exact sum
of a series.

In Section 8.2 we encountered the special family of infinite geometric series whose convergence
or divergence we completely determined. Recall that a geometric series is a special series of the

form
∞∑

k=0

ark where a and r are real numbers (and r 6= 0). We found that the nth partial sum Sn of

a geometric series is given by the convenient formula

Sn =
1− rn
1− r ,

and thus a geometric series converges if |r| < 1. Geometric series diverge for all other values of
r. While we have completely determined the convergence or divergence of geometric series, it is
generally a difficult question to determine if a given nongeometric series converges or diverges.
There are several tests we can use that we will consider in the following sections.
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The Divergence Test

The first question we ask about any infinite series is usually “Does the series converge or diverge?”
There is a straightforward way to check that certain series diverge; we explore this test in the next
activity.

Activity 8.8.

If the series
∑
ak converges, then an important result necessarily follows regarding the sequence

{an}. This activity explores this result.

Assume that the series
∞∑

k=1

ak

converges and has sum equal to L. What does this fact tell us about the sequence {an}?

(a) What is the nth partial sum Sn of the series
∞∑

k=1

ak?

(b) What is the (n− 1)st partial sum Sn−1 of the series
∞∑

k=1

ak?

(c) What is the difference between the nth partial sum and the (n− 1)st partial sum of the

series
∞∑

k=1

ak?

(d) Since we are assuming that
∞∑

k=1

ak = L, what does that tell us about lim
n→∞

Sn? Why?

What does that tell us about lim
n→∞

Sn−1? Why?

(e) Combine the results of the previous two parts of this activity to determine lim
n→∞

an =

lim
n→∞

(Sn − Sn−1).

C

The result of Activity 8.8 is the following important conditional statement:

If the series
∞∑

k=1

ak converges, then the sequence {ak} of kth terms converges to 0.
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It is logically equivalent to that if the sequence {ak} of n terms does not converge to 0, then the

series
∞∑

k=1

ak cannot converge. This statement is called the Divergence Test.

The Divergence Test. If limk→∞ ak 6= 0, then the series
∑

ak diverges.

Activity 8.9.

Determine if the Divergence Test applies to the following series. If the test does not apply,
explain why. If the test does apply, what does it tell us about the series?

(a)
∑ k

k+1

(b)
∑

(−1)k

(c)
∑ 1

k

C

Note well: be very careful with the Divergence Test. This test only tells us what happens to a
series if the terms of the corresponding sequence do not converge to 0. If the sequence of the terms
of the series does converge to 0, the Divergence Term Test does not apply: indeed, as we will soon
see, a series whose terms go to zero may either converge or diverge.

The Integral Test

The Divergence Test settles the questions of divergence or convergence of series
∑

ak in which

lim
k→∞

ak 6= 0. Determining the convergence or divergence of series
∑

ak in which lim
k→∞

ak = 0

turns out to be more complicated. Often, we have to investigate the sequence of partial sums or
apply some other technique.

As an example, consider the harmonic series5

∞∑

k=1

1

k
.

Table 8.3 shows some partial sums of this series. This information doesn’t seem to be enough to

tell us if the series
∞∑

k=1

1

k
converges or diverges. The partial sums could eventually level off to some

fixed number or continue to grow without bound. Even if we look at larger partial sums, such as

5This series is called harmonic because the each term in the series after the first is the harmonic mean of the term
before it and the term after it. The harmonic mean of two numbers a and b is 2ab

a+b
. See “What’s Harmonic about the

Harmonic Series”, by David E. Kullman (in the The College Mathematics Journal, Vol. 32, No. 3 (May, 2001), 201-203) for
an interesting discussion of the harmonic mean.
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1∑

k=1

1

k
1

6∑

k=1

1

k
2.450000000

2∑

k=1

1

k
1.5

7∑

k=1

1

k
2.592857143

3∑

k=1

1

k
1.833333333

8∑

k=1

1

k
2.717857143

4∑

k=1

1

k
2.083333333

9∑

k=1

1

k
2.828968254

5∑

k=1

1

k
2.283333333

10∑

k=1

1

k
2.928968254

Table 8.5: Sums of some of the first terms of the sequence
∑∞
k=1

{
1
k

}

1000∑

n=1

1

k
≈ 7.485470861, the result doesn’t particularly sway us one way or another. The Integral

Test is one way to determine whether or not the harmonic series converges, and we explore this
further in the next activity.

Activity 8.10.

Consider the harmonic series
∞∑

k=1

1

k
. Recall that the harmonic series will converge provided

that its sequence of partial sums converges. The nth partial sum Sn of the series
∞∑

k=1

1

k
is

Sn =
n∑

k=1

1

k

= 1 +
1

2
+

1

3
+ · · ·+ 1

n

= 1(1) + (1)

(
1

2

)
+ (1)

(
1

3

)
+ · · ·+ (1)

(
1

n

)
.

Through this last expression for Sn, we can visualize this partial sum as a sum of areas of
rectangles with heights 1

m and bases of length 1, as shown in Figure 8.3, which uses the 9th
partial sum. The graph of the continuous function f defined by f(x) = 1

x is overlaid on this
plot.

(a) Explain how this picture represents a particular Riemann sum.

(b) What is the definite integral that corresponds to the Riemann sum you considered in
(a)?
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Figure 8.3: A picture of the 9th partial sum of the harmonic series as a sum of areas of rectangles.

(c) Which is larger, the definite integral in (b), or the corresponding partial sum S9 of the
series? Why?

(d) If instead of considering the 9th partial sum, we consider the nth partial sum, and we let

n go to infinity, we can then compare the series
∞∑

k=1

1

k
to the improper integral

∫ ∞

1

1

x
dx.

Which of these quantities is larger? Why?

(e) Does the improper integral
∫ ∞

1

1

x
dx converge or diverge? What does that result, to-

gether with your work in (d), tell us about the series
∞∑

k=1

1

k
?

C

The ideas from Activity 8.10 hold more generally. Suppose that f is a continuous decreasing

function and that ak = f(k) for each value of k. Consider the corresponding series
∞∑

k=1

ak. The

partial sum

Sn =
n∑

k=1

ak

can always be viewed as a left hand Riemann sum of f(x) using rectangles with heights given by
the values ak and bases of length 1. A representative picture is shown at left in Figure 8.4. Since f
is a decreasing function, we have that

Sn >

∫ n

1
f(x) dx.
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Taking limits as n goes to infinity shows that
∞∑

k=1

ak >

∫ ∞

1
f(x) dx.

Therefore, if the improper integral
∫ ∞

1
f(x) dx diverges, so does the series

∞∑

k=1

ak.

Figure 8.4: Comparing an improper integral to a series

What’s more, if we look at the right hand Riemann sums of f on [1, n] as shown at right in
Figure 8.4, we see that ∫ ∞

1
f(x) dx >

∞∑

k=2

ak.

So if
∫ ∞

1
f(x) dx converges, then so does

∞∑

k=2

ak, which also means that the series
∞∑

k=1

ak converges.

Our preceding discussion has demonstrated the truth of the Integral Test.

The Integral Test. Let f be a real valued function and assume f is decreasing and positive for
all x larger than some number c. Let ak = f(k) for each positive integer k.

1. If the improper integral
∫ ∞

c
f(x) converges, then the series

∞∑

k=1

ak converges.

2. If the improper integral
∫ ∞

c
f(x) diverges, then the series

∞∑

k=1

ak diverges.

Note that the Integral Test compares a given infinite series to a natural, corresponding im-
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proper integral and basically says that the infinite series and corresponding improper integral
both have the same convergence status. In the next activity, we apply the Integral Test to deter-
mine the convergence or divergence of a class of important series.

Activity 8.11.

The series
∑ 1

kp are special series called p-series. We have already seen that the p-series with
p = 1 (the harmonic series) diverges. We investigate the behavior of other p-series in this
activity.

(a) Evaluate the improper integral
∫ ∞

1

1

x2
dx. Does the series

∞∑

k=1

1

k2
converge or diverge?

Explain.

(b) Evaluate the improper integral
∫ ∞

1

1

xp
dx where p > 1. For which values of p can we

conclude that the series
∞∑

k=1

1

kp
converges?

(c) Evaluate the improper integral
∫ ∞

1

1

xp
dx where p < 1. What does this tell us about the

corresponding p-series
∞∑

k=1

1

kp
?

(d) Summarize your work in this activity by completing the following statement.

The p-series
∞∑

k=1

1

kp
converges if and only if .

C

The Limit Comparison Test

The Integral Test allows us to determine the convergence of an entire family of series: the p-series.
However, we have seen that it is in general difficult to integrate functions, so the Integral Test is not

one that we can use all of the time. In fact, even for a relatively simple series like
∑ k2 + 1

k4 + 2k + 2
,

the Integral Test is not an option. In this section we will develop a test that we can use to apply to
series of rational functions like this by comparing their behavior to the behavior of p-series.

Activity 8.12.

Consider the series
∑ k + 1

k3 + 2
. Since the convergence or divergence of a series only depends

on the behavior of the series for large values of k, we might examine the terms of this series
more closely as k gets large.
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(a) By computing the value of
k + 1

k3 + 2
for k = 100 and k = 1000, explain why the terms

k + 1

k3 + 2
are essentially

k

k3
when k is large.

(b) Let’s formalize our observations in (a) a bit more. Let ak =
k + 1

k3 + 2
and bk =

k

k3
. Calcu-

late

lim
k→∞

ak
bk
.

What does the value of the limit tell you about ak and bk for large values of k? Compare
your response from part (a).

(c) Does the series
∑ k

k3
converge or diverge? Why? What do you think that tells us about

the convergence or divergence of the series
∑ k + 1

k3 + 2
? Explain.

C

Activity 8.12 illustrates how we can compare one series with positive terms to another whose
behavior (that is, whether the series converges or diverges) we know. More generally, suppose we
have two series

∑
ak and

∑
bk

with positive terms and we know the behavior of the series
∑
ak. Recall that the convergence or

divergence of a series depends only on what happens to the terms of the series for large values of
k, so if we know that ak and bk are essentially proportional to each other for large k, then the two
series

∑
ak and

∑
bk

should behave the same way. In other words, if there is a positive finite constant c such that

lim
k→∞

bk
ak

= c,

then bk ≈ cak for large values of k. So

∑
bk ≈

∑
cak = c

∑
ak.

Since multiplying by a nonzero constant does not affect the convergence or divergence of a series,
it follows that the series

∑
ak and

∑
bk either both converge or both diverge. The formal statement
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of this fact is called the Limit Comparison Test.

The Limit Comparison Test Let
∑
ak and

∑
bk be series with positive terms. If

lim
k→∞

bk
ak

= c

for some positive (finite) constant c, then
∑

ak and
∑

bk either both converge or both di-
verge.

In essence, the Limit Comparison Test shows that if we have a series
∑ p(x)

q(x) of rational func-
tions where p(x) is a polynomial of degree m and q(x) a polynomial of degree l, then the series∑ p(x)

q(x) will behave like the series
∑ xm

xl
. So this test allows us to quickly and easily determine the

convergence or divergence of series of rational functions.

Activity 8.13.

Use the Limit Comparison Test to determine the convergence or divergence of the series

∑ 3k2 + 1

5k4 + 2k + 2
.

by comparing it to the series
∑ 1

k2
.

C

The Ratio Test

The Limit Comparison Test works well if we can find a series with known behavior to compare.
But such series are not always easy to find. In this section we will examine a test that allows us
to examine the behavior of a series by comparing it to a geometric series, without knowing in
advance which geometric series we need.

Activity 8.14.

