
Math 32a Fall 2003 R. Palais

A Modern Course on

Curves and Surfaces

Richard S. Palais



Math 32a Fall 2003 R. Palais

Contents

Lecture 1. Introduction 1

Lecture 2. What is Geometry 4

Lecture 3. Geometry of Inner-Product Spaces 7

Lecture 4. Linear Maps and the Euclidean Group 11

Lecture 5. Adjoints of Linear Maps and the Spectral Theorem 14

Lecture 6. Differential Calculus on Inner-Product Spaces 18

Lecture 7. Normed Spaces and Integration 22

Lecture 8. Ordinary Differential Equations (aka ODE) 30

Lecture 9. Linear ODE and Numerical Methods 36

Lecture 10. The Theorem of Frobenius 41

Lecture 11. Differenttable Parametric Curves 47

Lecture 12. Curves in 3-Space 54

Lecture 13. The Fundamental Forms of a Surface 60

Lecture 14. The Fundamental Theorem of Surface Theory 68

Appendix I. The Matlab Projects 75

Appendix II. Homework and Exams 94

Appendix III. Matlab Notes 109

i



Math 32a Fall 2003 R. Palais

Lecture 1
Introduction

1.1 Origins of my teaching this course
I have taught Math 32 many times since I came to Brandeis in 1960—in fact probably

as often as everyone else in the department combined. But this time it is going to be
somewhat different and I want to tell you a little about how I happen to be teaching it
again seven years after I became emeritus.

I became interested in mathematical visualization (using computer graphics) about a
dozen years ago, and I have been working on a program called 3D-XplorMath that dis-
plays a large number of mathematical objects and processes ever since. In fact I retired
from teaching earlier than I otherwise might have in order to have more time to think
about Mathematical Visualization and continue development of the program. If you are a
Mac user and would like to try out 3D-XplorMath, it is available from my web-site:

http://rsp.math.brandeis.edu/3D-XplorMath/TopLevel/download.html
or from VersionTracker.

The program should be thought of as a Mathematical Museum. Although it wasn’t
originally designed as a teaching tool many people started using it as an adjunct to their
instruction and wrote back to me encouraging me to add more features for that purpose.
So about two years ago I applied for an NSF CCLI grant for funding to turn 3DXM into a
curriculum enhancement tool. I am the Principle Investigator on the grant and about six
other mathematicians from all over the world (The 3DXM Consortium) are working with
me on it.

As part of the grant activity we proposed to develop curricula for courses in ODE and
differential geometry, using 3DXM to enhance the teaching in those subjects, and to give
some courses in these subjects to test the new curricula. We gave the first of those pilot
courses last winter in Taiwan to a class of about this size. It was a ”crash course” that
met six hours a week for six weeks and I was part of a team of five who participated in
the instruction.

I think that we were all very surprised at how well the course went and at the enthusiasm
of the students for the way it was taught. In the end we all felt that the success of the
course came not just from using 3DXM to help the students visualize the concepts of the
course, but even more from another learning technique that we stressed. Namely we had
the students form into teams, tht worked together to write their own software to implement
the theoretical material of the course algorithmically. In fact I was so impressed by the
students enthusiasm that I asked to teach Math 32a this Fall and use the same approach.

What does it mean to “implement the theoretical material of the course algorithmically”?
That may sound like just fancy jargon, but I have something very real and specific in mind

1



Math 32a Fall 2003 R. Palais

and since it will play an important role in the way this course is taught, I want to try to
explain it to you now—or at least start.

Mathematical theorems are often described as being either constructive or non-construct-
ive. What exactly is the difference? Let me illustrate with two very famous theorems,

Banach Contraction Principle. If X is a closed subset of Rn and F : X → X sat-
isfies ‖F (x)− F (y)‖ ≤ K ‖x− y‖ for all x, y ∈ X with K < 1 then there is a unique
point p of X such that F (p) = p, and moreover for any point x of X the sequence
F (x), F (F (x)), F (F (F (x))), . . . converges to p.

Brouwer Fixed Point Theorem. If D s the unit disk in the plane and F is any con-
tinuous map of D into itself, then there is a point p of D such that F (p) = p.

These two theorems may appear superficially similar in that both assert the existence
of point p left fixed by a particular kind of map. However, while in the first case the proof
(and the very statement of the theorem) give an algorithm for finding p, in the second case
there is no such algorithm, Instead the proof is by contradiction—it shows that if there
were no such p, then it would be possible to continuously map the disk onto its boundary
by a map leaving each point of the boundary fixed, and this is known to be impossible.

. 1.1—Exercise 1. Let X = [0, 1] and define F : X → X by F (x) = cos(x). Use the
Mean Value Theorem to prove that F satisfies the hypothesis of the Banach Contraction
Principle, and use a hand calculator to estimate the fixed point of F to two decimal places.