Consider the series defined by
∞∑

k=1

2k

3k − k . (8.14)

This series is not a geometric series, but this activity will illustrate how we might compare this
series to a geometric one. Recall that a series

∑
ak is geometric if the ratio ak+1

ak
is always the

same. For the series in (8.14), note that ak = 2k

k+3k
.

(a) To see if
∑ 2k

3k−k is comparable to a geometric series, we analyze the ratios of successive
terms in the series. Complete Table 1, listing your calculations to at least 8 decimal
places.
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k
ak+1

ak

5

10

20

21

22

23

24

25

Table 8.6: Ratios of successive terms in the series
∑

2k

3k−k

(b) Based on your calculations in Table 1, what can we say about the ratio ak+1

ak
if k is large?

(c) Do you agree or disagree with the statement: “the series
∑ 2k

3k−k is approximately geo-

metric when k is large”? If not, why not? If so, do you think the series
∑ 2k

3k−k converges
or diverges? Explain.

C

We can generalize the argument in Activity 8.14 in the following way. Consider the series∑
ak. If

ak+1

ak
≈ r

for large values of k, then ak+1 ≈ rak for large k and the series
∑
ak is approximately the geometric

series
∑
ark for large k. Since the geometric series with ratio r converges only for −1 < r < 1, we

see that the series
∑

ak will converge if

lim
k→∞

ak+1

ak
= r
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for a value of r such that |r| < 1. This result is known as the Ratio Test.

The Ratio Test. Let
∑

ak be an infinite series. Suppose

lim
k→∞

|ak+1|
|ak|

= r.

1. If 0 ≤ r < 1, then the series
∑
ak converges.

2. If 1 < r, then the series
∑
ak diverges.

3. If r = 1, then the test is inconclusive.

Note well: The Ratio Test takes a given series and looks at the limit of the ratio of consecutive
terms; in so doing, the test is essentially asking, “is this series approximately geometric?” If the se-
ries can be thought of as essentially geometric, the test use the limiting common ratio to determine
if the given series converges.

We have now encountered several tests for determining convergence or divergence of series.
The Divergence Test can be used to show that a series diverges, but never to prove that a series
converges. We used the Integral Test to determine the convergence status of an entire class of
series, the p-series. The Limit Comparison Test works well for series that involve rational functions
and which can therefore by compared to p-series. Finally, the Ratio Test allows us to compare
our series to a geometric series; it is particularly useful for series that involve nth powers and
factorials. Two other tests, the Direct Comparison Test and the Root Test, are discussed in the
exercises. Now it is time for some practice.

Activity 8.15.

Determine whether each of the following series convergens or diverges. Explicitly state which
test you use.

(a)
∑ k

2k

(b)
∑ k3 + 2

k2 + 1

(c)
∑ 10k

k!

(d)
∑ k3 − 2k2 + 1

k6 + 4

C

Summary

In this section, we encountered the following important ideas:
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• An infinite series is a sum of the elements in an infinite sequence. In other words, an infinite
series is a sum of the form

a1 + a2 + · · ·+ an + · · · =
∞∑

k=1

ak

where ak is a real number for each positive integer k.

• The nth partial sum Sn of the series
∑∞

k=1 ak is the sum of the first n terms of the series. That is,

Sn = a1 + a2 + · · ·+ an =

∞∑

k=1

ak.

• The sequence {Sn} of partial sums of a series
∑∞

k=1 ak tells us about the convergence or diver-
gence of the series. In particular

- The series
∑∞

k=1 ak converges if the sequence {Sn} of partial sums converges. In this case
we saw that the series is the limit of the sequence of partial sums and write

∞∑

k=1

ak = lim
n→∞

Sn.

- The series
∑∞

k=1 ak diverges if the sequence {Sn} of partial sums diverges.

Exercises

1. In this exercise we investigate the sequence
{
bn

n!

}
for any constant b.

(a) Use the Ratio Test to determine if the series
∑ 10k

k! converges or diverges.

(b) Now apply the Ratio Test to determine if the series
{
bk

k!

}
converges for any constant b.

(c) Use your result from (b) to decide whether the sequence
{
bn

n!

}
converges or diverges. If

the sequence
{
bn

n!

}
converges, to what does it converge? Explain your reasoning.

2. There is a test for convergence similar to the Ratio Test called the Root Test. Suppose we have a
series

∑
ak of positive terms so that an → 0 as n→∞.

(a) Assume
n
√
an → r

as n goes to infinity. Explain why this tells us that an ≈ rn for large values of n.

(b) Using the result of part (a), explain why
∑
ak looks like a geometric series when n is

big. What is the ratio of the geometric series to which
∑
ak is comparable?

(c) Use what we know about geometric series to determine that values of r so that
∑
ak

converges if n
√
an → r as n→∞.
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3. The associative and distributive laws of addition allow us to add finite sums in any order we

want. That is, if
n∑

k=0

ak and
n∑

k=0

bk are finite sums of real numbers, then

n∑

k=0

ak +
n∑

k=0

bk =
n∑

k=0

(ak + bk).

However, we do need to be careful extending rules like this to infinite series.

(a) Show by example that is is possible to have to divergent series
∞∑

k=0

ak and
∞∑

k=0

bk but yet

have the series ∞∑

k=0

ak +

∞∑

k=0

bk =

∞∑

k=0

(ak + bk)

converge.

(b) Let an = 1 +
1

2n
and bn = −1 for each nonnegative integer n.

(i) Explain why the series
∞∑

k=0

(ak + bk) converges.

(ii) Explain why
∞∑

k=0

ak +
∞∑

k=0

bk 6=
∞∑

k=0

(ak + bk).

(c) It is true that if
∑
ak and

∑
bk are convergent series, then

∑
(ak + bk) is a convergent

series and ∑
(ak + bk) =

∑
ak +

∑
bk.

The following questions explore why this result is true.

(i) Let An and Bn be the nth partial sums of the series
∑
ak and

∑
bk, respectively.

Explain why

An +Bn =

n∑

k=1

(ak + bk).

(ii) Use the previous result and properties of limits to show that
∑

(ak + bk) =
∑

ak +
∑

bk.

(d) Use the prior result to find the sum of the series
∞∑

k=0

2k + 3k

5k
.

4. Series are sums, just like improper integrals. Recall that we had a comparison test for improper
integrals, so it is reasonable to expect that we could have a similar test for infinite series. We
consider such a test in this exercise. First we consider an example.
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(a) Consider the series ∑ 1

k2
and

∑ 1

k2 + k
.

We know that the series
∑ 1

k2
is a p-series with p = 2 > 1 and so

∑ 1

k2
converges. In

this part of the exercise we will see how to use information about
∑ 1

k2
to determine

information about
∑ 1

k2 + k
. Let ak = 1

k2
and bk = 1

k2+k
.

(i) Let Sn be the nth partial sum of
∑ 1

k2
and Tn the nth partial sum of

∑ 1

k2 + k
.

Which is larger, S1 or T1? Why?
(ii) Recall that

S2 = S1 + a2 and T2 = T1 + b2.

Which is larger, a2 or b2? Based on that answer, which is larger, S2 or T2?
(iii) Recall that

S3 = S2 + a3 and T3 = T2 + b3.

Which is larger, a3 or b3? Based on that answer, which is larger, S3 or T3?
(iv) Which is larger, an or bn? Explain. Based on that answer, which is larger, Sn or Tn?
(v) Based on your response to the previous part of this exercise, what relationship do

you expect there to be between
∑ 1

k2
and

∑ 1

k2 + k
? Do you expect

∑ 1

k2 + k
to

converge or diverge? Why?

(b) The example in the previous part of this exercise illustrates a more general result. Ex-
plain why the Direct Comparison Test, stated here, works.

The Direct Comparison Test. If
0 ≤ bk ≤ ak

for every k, then we must have
0 ≤

∑
bk ≤

∑
ak

1. If
∑
ak converges, then

∑
bk converges.

2. If
∑
bk diverges, then

∑
ak diverges.

Important Note: It is important to note that this comparison test applies only to series
with nonnegative terms.
(i) Use the Direct Comparison Test to determine the convergence or divergence of the

series
∑ 1

k − 1
. Hint: Compare to the harmonic series.

(ii) Use the Direct Comparison Test to determine the convergence or divergence of the

series
∑ k

k3 + 1
.
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8.4 Alternating Series

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is an alternating series?

• What does it mean for an alternating series to converge?

• Under what conditions does an alternating series converge? Why?

• How well does the nth partial sum of a convergent alternating series approximate the actual
sum of the series? Why?

• What is the difference between absolute convergence and conditional convergence?

Introduction

In our study of series so far, almost every series that we’ve considered has exclusively nonnegative
terms. Of course, it is possible to consider series that have some negative terms. For instance, if
we consider the geometric series

2− 4

3
+

8

9
− · · ·+ 2

(−2

3

)n
+ · · · ,

which has a = 2 and r = −2
3 , we see that not only does every other term alternate in sign, but also

that this series converges to

S =
a

1− r =
2

1−
(
−2

3

) =
6

5
.

In Preview Activity 8.4 and our following discussion, we investigate the behavior of similar series
where consecutive terms have opposite signs.

Preview Activity 8.4. Preview Activity 8.3 showed how we can approximate the number e with
linear, quadratic, and other polynomial approximations. We use a similar approach in this activity
to obtain linear and quadratic approximations to ln(2). Along the way, we encounter a type of
series that is different than most of the ones we have seen so far. Throughout this activity, let
f(x) = ln(1 + x).

(a) Find the tangent line to f at x = 0 and use this linearization to approximate ln(2). That
is, find L(x), the tangent line approximation to f(x), and use the fact that L(1) ≈ f(1) to
estimate ln(2).

(b) The linearization of ln(1 + x) does not provide a very good approximation to ln(2) since
1 is not that close to 0. To obtain a better approximation, we alter our approach; instead
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of using a straight line to approximate ln(2), we use a quadratic function to account for
the concavity of ln(1 + x) for x close to 0. With the linearization, both the function’s value
and slope agree with the linearization’s value and slope at x = 0. We will now make a
quadratic approximation P2(x) to f(x) = ln(1+x) centered at x = 0 with the property that
P2(0) = f(0), P ′2(0) = f ′(0), and P ′′2 (0) = f ′′(0).

(i) Let P2(x) = x − x2

2 . Show that P2(0) = f(0), P ′2(0) = f ′(0), and P ′′2 (0) = f ′′(0). Use
P2(x) to approximate ln(2) by using the fact that P2(1) ≈ f(1).

(ii) We can continue approximating ln(2) with polynomials of larger degree whose deriva-
tives agree with those of f at 0. This makes the polynomials fit the graph of f better
for more values of x around 0. For example, let P3(x) = x − x2

2 + x3

3 . Show that
P3(0) = f(0), P ′3(0) = f ′(0), P ′′3 (0) = f ′′(0), and P ′′′3 (0) = f ′′′(0). Taking a similar
approach to preceding questions, use P3(x) to approximate ln(2).

(iii) If we used a degree 4 or degree 5 polynomial to approximate ln(1 +x), what approxi-
mations of ln(2) do you think would result? Use the preceding questions to conjecture
a pattern that holds, and state the degree 4 and degree 5 approximation.

./

Preview Activity 8.4 gives us several approximations to ln(2), the linear approximation is 1
and the quadratic approximation is 1− 1

2 = 1
2 . If we continue this process we will obtain approx-

imations from cubic, quartic (degree 4), quintic (degree 5), and higher degree polynomials giving
us the following approximations to ln(2):

linear 1 1

quadratic 1− 1
2 0.5

cubic 1− 1
2 + 1

3 0.83

quartic 1− 1
2 + 1

3 + 1
4 0.583

quintic 1− 1
2 + 1

3 + 1
4 − 1

5 0.783

The pattern here shows the fact that the number ln(2) can be approximated by the partial sums of
the infinite series

∞∑

n=1

(−1)k+1 1

k
(8.15)

where the alternating signs are determined by the factor (−1)k+1.

Using computational technology, we find that 0.6881721793 is the sum of the first 100 terms in
this series. As a comparison, ln(2) ≈ 0.6931471806. This shows that even though the series (8.15)
converges to ln(2), it must do so quite slowly, since the sum of the first 100 terms isn’t particularly
close to ln(2). We will investigate the issue of how quickly an alternating series converges later
in this section. Again, note particularly that the series (8.15) is different from the series we have
consider earlier in that some of the terms are negative. We call such a series an alternating series.
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Definition 8.5. An alternating series is a series of the form
∞∑

k=0

(−1)kak,

where ak ≥ 0 for each k.

We have some flexibility in how we write an alternating series; for example, the series
∞∑

k=1

(−1)k+1ak,

whose index starts at k = 1, is also alternating. As we will soon see, there are several very nice
results that hold about alternating series, while alternating series can also demonstrate some un-
usual behaivior.

It is important to remember that most of the series tests we have seen in previous sections
apply only to series with nonnegative terms. Thus, alternating series require a different test. To
investigate this idea, we return to the example in Preview Activity 8.4.

Activity 8.16.

Remember that, by definition, a series converges if and only if its corresponding sequence of
partial sums converges.

(a) Complete the following table by calculating the first few partial sums (to 10 decimal
places) of the alternating series

∞∑

k=1

(−1)k+1 1

k
.

(b) Plot the sequence of partial sums from part (a) in the plane. What do you notice about
this sequence?

C

Activity 8.16 exemplifies the general behavior that any convergent alternating series will demon-
strate. In this example, we see that the partial sums of the alternating harmonic series oscillate
around a fixed number that turns out to be the sum of the series.

Recall that if lim
k→∞

ak 6= 0, then the series
∑
ak diverges by the Divergence Test. From this point

forward, we will thus only consider alternating series
∞∑

k=1

(−1)k+1ak

in which the sequence ak consists of positive numbers that decrease to 0. For such a series, the nth
partial sum Sn satisfies

Sn =

n∑

k=1

(−1)k+1ak.
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1∑

k=1

(−1)k+1 1

k
=

6∑

k=1

(−1)k+1 1

k
=

2∑

k=1

(−1)k+1 1

k
=

7∑

k=1

(−1)k+1 1

k
=

3∑

k=1

(−1)k+1 1

k
=

8∑

k=1

(−1)k+1 1

k
=

4∑

k=1

(−1)k+1 1

k
=

9∑

k=1

(−1)k+1 1

k
=

5∑

k=1

(−1)k+1 1

k
=

10∑

k=1

(−1)k+1 1

k
=

Table 8.7: Partial sums of the alternating series
∑∞
k=1(−1)k+1 1

k

Notice that

• S1 = a1

• S2 = a1 − a2, and since a1 > a2 we have

0 < S2 < S1.

• S3 = S2 + a3 and so S2 < S3. But a3 < a2, so S3 < S1. Thus,

0 < S2 < S3 < S1.

• S4 = S3 − a4 and so S4 < S3. But a4 < a3, so S2 < S4. Thus,

0 < S2 < S4 < S3 < S1.

• S5 = S4 + a5 and so S4 < S5. But a5 < a4, so S5 < S3. Thus,

0 < S2 < S4 < S5 < S3 < S1.

This pattern continues as illustrated in Figure 8.5 (with n odd) so that each partial sum lies between
the previous two partial sums. Note further that the absolute value of the difference between the
(n− 1)st partial sum Sn−1 and the nth partial sum Sn is

|Sn − Sn−1| = an.

Since the sequence {an} converges to 0, the distance between successive partial sums becomes as
close to zero as we’d like, and thus the sequence of partial sums converges (even though we don’t
know the exact value to which the sequence of partial sums converges).
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S
1

S
2

S
3

S
4

S
5

S
6
 . . . S

n-1
S

n

a
n

Figure 8.5: Partial sums of an alternating series

The preceding discussion has demonstrated the truth of the Alternating Series Test.

The Alternating Series Test. The alternating series
∑

(−1)kak

converges if and only if the sequence {ak} of positive terms decreases to 0 as k →∞.

Note particularly that if the limit of the sequence {ak} is not 0, then the alternating series
diverges.

Activity 8.17.

Which series converge and which diverge? Justify your answers.

(a)
∞∑

k=1

(−1)k

k2 + 2

(b)
∞∑

k=1

(−1)k+12k

k + 5

(c)
∞∑

k=2

(−1)k

ln(k)

C

The argument for the Alternating Series Test also provides us with a method to determine how
close the nth partial sum Sn is to the actual sum of a convergent alternating series. To see how this
works, let S be the sum of a convergent alternating series, so

S =

∞∑

k=1

(−1)kak.

Recall that the sequence of partial sums oscillates around the sum S so that

|S − Sn| < |Sn+1 − Sn| = an+1.

Therefore, the value of the term an+1 provides an error estimate for how well the partial sum Sn
approximates the actual sum S. We summarize this fact in the statement of the Alternating Series
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Estimation Theorem.

Alternating Series Estimation Theorem. If the alternating series

∞∑

k=1

(−1)k+1ak

converges and has sum S, and

Sn =
∞∑

k=1

(−1)k+1ak

is the nth partial sum of the alternating series, then
∣∣∣∣∣
∞∑

k=1

(−1)k+1ak − Sn
∣∣∣∣∣ ≤ an+1.

Example 8.1. Let’s determine how well the 100th partial sum S100 of
∞∑

k=1

(−1)k+1

k

approximates the sum of the series.

Solution.

If we let S be the sum of the series
∞∑

k=1

(−1)k+1

k
, then we know that

|S100 − S| < a101.

Now
a101 =

1

101
≈ 0.0099,

so the 100th partial sum is within 0.0099 of the sum of the series. We have discussed the fact (and
will later verify) that

S =
∞∑

k=1

(−1)k+1

k
= ln(2),

and so S ≈ 0.693147 while

S100 =

100∑

k=1

(−1)k+1

k
≈ 0.6881721793.

We see that the actual difference between S and S100 is approximately 0.0049750013, which is
indeed less than 0.0099.
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Activity 8.18.

Determine the number of terms it takes to approximate the sum of the convergent alternating
series ∞∑

k=1

(−1)k+1

k4

to within 0.0001.

C

Absolute and Conditional Convergence

A series such as
1− 1

4
− 1

9
+

1

16
+

1

25
+

1

36
− 1

49
− 1

64
− 1

81
− 1

100
+ · · · (8.16)

whose terms are neither all nonnegative nor alternating is different from any series that we have
considered to date. The behavior of these series can be rather complicated, but there is an impor-
tant connection between these arbitrary series that have some negative terms and series with all
nonnegative terms that we illustrate with the next activity.

Activity 8.19.
(a) Explain why the series

1− 1

4
− 1

9
+

1

16
+

1

25
+

1

36
− 1

49
− 1

64
− 1

81
− 1

100
+ · · ·

must have a sum that is less than the series
∞∑

k=1

1

k2
.

(b) Explain why the series

1− 1

4
− 1

9
+

1

16
+

1

25
+

1

36
− 1

49
− 1

64
− 1

81
− 1

100
+ · · ·

must have a sum that is greater than the series
∞∑

k=1

− 1

k2
.

(c) Given that the terms in the series

1− 1

4
− 1

9
+

1

16
+

1

25
+

1

36
− 1

49
− 1

64
− 1

81
− 1

100
+ · · ·

converge to 0, what do you think the previous two results tell us about the convergence
status of this series?
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C

As Activity 8.19 indicates, if we have a series
∑

ak,

(some of whose terms may be negative) so that ak → 0 as k →∞, then

−|ak| ≤ ak ≤ |ak|

for each k. Therefore,
−
∑
|ak| ≤

∑
ak ≤

∑
|ak|.

So if
∑
|ak| converges, then so must

∑
ak.

As we just observed, this is the case for the series (8.16), since this series is trapped between

the convergent p-series
∑ 1

k2
and its opposite. At the same time, there are series like the alternat-

ing harmonic series
∑

(−1)k+1 1

k
that converge, while the corresponding series

∑ 1

k
of absolute

values diverges. We distinguish between these behaviors by introducing the following language

Definition 8.6. Consider a series
∑
ak.

1. The series
∑
ak converges absolutely (or is absolutely convergent) provided that

∑ |ak| con-
verges.

2. The series
∑
ak converges conditionally (or is conditionally convergent) provided that

∑ |ak|
diverges and

∑
ak converges.

In this terminology, the series (8.16) converges absolutely while the alternating harmonic series
is conditionally convergent.

Activity 8.20.

(a) Consider the series
∑

(−1)k
ln(k)

k
.

(i) Does this series converge? Explain.
(ii) Does this series converge absolutely? Explain what test you use to determine your

answer.

(b) Consider the series
∑

(−1)k
ln(k)

k2
.

(i) Does this series converge? Explain.
(ii) Does this series converge absolutely? Hint: Use the fact that ln(k) <

√
k for large

values of k and the compare to an appropriate p-series.

C

Conditionally convergent series turn out to be very interesting. If the sequence {an} decreases
to 0, but the series

∑
ak diverges, the conditionally convergent series

∑
(−1)kak is right on the
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borderline of being a divergent series. As a result, any conditionally convergent series converges
very slowly. Furthermore, some very strange things can happen with conditionally convergent
series, as illustrated in some of the exercises.

Summary of Tests for Convergence of Series

We have discussed several tests for convergence/divergence of series in our sections and in exer-
cises. We close this section of the text with a summary of all the tests we have encountered.

Geometric Se-
ries

The geometric series
∑
ark with ratio r con-

verges for −1 < r < 1 and diverges for
|r| ≥ 1.

The sum of the convergent ge-

ometric series
∞∑

k=0

ark is a
1−r .

Divergence
Test

If the sequence an does not converge to 0,
then the series

∑
ak diverges.

This is the first test to ap-
ply because the conclusion
is simple. However, if
limn→∞ an 6= 0, no conclusion
can be drawn.

Integral Test Let f be a positive, decreasing function on an
interval [c,∞] and let ak = f(k) for each pos-
itive integer k ≥ c.

• If
∫ ∞

c
f(t) dt converges, then

∑
ak con-

verges.

• If
∫ ∞

c
f(t) dt diverges, then

∑
ak di-

verges.

Use this test when f(x) is easy
to integrate.

Direct Com-
parision Test
(see Exercise 4
in Section 8.3)

Let 0 ≤ ak ≤ bk for each positive integer k.

• If
∑
bk converges, then

∑
ak con-

verges.

• If
∑
ak diverges, then

∑
bk diverges.

Use this test when you have
a series with known behavior
that you can compare to – this
test can be difficult to apply.

Limit Com-
parison Test

Let an and bn be sequences of positive terms.
If

lim
k→∞

ak
bk

= L

for some positive finite number L, then the
two series

∑
ak and

∑
bk either both con-

verge or both diverge.

Easier to apply in general
than the comparison test, but
you must have a series with
known behavior to compare.
Useful to apply to series of ra-
tional functions.
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Ratio Test Let ak 6= 0 for each k and suppose

lim
k→∞

|ak+1|
|ak|

= r.

• If r < 1, then the series
∑
ak converges

absolutely.

• If r > 1, then the series
∑
ak diverges.

• If r = 1, then test is inconclusive.

This test is useful when a
series involves factorials and
powers.

Root Test (see
Exercise 2 in
Section 8.3)

Let ak ≥ 0 for each k and suppose

lim
k→∞

k
√
ak = r.

• If r < 1, then the series
∑
ak converges.

• If r > 1, then the series
∑
ak diverges.