1.2 Algorithmic Mathematics
By doing mathematics algorithmically I mean using a computer and some programming

system to actually “create” mathematical objects from constructive proofs of their exis-
tence. But what does it really mean to construct some desired mathematical object on a
computer?

1) First one has to define data structures that describe the mathematical object one is trying
to create and also the other objects that arise in the existence proof. (For example, a
point in the plane is described by a pair (x,y) of floating point numbers, and a triangle
is described by three such pairs.)

2) Then one has to translate the mathematical algorithms for constructing the mathemtat-
ical object into subroutines in the programming system that act on the given data
sructures to construct a data structure describing the desired object.

3) Finally, one has to write graphical procedures to display the data describing the created
object in a meaningful way.

If one has to start from scratch, using a standard low-level programming system like
Pascal, or C or Java, this can be a very difficult task and time-consuming task. But
fortunately there are several excellent “high-level” mathematical programming systems
that have already done much of the work of defining good mathematical data structures
and writing important functions and subroutines that act on these data structures as well

2



Math 32a Fall 2003 R. Palais

as easy to use routines for displaying these mathematical data structures visually. Perhaps
the three most popular are Matlab, Mathematica and Maple.

Mathematica and Maple are fairly similar. Both were designed to work primarily with
symbolic expressions, so they are particularly suited for doing algebra and simplifying com-
plicated expressions. Matlab is primarily a system for doing numerical analysis. Its basic
data structures are vectors and matrices, so it excels in problems that involve numerical
linear algebra. And all three have good visualization “back-ends” for displaying the results
of computation.

It turns out that Matlab’s strong points make it particularly well-suited to carrying out
the sort of projects we will encounter in this course.

In the Taiwan course, we used both Mathematica and Matlab, and students were able
to carry out the projects with both, but our experience was that it was easier to teach the
sudents Matlab and the students found it easier to work with. However, if some of you
already know Mathematica (or Maple) and would likem to use it to do the projects, that
is fine with me.

What are the main programming projects I have in mind. Three of the central theorems
in curve and surface theory have very beautiful construcive proofs. When I taught these
theorems before I never stressed their constructive nature. But in fact actually translating
these theorems into code is quite feasible even for programming beginners, and doing so
will not only make the meaning of the theorems and the proofs much clearer for you, but
also it will be an excellent way for you to become expert in Matlab, a skill that you should
find very useful in the years ahead,

1.3 What next?
That finishes my introduction to the course. In the next lecture we will begin by trying

to make sense of the question, “What is ”Geometry?” Geometry seems such a familiar and
ancient notion that you may be surprised to hear that the mathematicians current concep-
tion of the subject underwent a substantial reformulation a little over a century ago by the
German mathematician Felix Klein in his so-called “Erlanger Program”. As preparation
for my lecture, try looking up “Felix Klein” and “Erlanger Program” on Google.

3



Math 32a Fall 2003 R. Palais

Lecture 2
What is Geometry?

2.1 Groups of Transformations
Let X be some set. In the following we will refer to X as “space”. By a transformation

or bijection of X we will mean a mapping f : X → X that is “one-to-one and onto”. This
means that:

1) if f(x1) = f(x2) then x1 = x2,

2) every y in X is of the form f(x) for some x in X—which by 1) is clearly unique,

and then the inverse of f , denoted by f−1, is defined using 2) to be the mapping of X to
itself f−1(y) := x.

. 2.1—Exercise 1. Check that f−1 is also a bijection of X.

Recall that if f and g are any two self-mappings of X, then their composition f ◦ g is
the mapping of X to X defined by (f ◦ g)(x) := f(g(x)).

. 2.1—Exercise 2. Show that the composition of two bijections of X is again a bijection
of X. Show by an example that composition of bijections is not necessarily commutative,
i.e., it is not true in general that f ◦ g = g ◦ f . (Hint: Take for X the three element set
{1, 2, 3}.) On the other hand, show that f ◦ f−1 and f−1 ◦ f are always both equal to the
identity transformation of X, i.e., the transformtion of X that maps each elemet of X to
itself. Show that the inverse of f ◦ g is g−1 ◦ f−1.

2.1.1 Definition. A set G of transformations of X is called a group of transformations
of X if:

1) it contains the identity transformation,

2) it is closed under composition, and

3) if a transformation f is in G then so also is f−1.

Clearly the set Biject(X) of all transformations of X is the largest group of transforma-
tions of X, and the set consisting of only the identity map of X is the smallest.

. 2.1—Exercise 3. Show that the intersection of any collection of groups of trans-
formations of X is itself a group of transformations of X. Deduce that if S is any set
of transformations of X, then there is is a smallest group of transformations of X that
includes S. This group is called the group generated by S.