• If r = 1, then test is inconclusive.

In general, the Ratio Test can
usually be used in place of the
Root Test. However, the Root
Test can be quick to use when
ak involves kth powers.

Alternating
Series Test

If an is a positive, decreasing sequence so
that lim

n→∞
an = 0, then the alternating series

∑
(−1)k+1ak converges.

This test applies only to alter-
nating series – we assume that
the terms an are all positive
and that the sequence {an} is
decreasing.

Alternating
Series Estima-
tion Theorem

Let Sn =
n∑

k=1

(−1)k+1ak be the nth partial sum

of the alternating series
∞∑

k=1

(−1)k+1ak. As-

sume an > 0 for each positive integer n, the
sequence an decreases to 0 and lim

n→∞
Sn = S.

Then
|S − Sn| < an+1.

This bound can be used to de-
termine the accuracy of the
partial sum Sn as an approx-
imation of the sum of a con-
vergent alternating series.

Activity 8.21.

For (a)-(j), use appropriate tests to determine the convergence or divergence of the following
series. Throughout, if a series is a convergent geometric series, find its sum.

(a)
∞∑

k=3

2√
k − 2
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(b)
∞∑

k=1

k

1 + 2k

(c)
∞∑

k=0

2k2 + 1

k3 + k + 1

(d)
∞∑

k=0

100k

k!

(e)
∞∑

k=1

2k

5k

(f)
∞∑

k=1

k3 − 1

k5 + 1

(g)
∞∑

k=2

3k−1

7k

(h)
∞∑

k=2

1

kk

(i)
∞∑

k=1

(−1)k+1

√
k + 1

(j)
∞∑

k=2

1

k ln(k)

(k) Determine a value of n so that the nth partial sum Sn of the alternating series
∞∑

n=2

(−1)n

ln(n)

approximates the sum to within 0.001.

C

Summary

In this section, we encountered the following important ideas:

• An alternating series is a series whose terms alternate in sign. In other words, an alternating
series is a series of the form ∑

(−1)kak

where ak is a positive real number for each k.

• An alternating series
∑∞

k=1(−1)kak converges if and only if its sequence {Sn} of partial sums
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converges, where

Sn =
n∑

k=1

(−1)kak.

• The sequence of partial sums of a convergent alternating series oscillates around and converge
to the sum of the series if the sequence of nth terms converges to 0. That is why the Alternating
Series Test shows that the alternating series

∑∞
k=1(−1)kak converges whenever the sequence

{an} of nth terms decreases to 0.

• The difference between the n− 1st partial sum Sn−1 and the nth partial sum Sn of a convergent
alternating series

∑∞
k=1(−1)kak is |Sn − Sn−1| = an. Since the partial sums oscillate around the

sum S of the series, it follows that
|S − Sn| < an.

So the nth partial sum of a convergent alternating series
∑∞

k=1(−1)kak approximates the actual
sum of the series to within an.

Exercises

1. Conditionally convergent series converge very slowly. As an example, consider the famous
formula6

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · =

∞∑

k=0

(−1)k
1

2k + 1
. (8.17)

In theory, the partial sums of this series could be used to approximate π.

(a) Show that the series in (8.17) converges conditionally.

(b) Let Sn be the nth partial sum of the series in (8.17). Calculate the error in approximating
π
4 with S100 and explain why this is not a very good approximation.

(c) Determine the number of terms it would take in the series (8.17) to approximate π
4 to

10 decimal places. (The fact that it takes such a large number of terms to obtain even a
modest degree of accuracy is why we say that conditionally convergent series converge
very slowly.)

2. We have shown that if
∑

(−1)k+1ak is a convergent alternating series, then the sum S of the
series lies between any two consecutive partial sums Sn. This suggests that the average Sn+Sn+1

2
is a better approximation to S than is Sn.

(a) Show that Sn+Sn+1

2 = Sn + 1
2(−1)n+2an+1.

(b) Use this revised approximation in (a) with n = 20 to approximate ln(2) given that

ln(2) =
∞∑

k=1

(−1)k+1 1

k
.

6We will derive this formula in upcoming work.
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Compare this to the approximation using just S20. For your convenience, S20 = 155685007
232792560 .

3. In this exercise, we examine one of the conditions of the Alternating Series Test. Consider the
alternating series

1− 1 +
1

2
− 1

4
+

1

3
− 1

9
+

1

4
− 1

16
+ · · · ,

where the terms are selected alternately from the sequences
{

1
n

}
and

{
− 1
n2

}
.

(a) Explain why the nth term of the given series converges to 0 as n goes to infinity.

(b) Rewrite the given series by grouping terms in the following manner:

(1− 1) +

(
1

2
− 1

4

)
+

(
1

3
− 1

9

)
+

(
1

4
− 1

16

)
+ · · · .

Use this regrouping to determine if the series converges or diverges.

(c) Explain why the condition that the sequence {an} decreases to a limit of 0 is included in
the Alternating Series Test.

4. Conditionally convergent series exhibit interesting and unexpected behavior. In this exercise

we examine the conditionally convergent alternating harmonic series
∞∑

k=1

(−1)k+1

k
and discover

that addition is not commutative for conditionally convergent series. We will also encounter
Riemann’s Theorem concerning rearrangements of conditionally convergent series. Before we
begin, we reminder ourselves that

∞∑

k=1

(−1)k+1

k
= ln(2),

a fact which will be verified in a later section.

(a) First we make a quick analysis of the positive and negative terms of the alternating
harmonic series.

(i) Show that the series
∞∑

k=1

1

2k
diverges.

(ii) Show that the series
∞∑

k=1

1

2k + 1
diverges.

(iii) Based on the results of the previous parts of this exercise, what can we say about

the sums
∞∑

k=C

1

2k
and

∞∑

k=C

1

2k + 1
for any positive integer C? Be specific in your

explanation.

(b) Recall addition of real numbers is commutative; that is

a+ b = b+ a
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for any real numbers a and b. This property is valid for any sum of finitely many terms,
but does this property extend when we add infinitely many terms together?
The answer is no, and something even more odd happens. Riemann’s Theorem (after
the nineteenth-century mathematician Georg Friedrich Bernhard Riemann) states that
a conditionally convergent series can be rearranged to converge to any prescribed sum.
More specifically, this means that if we choose any real number S, we can rearrange the

terms of the alternating harmonic series
∞∑

k=1

(−1)k+1

k
so that the sum is S. To understand

how Riemann’s Theorem works, let’s assume for the moment that the number S we
want our rearrangement to converge to is positive. Our job is to find a way to order the
sum of terms of the alternating harmonic series to converge to S.

(i) Explain how we know that, regardless of the value of S, we can find a partial sum
P1 of the positive terms

P1 =

n1∑

k=1

1

2k + 1
= 1 +

1

3
+

1

5
+ · · ·+ 1

2n1 + 1

of the positive terms of the alternating harmonic series that equals or exceeds S.
Let

S1 = P1.

(ii) Explain how we know that, regardless of the value of S1, we can find a partial sum
N1

N1 = −
m1∑

k=1

1

2k
= −1

2
− 1

4
− 1

6
− · · · − 1

2m1

so that
S2 = S1 +N1 ≤ S.

(iii) Explain how we know that, regardless of the value of S2, we can find a partial sum
P2

P2 =

n2∑

k=n1+1

1

2k + 1
=

1

2(n1 + 1) + 1
+

1

2(n1 + 2) + 1
+ · · ·+ 1

2n2 + 1

of the remaining positive terms of the alternating harmonic series so that

S3 = S2 + P2 ≥ S.

(iv) Explain how we know that, regardless of the value of S3, we can find a partial sum

N2 = −
m2∑

k=m1+1

1

2k
= − 1

2(m1 + 1)
− 1

2(m1 + 2)
− · · · − 1

2m2

of the remaining negative terms of the alternating harmonic series so that

S4 = S3 +N2 ≤ S.
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(v) Explain why we can continue this process indefinitely and find a sequence {Sn}
whose terms are partial sums of a rearrangement of the terms in the alternating
harmonic series so that lim

n→∞
Sn = S.
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8.5 Taylor Polynomials and Taylor Series

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is a Taylor polynomial? For what purposes are Taylor polynomials used?

• What is a Taylor series?

• How are Taylor polynomials and Taylor series different? How are they related?

• How do we determine the accuracy when we use a Taylor polynomial to approximate a
function?

Introduction

In our work to date in Chapter 8, essentially every sum we have considered has been a sum
of numbers. In particular, each infinite series that we have discussed has been a series of real
numbers, such as

1 +
1

2
+

1

4
+ · · ·+ 1

2k
+ · · · =

∞∑

k=0

1

2k
. (8.18)

In the remainder of this chapter, we will expand our notion of series to include series that involve
a variable, say x. For instance, if in the geometric series in Equation (8.18) we replace the ratio
r = 1

2 with the variable x, then we have the infinite (still geometric) series

1 + x+ x2 + · · ·+ xk + · · · =
∞∑

k=0

xk. (8.19)

Here we see something very interesting: since a geometric series converges whenever its ratio r
satisfies |r| < 1, and the sum of a convergent geometric series is a

1−r , we can say that for |x| < 1,

1 + x+ x2 + · · ·+ xk + · · · = 1

1− x. (8.20)

Note well what Equation (8.20) states: the non-polynomial function 1
1−x on the right is equal to

the infinite polynomial expresssion on the left. Moreover, it appears natural to truncate the infinite
sum on the left (whose terms get very small as k gets large) and say, for example, that

1 + x+ x2 + x3 ≈ 1

1− x
for small values of x. This shows one way that a polynomial function can be used to approximate
a non-polynomial function; such approximations are one of the main themes in this section and
the next.
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In Preview Activity 8.5, we begin our explorations of approximating non-polynomial functions
with polynomials, from which we will also develop ideas regarding infinite series that involve a
variable, x.

Preview Activity 8.5. Preview Activity 8.3 showed how we can approximate the number e using
linear, quadratic, and other polynomial functions; we then used similar ideas in Preview Activ-
ity 8.4 to approximate ln(2). In this activity, we review and extend the process to find the “best”
quadratic approximation to the exponential function ex around the origin. Let f(x) = ex through-
out this activity.

(a) Find a formula for P1(x), the linearization of f(x) at x = 0. (We label this linearization
P1 because it is a first degree polynomial approximation.) Recall that P1(x) is a good
approximation to f(x) for values of x close to 0. Plot f and P1 near x = 0 to illustrate this
fact.

(b) Since f(x) = ex is not linear, the linear approximation eventually is not a very good one. To
obtain better approximations, we want to develop a different approximation that “bends”
to make it more closely fit the graph of f near x = 0. To do so, we add a quadratic term to
P1(x). In other words, we let

P2(x) = P1(x) + c2x
2

for some real number c2. We need to determine the value of c2 that makes the graph of
P2(x) best fit the graph of f(x) near x = 0.

Remember that P1(x) was a good linear approximation to f(x) near 0; this is because
P1(0) = f(0) and P ′1(0) = f ′(0). It is therefore reasonable to seek a value of c2 so that

P2(0) = f(0),

P ′2(0) = f ′(0), and
P ′′2 (0) = f ′′(0).

Remember, we are letting P2(x) = P1(x) + c2x
2.

(i) Calculate P2(0) to show that P2(0) = f(0).
(ii) Calculate P ′2(0) to show that P ′2(0) = f ′(0).

(iii) Calculate P ′′2 (x). Then find a formula for c2 so that P ′′2 (0) = f ′′(0).
(iv) Explain why the condition P ′′2 (0) = f ′′(0) will put an appropriate “bend” in the graph

of P2 to make P2 fit the graph of f around x = 0.

./

Taylor Polynomials

Preview Activity 8.5 illustrates the first steps in the process of approximating complicated func-
tions with polynomials. Using this process we can approximate trigonometric, exponential, log-
arithmic, and other nonpolynomial functions as closely as we like (for certain values of x) with
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polynomials. This is extraordinarily useful in that it allows us to calculate values of these functions
to whatever precision we like using only the operations of addition, subtraction, multiplication,
and division, which are operations that can be easily programmed in a computer.

We next extend the approach in Preview Activity 8.5 to arbitrary functions at arbitrary points.
Let f be a function that has as many derivatives at a point x = a as we need. Since first learning
it in Section 1.8, we have regularly used the linear approximation P1(x) to f at x = a, which in
one sense is the best linear approximation to f near a. Recall that P1(x) is the tangent line to f at
(a, f(a)) and is given by the formula

P1(x) = f(a) + f ′(a)(x− a).

If we proceed as in Preview Activity 8.5, we then want to find the best quadratic approximation

P2(x) = P1(x) + c2(x− a)2

so that P2(x) more closely models f(x) near x = a. Consider the following calculations of the
values and derivatives of P2(x):

P2(x) = P1(x) + c2(x− a)2

P ′2(x) = P ′1(x) + 2c2(x− a)

P ′′2 (x) = 2c2

P2(a) = P1(a) = f(a)

P ′2(a) = P ′1(a) = f ′(a)

P ′′2 (a) = 2c2.

To make P2(x) fit f(x) better than P1(x), we want P2(x) and f(x) to have the same concavity
at x = a. That is, we want to have

P ′′2 (a) = f ′′(a).

This implies that
2c2 = f ′′(a)

and thus

c2 =
f ′′(a)

2
.

Therefore, the quadratic approximation P2(x) to f centered at x = 0 is

P2(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2.

This approach extends naturally to polynomials of higher degree. In this situation, we define
polynomials

P3(x) = P2(x) + c3(x− a)3,

P4(x) = P3(x) + c4(x− a)4,

P5(x) = P4(x) + c5(x− a)5,
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and so on, with the general one being

Pn(x) = Pn−1(x) + cn(x− a)n.

The defining property of these polynomials is that for each n, Pn(x) must have its value and all its
first n derivatives agree with those of f at x = a. In other words we require that

P (k)
n (a) = f (k)(a)

for all k from 0 to n.

To see the conditions under which this happens, suppose

Pn(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n.

Then

P (0)
n (a) = c0

P (1)
n (a) = c1

P (2)
n (a) = 2c2

P (3)
n (a) = (2)(3)c3

P (4)
n (a) = (2)(3)(4)c4

P (5)
n (a) = (2)(3)(4)(5)c5

and, in general,
P (k)
n (a) = (2)(3)(4) · · · (k − 1)(k)ck = k!ck.

So having
P (k)
n (a) = f (k)(a)

means that
k!ck = f (k)(a)

and therefore

ck =
f (k)(a)

k!

for each value of k. In this expression for ck, we have found the formula for the degree n polyno-
mial approximation of f that we seek.

The nth order Taylor polynomial of f centered at x = a is given by

Pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f(n)(a)

n!
(x− a)n =

n∑

k=0

f (k)(a)

k!
(x− a)k.

This degree n polynomial approximates f(x) near x = a and has the property that P (k)
n (a) =

f (k)(a) for k = 0 . . . n.
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Example 8.2. Determine the third order Taylor polynomial for f(x) = ex, as well as the general
nth order Taylor polynomial for f centered at x = 0.

Solution. We know that f ′(x) = ex and so f ′′(x) = ex and f ′′′(x) = ex. Thus,

f(0) = f ′(0) = f ′′(0) = f ′′′(0) = 1.

So the third order Taylor polynomial of f(x) = ex centered at x = 0 is

P3(x) = f(0) + f ′(0)(x− 0) +
f ′′(0)

2!
(x− 0)2 +

f ′′′(0)

3!
(x− 0)3 = 1 + x+

x2

2
+
x3

6
.

In general, for the exponential function f we have f (k)(x) = ex for every positive integer k. Thus,
the kth term in the nth order Taylor polynomial for f(x) centered at x = 0 is

f (k)(0)

k!
(x− 0)k =

1

k!
xk.

Therefore, the nth order Taylor polynomial for f(x) = ex centered at x = 0 is

Pn(x) = 1 + x+
x2

2!
+ · · ·+ 1

n!
xn =

n∑

k=0

xk

k!
.

Activity 8.22.

We have just seen that the nth order Taylor polynomial centered at a = 0 for the exponential
function ex is

n∑

k=0

xk

k!
.

In this activity, we determine the nth order Taylor polynomials for several other familiar func-
tions.

(a) Let f(x) = 1
1−x .

(i) Calculate the first four derivatives of f(x) at x = 0. Then find a general formula for
f (k)(0).

(ii) Determine the nth order Taylor polynomial for f(x) = 1
1−x centered at x = 0.

(b) Let f(x) = cos(x).

(i) Calculate the first four derivatives of f(x) at x = 0. Then find a general formula
for f (k)(0). (Think about how k being even or odd affects the value of the kth
derivative.)

(ii) Determine the nth order Taylor polynomial for f(x) = cos(x) centered at x = 0.
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(c) Let f(x) = sin(x).
(i) Calculate the first four derivatives of f(x) at x = 0. Then find a general formula

for f (k)(0). (Think about how k being even or odd affects the value of the kth
derivative.)

(ii) Determine the nth order Taylor polynomial for f(x) = sin(x) centered at x = 0.
Hint: Your answer should depend on whether n is even or odd.

C

It is possible that an nth order Taylor polynomial is not a polynomial of degree n; that is, the
order of the approximation can be different from the degree of the polynomial. For example, in
Activity 8.22 we found that the second order Taylor polynomial P2(x) centered at 0 for sin(x) is
P2(x) = x. In this case, the second order Taylor polynomial is a degree 1 polynomial.

Taylor Series

In Activity 8.22 we saw that the (2n+ 1)st order Taylor polynomial P2n+1(x) for sin(x) centered at
x = 0 is

P2n+1(x) = x− x3

3!
+
x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
=

n∑

k=0

(−1)k
x2k+1

(2k + 1)!
.

It is instructive to consider the graphical behavior of these functions; Figure 8.6 shows the graphs
of a few of the Taylor polynomials centered at 0 for the sine function.

Figure 8.6: The order 1, 5, 7, and 9 Taylor polynomials centered at x = 0 for f(x) = sin(x).

Notice that P1(x) is close to the sine function only for values of x that are close to 0, but as
we increase the degree of the Taylor polynomial the Taylor polynomials provide a better fit to the
graph of the sine function over larger intervals. This illustrates the general behavior of Taylor
polynomials: for any sufficiently well-behaved function, the sequence {Pn(x)} of Taylor polyno-
mials converges to the function f on larger and larger intervals (though those intervals may not
necessarily increase without bound). If the Taylor polynomials ultimately converge to f on its
entire domain, we write

f(x) =

∞∑

k=0

f (k)(a)

k!
(x− a)k.
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Definition 8.7. Let f be a function all of whose derivatives exist at x = a. The Taylor series for f
centered at x = a is the series Tf (x) defined by

Tf (x) =
∞∑

k=0

f (k)(a)

k!
(x− a)k.

In the special case where a = 0 in Definition 8.7, the Taylor series is also called the Maclaurin
series for f . From Example 8.2 we know the nth order Taylor polynomial centered at 0 for the
exponential function ex; thus, the Maclaurin series for ex is

∞∑

k=0

xk

k!
.

Activity 8.23.
(a) Plot the graphs of several of Taylor polynomials centered at 0 (of order at least 5) for ex

and convince yourself that these Taylor polynomials converge to ex for every value of
x.

(b) Draw the graphs of several of the Taylor polynomials centered at 0 (of order at least 6)
for cos(x) and convince yourself that these Taylor polynomials converge to cos(x) for
every value of x. Write the Taylor series centered at 0 for cos(x).

(c) Draw the graphs of several of the Taylor polynomials centered at 0 for 1
1−x . Based on

your graphs, for what values of x do these Taylor polynomials appear converge to 1
1−x .

How is this situation different from what we observe with ex and cos(x)? In addition,
write the Taylor series centered at 0 for 1

1−x .

C

The Maclaurin series for ex, sin(x), cos(x), and 1
1−x will be used frequently, so we should be

certain to know and recognize them well.

The Interval of Convergence of a Taylor Series

In the previous section (in Figure 8.6 and Activity 8.23) we observed that the Taylor polynomials
centered at 0 for ex, cos(x), and sin(x) converged to these functions for all values of x in their
domain, but that the Taylor polynomials centered at 0 for 1

1−x converged to 1
1−x for only some

values of x. In fact, the Taylor polynomials centered at 0 for 1
1−x converge to 1

1−x on the interval
(−1, 1) and diverge for all other values of x. So the Taylor series for a function f(x) does not need
to converge for all values of x in the domain of f .

Our observations to date suggest two natural questions: can we determine the values of x for
which a given Taylor series converges? Moreover, given the Taylor series for a function f , does it
actually converge to f(x) for those values of x for which the Taylor series converges?
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Example 8.3. Graphical evidence suggests that the Taylor series centered at 0 for ex converges for
all values of x. To verify this, use the Ratio Test determine all values of x for which the Taylor
series ∞∑

k=0

xk

k!
(8.21)

converges absolutely.

Solution. In previous work, we used the Ratio Test on series of numbers that did not involve
a variable; recall, too, that the Ratio Test only applies to series of nonnegative terms. In this
example, we have to address the presence of the variable x. Because we are interested in absolute
convergence, we apply the Ratio Test to the series

∞∑

k=0

∣∣∣∣
xk

k!

∣∣∣∣ =
∞∑

k=0

|x|k
k!

.

Now, observe that

lim
k→∞

ak+1

ak
= lim

k→∞

|x|k+1

(k+1)!

|x|k
k

= lim
k→∞

|x|k+1k!

|x|k(k + 1)!

= lim
k→∞

|x|
k + 1

= 0

for any value of x. So the Taylor series (8.21) converges absolutely for every value of x, and thus
converges for every value of x.

One key question remains: while the Taylor series for ex converges for all x, what we have
done does not tell us that this Taylor series actually converges to ex for each x. We’ll return to this
question when we consider the error in a Taylor approximation near the end of this section.

We can apply the main idea from Example 8.3 in general. To determine the values of x for
which a Taylor series

∞∑

k=0

ck(x− a)k,

centered at x = a will converge, we apply the Ratio Test with ak = |ck(x− a)k| and recall that the
series to which the Ratio Test is applied converges if limk→∞

ak+1

ak
< 1.

Observe that
ak+1

ak
= |x− a| |ck+1|

|ck|
,
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so when we apply the Ratio Test, we get that

lim
k→∞

ak+1

ak
= lim

k→∞
|x− a|ck+1

ck
.

Note further that ck = f (k)(a)
k! , and say that

lim
k→∞

ck+1

ck
= L.

Thus, we have found that
lim
k→∞

ak+1

ak
= |x− a| · L.

There are three important possibilities for L: L can be 0, a finite positive value, or infinite. Based
on this value of L, we can therefore determine for which values of x the original Taylor series
converges.

• If L = 0, then the Taylor series converges on (−∞,∞).

• If L is infinite, then the Taylor series converges only at x = a.

• If L is finite and nonzero, then the Taylor series converges absolutely for all x that satisfy

|x− a| · L < 1.

In other words, the series converges absolutely for all x such that

|x− a| < 1

L
,

which is also the interval (
a− 1

L
, a+

1

L

)
.

Because the Ratio Test is inconclusive when the |x − a| · L = 1, the endpoints a ± 1
L have to

be checked separately.

It is important to notice that the set of x values at which a Taylor series converges is always
an interval centered at x = a. For this reason, the set on which a Taylor series converges is called
the interval of convergence. Half the length of the interval of convergence is called the radius of
convergence. If the interval of convergence of a Taylor series is infinite, then we say that the radius
of convergence is infinite.

Activity 8.24.
(a) Use the Ratio Test to explicitly determine the interval of convergence of the Taylor series

for f(x) = 1
1−x centered at x = 0.

(b) Use the Ratio Test to explicitly determine the interval of convergence of the Taylor series
for f(x) = cos(x) centered at x = 0.
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(c) Use the Ratio Test to explicitly determine the interval of convergence of the Taylor series
for f(x) = sin(x) centered at x = 0.

C

The Ratio Test tells us how we can determine the set of x values for which a Taylor series
converges absolutely. However, just because a Taylor series for a function f converges, we cannot
be certain that the Taylor series actually converges to f(x) on its interval of convergence. To show
why and where a Taylor series does in fact converge to the function f , we next consider the error
that is present in Taylor polynomials.

Error Approximations for Taylor Polynomials

We now know how to find Taylor polynomials for functions such as sin(x), as well as how to
determine the interval of convergence of the corresponding Taylor series. In what follows next, we
develop an error bound for approximations with Taylor polynomials that will tell us how well an
nth order Taylor polynomial Pn(x) approximates its generating function f(x). This error bound
will also allow us to determine whether a Taylor series on its interval of convergence actually
equals the function f from which the Taylor series is derived. Finally, we will be able to use the
error bound to determine the order of the Taylor polynomial Pn(x) for a function f that we need
to ensure that Pn(x) approximates f(x) to any desired degree of accuracy.

To do all of this, we need to compare Pn(x) to f(x). For this argument, we assume throughout
that we center our approximations at 0 (a similar argument holds for approximations centered at
a). We define the exact error, En(x), that results from approximating f(x) with Pn(x) by

En(x) = f(x)− Pn(x).

We are particularly interested in |En(x)|, the distance between Pn and f . Note that since

P (k)
n (0) = f (k)(0)

for 0 ≤ k ≤ n, we know that
E(k)
n (0) = 0

for 0 ≤ k ≤ n. Furthermore, since Pn(x) is a polynomial of degree less than or equal to n, we
know that

P (n+1)(x) = 0.

Thus, since E(n+1)
n (x) = f (n+1)(x)− P (n+1)(x), it follows that

E(n+1)
n (x) = f (n+1)(x)

for all x.

Suppose that we want to approximate f(x) at a number c close to 0 using Pn(c). If we assume
|f (n+1)(t)| is bounded by some number M on [0, c], so that

∣∣∣f (n+1)(t)
∣∣∣ ≤M
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for all 0 ≤ t ≤ c, then we can say that
∣∣∣E(n+1)

n (t)
∣∣∣ =

∣∣∣f (n+1)(t)
∣∣∣ ≤M

for all t between 0 and c. Equivalently,

−M ≤ E(n+1)
n (t) ≤M (8.22)

on [0, c]. Next, we integrate the three terms in the inequality (8.22) from t = 0 to t = x, and thus
find that ∫ x

0
−M dt ≤

∫ x

0
E(n+1)
n (t) dt ≤

∫ x

0
M dt

for every value of x in [0, c]. Since E(n)
n (0) = 0, the First FTC tells us that

−Mx ≤ E(n)
n (x) ≤Mx

for every x in [0, c].

Integrating the most recent inequality, we obtain
∫ x

0
−Mt dt ≤

∫ x

0
E(n)
n (t) dt ≤

∫ x

0
Mt dt

and thus

−Mx2

2
≤ E(n−1)

n (x) ≤Mx2

2
for all x in [0, c].

Integrating n times, we arrive at

−M xn+1

(n+ 1)!
≤ En(x) ≤M xn+1

(n+ 1)!

for all x in [0, c]. This enables us to conclude that

|En(x)| ≤M |x|n+1

(n+ 1)!

for all x in [0, c], which shows an important bound on the approximation’s error, En.

Our work above was based on the approximation centered at a = 0; the argument may be
generalized to hold for any value of a, which results in the following theorem.

The Lagrange Error Bound for Pn(x). Let f be a continuous function with n + 1 continu-
ous derivatives. Suppose that M is a positive real number such that

∣∣f (n+1)(x)
∣∣ ≤ M on the

interval [a, c]. If Pn(x) is the nth order Taylor polynomial for f(x) centered at x = a, then

|Pn(c)− f(c)| ≤M |c− a|
n+1

(n+ 1)!
.

This error bound may now be used to tell us important information about Taylor polynomials
and Taylor series, as we see in the following examples and activities.
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Example 8.4. Determine how well the 10th order Taylor polynomial P10(x) for sin(x), centered at
0, approximates sin(2).

Solution. To answer this question we use f(x) = sin(x), c = 2, a = 0, and n = 10 in the Lagrange
error bound formula. To use the bound, we also need to find an appropriate value for M . Note
that the derivatives of f(x) = sin(x) are all equal to ± sin(x) or ± cos(x). Thus,

∣∣∣f (n+1)(x)
∣∣∣ ≤ 1

for any n and x. Therefore, we can choose M to be 1. Then

|P10(2)− f(2)| ≤ (1)
|2− 0|11

(11)!
=

211

(11)!
≈ 0.00005130671797.

So P10(2) approximates sin(2) to within at most 0.00005130671797. A computer algebra system
tells us that

P10(2) ≈ 0.9093474427 and sin(2) ≈ 0.9092974268

with an actual difference of about 0.0000500159.

Activity 8.25.

Let Pn(x) be the nth order Taylor polynomial for sin(x) centered at x = 0. Determine how large
we need to choose n so that Pn(2) approximates sin(2) to 20 decimal places.

C

Example 8.5. Show that the Taylor series for sin(x) actually converges to sin(x) for all x.

Solution. Recall from the previous example that since f(x) = sin(x), we know
∣∣∣f (n+1)(x)

∣∣∣ ≤ 1

for any n and x. This allows us to choose M = 1 in the Lagrange error bound formula. Thus,

|Pn(x)− sin(x)| ≤ |x|n+1

(n+ 1)!
(8.23)

for every x.
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We showed in earlier work with the Taylor series
∞∑

k=0

xk

k!
converges for every value of x. Since

the terms of any convergent series must approach zero, it follows that

lim
n→∞

xn+1

(n+ 1)!
= 0

for every value of x. Thus, taking the limit as n→∞ in the inequality (8.23), it follows that

lim
n→∞

Pn(x)− sin(x)| = 0

. As a result, we can now write

sin(x) =
∞∑

n=0

(−1)nx2n+1

(2n+ 1)!

for every real number x.

Activity 8.26.
(a) Show that the Taylor series centered at 0 for cos(x) converges to cos(x) for every real

number x.

(b) Next we consider the Taylor series for ex.

(i) Show that the Taylor series centered at 0 for ex converges to ex for every nonnega-
tive value of x.

(ii) Show that the Taylor series centered at 0 for ex converges to ex for every negative
value of x.

(iii) Explain why the Taylor series centered at 0 for ex converges to ex for every real
number x. Recall that we earlier showed that the Taylor series centered at 0 for ex

converges for all x, and we have now completed the argument that the Taylor series
for ex actually converges to ex for all x.

(c) Let Pn(x) be the nth order Taylor polynomial for ex centered at 0. Find a value of n so
that Pn(5) approximates e5 correct to 8 decimal places.

C

Summary

In this section, we encountered the following important ideas:

• We can use Taylor polynomials to approximate complicated functions. This allows us to ap-
proximate values of complicated functions using only addition, subtraction, multiplication,
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and division of real numbers. The nth order Taylor polynomial centered at x = a of a function
f is

f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 +

f (3)(a)

3!
(x−a)3 + · · ·+ f (n)(a)

n!
(x−a)n =

n∑

k=0

f (k)(a)

k!
(x−a)k.

• The Taylor series centered at x = a for a function f is

∞∑

k=0

f (k)(a)

k!
(x− a)k.

• The nth order Taylor polynomial centered at a for f is the nth partial sum of its Taylor series
centered at a. So the nth order Taylor polynomial for a function f is an approximation to f on
the interval where the Taylor series converges; for the values of x for which the Taylor series
converges to f we write

f(x) =
∞∑

k=0

f (k)(a)

k!
(x− a)k.

• The Lagrange Error Bound shows us how to determine the accuracy in using a Taylor polyno-
mial to approximate a function. More specifically, if Pn(x) is the nth order Taylor polynomial
for f centered at x = a and if M is an upper bound for

∣∣f (n+1)(x)
∣∣ on the interval [a, c], then

|Pn(c)− f(c)| ≤M |c− a|
n+1

(n+ 1)!
.

Exercises

1. In this exercise we investigation the Taylor series of polynomial functions.

(a) Find the 3rd order Taylor polynomial centered at a = 0 for f(x) = x3 − 2x2 + 3x − 1.
Does your answer surprise you? Explain.

(b) Without doing any additional computation, find the 4th, 12th, and 100th order Taylor
polynomials (centered at a = 0) for f(x) = x3 − 2x2 + 3x − 1. Why should you expect
this?

(c) Now suppose f(x) is a degree m polynomial. Completely describe the nth order Taylor
polynomial (centered at a = 0) for each n.

2. The examples we have considered in this section have all been for Taylor polynomials and
series centered at 0, but Taylor polynomials and series can be centered at any value of a. We
look at examples of such Taylor polynomials in this exercise.

(a) Let f(x) = sin(x). Find the Taylor polynomials up through order four of f centered at
x = π

2 . Then find the Taylor series for f(x) centered at x = π
2 . Why should you have

expected the result?
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(b) Let f(x) = ln(x). Find the Taylor polynomials up through order four of f centered at
x = 1. Then find the Taylor series for f(x) centered at x = 1.

(c) Use your result from (b) to determine which Taylor polynomial will approximate ln(2)
to two decimal places. Explain in detail how you know you have the desired accuracy.

3. We can use known Taylor series to obtain other Taylor series, and we explore that idea in this
exercise, as a preview of work in the following section.

(a) Calculate the first four derivatives of sin(x2) and hence find the fourth order Taylor
polynomial for f(x) centered at a = 0.

(b) Part (a) demonstrates the brute force approach to computing Taylor polynomials and
series. Now we find an easier method that utilizes a known Taylor series. Recall that
the Taylor series centered at 0 for f(x) = sin(x) is

∞∑

k=0

(−1)k+1 x2k+1

(2k + 1)!
. (8.24)

(i) Substitute x2 for x in the Taylor series (8.24). Write out the first several terms and
compare to your work in part (a). Explain why the substitution in this problem
should give the Taylor series for sin(x2) centered at 0.

(ii) What should we expect the interval of convergence of the series for sin(x2) to be?
Explain in detail.

4. Based on the examples we have seen, we might expect that the Taylor series for a function f
always converges to the values f(x) on its interval of convergence. We explore that idea in

more detail in this exercise. Let f(x) =

{
e−1/x2 if x 6= 0,

0 if x = 0.

(a) Show, using the definition of the derivative, that f ′(0) = 0.

(b) It can be shown that f (n)(0) = 0 for all n ≥ 2. Assuming that this is true, find the Taylor
series for f centered at 0.

(c) What is the interval of convergence of the Taylor series centered at 0 for f? Explain. For
which values of x the interval of convergence of the Taylor series does the Taylor series
converge to f(x)?
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8.6 Power Series

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is a power series?

• What are some important uses of power series?

• What is the connection between power series and Taylor series?

Introduction

We have noted at several points in our work with Taylor polynomials and Taylor series that poly-
nomial functions are the simplest possible functions in mathematics, in part because they essen-
tially only require addition and multiplication to evaluate. Moreover, from the point of view of
calculus, polynomials are especially nice: we can easily differentiate or integrate any polynomial.
In light of our work in Section 8.5, we now know that several important non-polynomials have
polynomial-like expansions. For example, for any real number x,

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · · .

As we continue our study of infinite series, there are two settings where other series like the one
for ex arise: one is where we are simply given an expression like

1 + 2x+ 3x2 + 4x3 + · · ·

and we seek the values of x for which the expression makes sense, while another is where we are
trying to find an unknown function f , and we think about the possibility that the function has
expression

f(x) = a0 + a1x+ a2x
2 + · · ·+ akx

k + · · · ,
and we try to determine the values of the constants a0, a1, . . .. The latter situation is explored in
Preview Activity 8.6.

Preview Activity 8.6. In Chapter 7, we learned some of the many important applications of dif-
ferential equations, and learned some approaches to solve or analyze them. Here, we consider an
important approach that will allow us to solve a wider variety of differential equations.

Let’s consider the familiar differential equation from exponential population growth given by

y′ = ky, (8.25)

where k is the constant of proportionality. While we can solve this differential equation using
methods we have already learned, we take a different approach now that can be applied to a
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much larger set of differential equations. For the rest of this activity, let’s assume that k = 1. We
will use our knowledge of Taylor series to find a solution to the differential equation (8.25).

To do so, we assume that we have a solution y = f(x) and that f(x) has a Taylor series that
can be written in the form

y = f(x) =

∞∑

k=0

akx
k,

where the coefficients ak are undetermined. Our task is to find the coefficients.

(a) Assume that we can differentiate a power series term by term. By taking the derivative of
f(x) with respect to x and substituting the result into the differential equation (8.25), show
that the equation

∞∑

k=1

kakxk−1 =

∞∑

n=0

akxk

must be satisfied in order for f(x) =
∑∞

k=0 akx
k to be a solution of the DE.

(b) Two series are equal if and only if they have the same coefficients on like power terms. Use
this fact to find a relationship between a1 and a0.

(c) Now write a2 in terms of a1. Then write a2 in terms of a0.

(d) Write a3 in terms of a2. Then write a3 in terms of a0.

(e) Write a4 in terms of a3. Then write a4 in terms of a0.

(f) Observe that there is a pattern in (b)-(e). Find a general formula for ak in terms of a0.

(g) Write the series expansion for y using only the unknown coefficient a0. From this, deter-
mine what familiar functions satisfy the differential equation (8.25). (Hint: Compare to a
familiar Taylor series.)

./

Power Series

As Preview Activity 8.6 shows, it can be useful to treat an unknown function as if it has a Taylor
series, and then determine the coefficients from other information. In other words, we define a
function as an infinite series of powers of x and then determine the coefficients based on something
besides a formula for the function. This method of using series illustrated in Preview Activity 8.6
to solve differential equations is a powerful and important one that allows us to approximate solu-
tions to many different types of differential equations even if we cannot explicitly solve them. This
approach is different from defining a Taylor series based on a given function, and these functions
we define with arbitrary coefficients are given a special name.
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Definition 8.8. A power series centered at x = a is a function of the form

∞∑

k=0

ck(x− a)k (8.26)

where {ck} is a sequence of real numbers and x is an independent variable.

We can substitute different values for x and test whether the resulting series converges or
diverges. Thus, a power series defines a function f whose domain is the set of x values for which
the power series converges. We therefore write

f(x) =
∞∑

k=0

ck(x− a)k.

It turns out that7, on its interval of convergence, a power series is the Taylor series of the
function that is the sum of the power series, so all of the techniques we developed in the previous
section can be applied to power series as well.

Example 8.6. Consider the power series defined by

f(x) =
∞∑

k=0

xk

2k
.

What are f(1) and f
(

3
2

)
? Find a general formula for f(x) and determine the values for which this

power series converges.

Solution. If we evaluate f at x = 1 we obtain the series

∞∑

k=0

1

2k

which is a geometric series with ratio 1
2 . So we can sum this series and find that

f(1) =
1

1− 1
2

= 2.

Similarly,

f(3/2) =

∞∑

k=0

(
3

4

)k
=

1

1− 3
4

= 4.

7See Exercise 2 in this section.
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In general, f(x) is a geometric series with ratio x
2 and

f(x) =
∞∑

k=0

(x
2

)n
=

1

1− x
2

=
2

2− x

provided that−1 < x
2 < 1 (so that the ratio is less than 1 in absolute value). Thus, the power series

that defines f converges for −2 < x < 2.

As with Taylor series, we define the interval of convergence of a power series (8.26) to be the
set of values of x for which the series converges. In the same way as we did with Taylor series, we
typically use the Ratio Test to find the values of x for which the power series converges absolutely,
and then check the endpoints separately if the radius of convergence is finite.

Example 8.7. Let f(x) =
∞∑

k=1

xk

k2
. Determine the interval of convergence of this power series.

Solution. First we will draw graphs of some of the partial sums of this power series to get an idea
of the interval of convergence. Let

Sn(x) =

n∑

k=1

xk

k2

for each n ≥ 1. Figure 8.7 shows plots of S10(x) (in red), S25(x) (in blue), and S50(x) (in green).
The behavior of S50 particularly highlights that it appears to be converging to a particular curve

Figure 8.7: Graphs of partial sums of the power series
∑∞
k=1

xk

k2
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on the interval (−1, 1), while growing without bound outside of that interval. This suggests that
the interval of convergence might be −1 < x < 1. To more fully understand this power series, we
apply the Ratio Test to determine the values of x for which the power series converges absolutely.
For the given series, we have

ak =
xk

k2
,

so

lim
k→∞

|ak+1|
|ak|

= lim
k→∞

|x|k+1

(k+1)2

|x|k
k2

= lim
k→∞

|x|
(

k

k + 1

)2

= |x| lim
k→∞

(
k

k + 1

)2

= |x|.

Therefore, the Ratio Test tells us that the given power series f(x) converges converges absolutely
when |x| < 1 and diverges when |x| > 1. Since the Ratio Test is inconclusive when |x| = 1, we
need to check x = 1 and x = −1 individually.

When x = 1, observe that

f(1) =

∞∑

k=1

1

k2
.

This is a p-series with p > 1, which we know converges. When x = −1, we have

f(−1) =
∞∑

k=1

(−1)k

k2
.

This is an alternating series, and since the sequence
{

1
n2

}
decreases to 0, the power series con-

verges when x = −1 by the Alternating Series Test. Thus, the interval of convergence of this
power series is −1 ≤ x ≤ 1.

Activity 8.27.

Determine the interval of convergence of each power series.

(a)
∞∑

k=1

(x− 1)k

3k

(b)
∞∑

k=1

kxk
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(c)
∞∑

k=1

k2(x+ 1)k

4k

(d)
∞∑

k=1

xk

(2k)!

(e)
∞∑

k=1

k!xk

C

Manipulating Power Series

Recall that we know several power series expressions for important functions such as sin(x) and
ex. Often, we can take a known power series expression for such a function and use that series ex-
pansion to find a power series for a different, but related, function. The next activity demonstrates
one way to do this.

Activity 8.28.

Our goal in this activity is to find a power series expansion for f(x) =
1

1 + x2
centered at x = 0.

While we could use the methods of Section 8.5 and differentiate f(x) =
1

1 + x2
several times to

look for patterns and find the Taylor series for f(x), we seek an alternate approach because of
how complicated the derivatives of f(x) quickly become.

(a) What is the Taylor series expansion for g(x) = 1
1−x? What is the interval of convergence

of this series?

(b) How is g(−x2) related to f(x)? Explain, and hence substitute −x2 for x in the power
series expansion for g(x). Given the relationship between g(−x2) and f(x), how is the
resulting series related to f(x)?

(c) For which values of x will this power series expansion for f(x) be valid? Why?

C

In a previous section we determined several important Maclaurin series and their intervals
of convergence. Here, we list these key functions and remind ourselves of their corresponding
expansions.
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sin(x) =
∞∑

k=0

(−1)kx2k+1

(2k + 1)!
for −∞ < x <∞

cos(x) =
∞∑

k=0

(−1)kx2k

(2k)!
for −∞ < x <∞

ex =
∞∑

k=0

xk

k!
for −∞ < x <∞

1

1− x =
∞∑

k=0

xk for −1 < x < 1

As we saw in Activity 8.28, we can use these known series find other power series expan-
sions for related functions such as sin(x2), e5x3 , and cos(x5). Another important way that we can
manipulate power series is illustrated in the next activity.

Activity 8.29.

Let f be the function given by the power series expansion

f(x) =
∞∑

k=0

(−1)k
x2k

(2k)!
.

(a) Assume that we can differentiate a power series term by term, just like we can differen-
tiate a (finite) polynomial. Use the fact that

f(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ (−1)k

x2k

(2k)!
+ · · ·

to find a power series expansion for f ′(x).

(b) Observe that f(x) and f ′(x) have familiar Taylor series. What familiar functions are
these? What known relationship does our work demonstrate?

(c) What is the series expansion for f ′′(x)? What familiar function is f ′′(x)?

C

It turns out that our work in Activity 8.28 holds more generally. The corresponding theorem,
which we will not prove, states that we can differentiate a power series for a function f term by
term and obtain the series expansion for f ′, and similarly we can integrate a series expansion for

a function f term by term and obtain the series expansion for
∫
f(x) dx. For both, the radius

of convergence of the resulting series is the same as the original, though it is possible that the
convergence status of the resulting series may differ at the endpoints. The formal statement of the
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Power Series Differentiation and Integration Theorem follows.

Power Series Differentiation and Integration Theorem. Suppose f(x) has a power series
expansion

f(x) =

∞∑

k=0

ckx
k

so that the series converges absolutely to f(x) on the interval −r < x < r. Then, the power

series
∞∑

k=1

kckx
k−1 obtained by differentiating the power series for f(x) term by term converges

absolutely to f ′(x) on the interval −r < x < r. That is,

f ′(x) =
∞∑

k=1

kckx
k−1, for |x| < r.

Similarly, the power series
∞∑

k=0

ck
xk+1

k + 1
obtained by integrating the power series for f(x) term

by term converges absolutely on the interval −r < x < r, and

∫
f(x) dx =

∞∑

k=0

ck
xk+1

k + 1
+ C, for |x| < r.

This theorem validates the steps we took in Activity 8.29. It is important to note that this result
about differentiating and integrating power series tells us that we can differentiate and integrate
term by term on the interior of the interval of convergence, but it does not tell us what happens at
the endpoints of this interval. We always need to check what happens at the endpoints separately.
More importantly, we can use use the approach of differentiating or integrating a series term by
term to find new series.

Example 8.8. Find a series expansion centered at x = 0 for arctan(x), as well as its interval of
convergence.

Solution. While we could differentiate arctan(x) repeatedly and look for patterns in the derivative
values at x = 0 in an attempt to find the Maclaurin series for arctan(x) from the definition, it turns
out to be far easier to use a known series in an insightful way. In Activity 8.28, we found that

1

1 + x2
=
∞∑

k=0

(−1)kx2k

for −1 < x < 1. Recall that
d

dx
[arctan(x)] =

1

1 + x2
,
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and therefore ∫
1

1 + x2
dx = arctan(x) + C.

It follows that we can integrate the series for
1

1 + x2
term by term to obtain the power series

expansion for arctan(x). Doing so, we find that

arctan(x) =

∫ ( ∞∑

k=0

(−1)kx2k

)
dx

=

∞∑

k=0

(∫
(−1)kx2k dx

)

=

( ∞∑

k=0

(−1)k
x2k+1

2k + 1

)
+ C.

The Power Series Differentiation and Integration Theorem tells us that this equality is valid for at
least −1 < x < 1.

To find the value of the constant C, we can use the fact that arctan(0) = 0. So

0 = arctan(0) =

( ∞∑

k=0

(−1)k
02k+1

2k + 1

)
+ C = C,

and we must have C = 0. Therefore,

arctan(x) =

∞∑

k=0

(−1)k
x2k+1

2k + 1
(8.27)

for at least −1 < x < 1.

It is a straightforward exercise to check that the power series

∞∑

k=0

(−1)k
x2k+1

2k + 1

converges both when x = −1 and when x = −1; in each case, we have an alternating series with
terms 1

2k+1 that decrease to 0, and thus the interval of convergence for the series expansion for
arctan(x) in Equation (8.27) is −1 ≤ x ≤ 1.

Activity 8.30.

Find a power series expansion for ln(1 + x) centered at x = 0 and determine its interval of

convergence. (Hint: Use the Taylor series expansion for
1

1 + x
centered at x = 0.)
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C

Summary

In this section, we encountered the following important ideas:

• A power series is a series of the form
∞∑

k=0

akx
k.

• We can often assume a solution to a given problem can be written as a power series, then use
the information in the problem to determine the coefficients in the power series. This method
allows us to approximate solutions to certain problems using partial sums of the power series;
that is, we can find approximate solutions that are polynomials.

• The connection between power series and Taylor series is that they are essentially the same
thing: on its interval of convergence a power series is the Taylor series of its sum.

Exercises

1. We can use power series to approximate definite integrals to which known techniques of inte-
gration do not apply. We will illustrate this in this exercise with the definite integral

∫ 1
0 sin(x2) ds.

(a) Use the Taylor series for sin(x) to find the Taylor series for sin(x2). What is the interval
of convergence for the Taylor series for sin(x2)? Explain.

(b) Integrate the Taylor series for sin(x2) term by term to obtain a power series expansion
for
∫

sin(x2) dx.

(c) Use the result from part (b) to explain how to evaluate
∫ 1

0 sin(x2) dx. Determine the
number of terms you will need to approximate

∫ 1
0 sin(x2) dx to 3 decimal places.

2. There is an important connection between power series and Taylor series. Suppose f is defined
by a power series centered at 0 so that

f(x) =
∞∑

k=0

akx
k.

(a) Determine the first 4 derivatives of f evaluated at 0 in terms of the coefficients ak.

(b) Show that f (n)(0) = n!an for each positive integer n.

(c) Explain how the result of (b) tells us the following:
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On its interval of convergence, a power series is the Taylor series of its sum.

3. In this exercise we will begin with a strange power series and then find its sum. The Fibonacci
sequence {fn} is a famous sequence whose first few terms are

f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13, · · · ,

where each term in the sequence after the first two is the sum of the preceding two terms. That
is, f0 = 0, f1 = 1 and for n ≥ 2 we have

fn = fn−1 + fn−2.

Now consider the power series

F (x) =

∞∑

k=0

fkx
k.

We will determine the sum of this power series in this exercise.

(a) Explain why each of the following is true.

(i) xF (x) =

∞∑

k=1

fk−1x
k

(ii) x2F (x) =
∞∑

k=2

fk−2x
k

(b) Show that
F (x)− xF (x)− x2F (x) = x.

(c) Now use the equation
F (x)− xF (x)− x2F (x) = x

to find a simple form for F (x) that doesn’t involve a sum.

(d) Use a computer algebra system or some other method to calculate the first 8 derivatives
of x

1−x−x2 evaluated at 0. Why shouldn’t the results surprise you?

4. Airy’s equation8

y′′ + xy = 0, (8.28)

can be used to model an undamped vibrating spring with spring constant x (note that y is an
unknown function of x). So the solution to this differential equation will tell us the behavior

8The general differential equations of the form y′′ ± k2xy = 0 is called Airy’s equation. These equations arise in
many problems, such as the study of diffraction of light, diffraction of radio waves around an object, aerodynamics,
and the buckling of a uniform column under its own weight.
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of a spring-mass system as the spring ages (like an automobile shock absorber). Assume that a
solution y = f(x) has a Taylor series that can be written in the form

y =
∞∑

k=0

akx
k,

where the coefficients are undetermined. Our job is to find the coefficients.

(a) Differentiate the series for y term by term to find the series for y′. Then repeat to find
the series for y′′.

(b) Substitute your results from part (a) into the Airy equation and show that we can write
Equation (8.28) in the form

∞∑

k=2

(k − 1)kakx
k−2 +

∞∑

k=0

akx
k+1 = 0. (8.29)

(c) At this point, it would be convenient if we could combine the series on the left in (8.29),
but one written with terms of the form xk−2 and the other with terms in the form xk+1.
Explain why

∞∑

k=2

(k − 1)kakx
k−2 =

∞∑

k=0

(k + 1)(k + 2)ak+2x
k. (8.30)

(d) Now show that
∞∑

k=0

akx
k+1 =

∞∑

k=1

ak−1x
k. (8.31)

(e) We can now substitute (8.30) and (8.31) into (8.29) to obtain

∞∑

n=0

(n+ 1)(n+ 2)an+2x
n +

∞∑

n=1

an−1x
n = 0. (8.32)

Combine the like powers of x in the two series to show that our solution must satisfy

2a2 +

∞∑

k=1

[(k + 1)(k + 2)ak+2 + ak−1]xk = 0. (8.33)

(f) Use equation (8.33) to show the following:

(i) a3k+2 = 0 for every positive integer k,
(ii) a3k = 1

(2)(3)(5)(6)···(3k−1)(3k)a0 for k ≥ 1,

(iii) a3k+1 = 1
(3)(4)(6)(7)···(3k)(3k+1)a1 for k ≥ 1.
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(g) Use the previous part to conclude that the general solution to the Airy equation (8.28)
is

y = a0

(
1 +

∞∑

k=1

x3k

(2)(3)(5)(6) · · · (3k − 1)(3k)

)
+a1

(
x+

∞∑

k=1

x3k+1

(3)(4)(6)(7) · · · (3k)(3k + 1)

)
.

Any values for a0 and a1 then determine a specific solution that we can approximate as
closely as we like using this series solution.



Appendix A

A Short Table of Integrals

(1)
∫

du

a2 + u2
=

1

a
arctan

u

a
+ C

(2)
∫

du√
u2 ± a2

= ln |u+
√
u2 ± a2|+ C

(3)
∫ √

u2 ± a2 du =
u

2

√
u2 ± a2 ± a2

2
ln |u+

√
u2 ± a2|+ C

(4)
∫

u2du√
u2 ± a2

=
u

2

√
u2 ± a2 ∓ a2

2
ln |u+

√
u2 ± a2|+ C

(5)
∫

du

u
√
u2 + a2

= −1

a
ln

∣∣∣∣∣
a+
√
u2 + a2

u

∣∣∣∣∣+ C

(6)
∫

du

u
√
u2 − a2

=
1

a
sec−1 u

a
+ C

(7)
∫

du√
a2 − u2

= arcsin
u

a
+ C

(8)
∫ √

a2 − u2 du =
u

2

√
a2 − u2 +

a2

2
arcsin

u

a
+ C

(9)
∫

u2

√
a2 − u2

du = −u
2

√
a2 − u2 +

a2

2
arcsin

u

a
+ C
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(10)
∫

du

u
√
a2 − u2

= −1

a
ln

∣∣∣∣∣
a+
√
a2 − u2

u

∣∣∣∣∣+ C

(11)
∫

du

u2
√
a2 − u2

= −
√
a2 − u2

a2u
+ C
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u-substitution, 276

absolute convergence, 470
acceleration, 54
alternating series, 465
alternating series estimation theorem, 469
alternating series test, 468
antiderivative, 201

general, 241, 256
graph, 253

antidifferentiation, 199
arc length, 323, 324
arcsine, 124
area, 319

under velocity function, 197
asymptote, 145

horizontal, 145
vertical, 145

autonomous, 378
average rate of change, 20
average value of a function, 229
average velocity, 2

backward difference, 42

carrying capacity, 422
central difference, 43
chain rule, 113
codomain, 121
composition, 110
concave down, 54
concave up, 54
concavity, 53
conditional convergence, 470
constant multiple rule, 83
continuous, 64

continuous at x = a, 64
converge

sequence, 430
convergence

absolute, 470
conditional, 470

convergent sequence, 431
cosecant, 106
cotangent, 106
critical value, 154
cusp, 67

decreasing, 48
definite integral

constant multiple rule, 227
definition, 222
sum rule, 228

density, 339
derivative, 21

arcsine, 126
constant function, 81
cosine, 91
cotangent, 107
definition, 22, 33
exponential function, 82
logarithm, 122
power function, 81
sine, 91
tangent, 107

difference quotient, 42
differentiable, 22, 66
differential equation, 372

autonomous, 378
first order, 378
solution, 375

disk method, 330
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distance traveled, 199
diverge

sequence, 431
Divergence Test, 452
domain, 121

equilibrium solution, 387
stable, 388
unstable, 388

error, 307
error functin, 266
error function, 300
Euler’s Method, 393

error, 397
extreme value, 152
extreme value theorem, 174

Fibonacci sequence, 427
first derivative test, 154
foot-pound, 349
forward difference, 43
FTC, 239
function, 121
function-derivative pair, 277
Fundamental Theorem of Calculus

First, 262
Second, 264

fundamental theorem of calculus, 236

geometric series, 437
common ratio, 437

geometric sum, 436

harmonic series, 452
Hooke’s Law, 351

implicit function, 132
improper integral, 361

converges, 363
diverges, 363
unbounded integrand, 364
unbounded region of integration, 361

increasing, 48
indefinite integral, 276

evaluate, 276

indeterminate, 13
infinite series, 447
infinity, 144
inflection point, 159
initial condition, 256
instantaneous rate of change, 22, 41
instantaneous velocity, 4, 16
integral function, 257
integral sign, 223
integral test, 452, 455
integrand, 223
integration by parts, 286
interval of convergence, 485

L’Hopital’s rule, 141, 146
Lagrange error bound, 489
left limit, 61
lemniscate, 132
limit

definition, 12
one-sided, 61

limit comparison test, 456
limits of integration, 223
local linearization, 72
locally linear, 67
logistic, 422
logistic equation, 422

solution, 423

Maclaurin series, 485
mass, 339
maximum

absolute, 151
global, 151
local, 152
relative, 152

midpoint rule
error, 307

minimum
absolute, 151
global, 151
local, 152
relative, 152

net signed area, 216
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Newton’s Law of Cooling, 379
Newton-meter, 349

one-to-one, 121
onto, 121

partial fractions, 295
partial sum, 439, 449
per capita growth rate, 420
position, 2
power series, 495
product rule, 96

quotient rule, 98

ratio test, 458
related rates, 187
Riemann sum, 213

left, 213
middle, 214
right, 213

right limit, 61

secant, 106
secant line, 23
second derivative, 51
second derivative test, 156
separable, 401, 402
sequence, 429

term, 430
sequence of partial sums, 449
series, 447

converges, 449
diverges, 449
geometric, 437

sigma notation, 210
Simpson’s rule, 310
slope field, 383, 385
solid of revolution, 328
stable, 388
sum rule, 83

tangent, 105
tangent line, 23

equation, 72

slope, 23
Taylor polynomial

error, 488
Taylor polynomials, 480
Taylor series, 484, 485

interval of convergence, 485
radius of convergence, 487

total change theorem, 242, 243
trapezoid rule, 305

error, 307
triangular numbers, 427
trigonometry, 105

fundamental trigonometric identity, 105

unstable, 388

washer method, 331
weighted average, 311, 342
work, 349, 350
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