4



Math 32a Fall 2003 R. Palais

2.1.2 Felix Klein’s Erlanger Program. In 1872, the German mathematician Felix
Klein, recently appointed to a chair at Erlanger, proposed a new viewpoint towards Geom-
etry. For centuries after Euclid, there was only Euclidean geometry, but then, in the 1800s
many new and different geometries were introduced and studied; for example spherical ge-
ometry, hyperbolic geometry, projective geometry, affine geometry, and more. Eventually
mathematicians felt the need to elucidate just what a geometric theory was and how to
classify the various different geometries. Klein observed that each geometry had associated
to it a group of transformations, the symmetry group of the geometry, and two objects of
the geometry could be considered equivalent if there was an element of that group that
carried one object to the other. For example, the symmetry group of Euclidean geometry
is the so-called Euclidean Group—generated by the rotations and translations of Euclidean
space—and two triangles are considered to be “equivalent” in Euclidean geometry if they
are congruent, meaning that there is some element of the Euclidean group that carries one
triangle into another. To quote Klein:

“...geometrical properties are characterized by their invariance under a group
of transformations.”

That last sentence epitomizes what has come to be known as Klein’s Erlanger Program,
and just what it means should gradually become more clear as we proceed.

2.2 Euclidean Spaces and Their Symmetries
We shall as usual denote by Rn the space of all ordered n-tuples x = (x1, . . . , xn) of

real numbers. The space Rn has two important structures. The first is algebraic, namely
Rn is a real vector space (of dimension n). If α is a “scalar”, i.e., a real number, then the
product αx is the n-tuple (αx1, . . . , αxn), and if y = (y1, . . . , yn) is a second element of
Rn, then the vector sum x+ y is the n-tuple (x1 + y1, . . . , xn + yn). The second important
structure is the so-called inner product , which is a real-valued function on Rn×Rn, namely
(x, y) 7→ 〈x, y〉 := x1y1 + x2y2 + · · · + xnyn. As we shall see, it is this inner product that
allows us to define geometric concepts like length and angle in Rn. Sometimes the inner
product is referred to as the “dot-product” and written as x · y.
The inner product has three characteristic properties that give it its importance, namely:

1) Symmetry: 〈x, y〉 = 〈y, x〉 for all x, y ∈ Rn

2) Positive Definiteness: 〈x, x〉 ≥ 0, with equality if and only if x = 0.

3) Bilinearity: 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉, for all x, y, z ∈ Rn and all α, β ∈ R.

. 2.2—Exercise 1. Verify that 〈x, y〉 has these three properties.

More generally:

2.2.1 Definition. . If V is a real vector space, then a real-valued function on V × V ,
(v1, v2) 7→ 〈v1, v2〉 is called an inner product for V if it is symmetric, positive definite, and
bilinear. An inner-product space is a real vector space V together with a fixed choice of
inner product for V .

We recall that that for any x ∈ Rn, we define its norm, ‖x‖, by ‖x‖ :=
√
〈x, x〉, and of

course, we make this same definition in any inner product space.

5



Math 32a Fall 2003 R. Palais

. 2.2—Exercise 2. Show that if x, y ∈ Rn and t ∈ R, then ‖tx+ y‖2 is a quadratic
polynomial function of t, namely:

‖tx+ y‖2 = 〈tx+ y, tx+ y〉 = ‖x‖2
t2 + 2 〈x, y〉 t+ ‖y‖2 .

and note the important special case

‖x+ y‖2 = ‖x‖2 + 2 〈x, y〉+ ‖y‖2 .

Finally, for reasons we shall see a little later, the two vectors x an y are called orthogonal
if 〈x, y〉 = 0, so in this case we have:

Pythagorean Identity. If x and y are orthogonal vectors in an inner product space then
‖x+ y‖2 = ‖x‖2 + ‖y‖2 .

Now let me remind you of some basic facts from high-school mathematics concerning an
arbitrary real polynomial P (t) = at2 + bt + c in a variable t. (For simplicity, we will
assume tha a > 0.) Recall that the discriminant of P (t) is the quantity b2 − 4ac, and
it distinguishes what kind of roots the polynomial has. In fact, the so-called ”Quadratic
Formula” says that the two (possible complex) roots of P (t) are (−b ±

√
b2 − 4ac )/2a.

Thus there are three cases:

Case 1: b2 − 4ac > 0. Then P (t) has two real roots. Between these roots P (t) is negative and
outside of the interval between the roots it is positive.

Case 2: b2 − 4ac = 0. Then P (t) has only the single real root −b/2a, and elsewhere P (t) > 0.

Case 3: b2 − 4ac < 0. Then P (t) has no real roots and P (t) is positive for all real t.

In the case of the polynomial ‖tx+ y‖2, we see that a = ‖x‖2, c = ‖y‖2, and b = 2 〈x, y〉, so
the discriminant is 4(| 〈x, y〉 |2−‖x‖2 ‖y‖2). Now Case 1 is ruled out by positive definiteness.
In Case 2, we have | 〈x, y〉 | = ‖x‖ ‖y‖, so if t is the root of the polynomial then ‖x+ ty‖ = 0,
so x = -ty, and we see that in this case x and y are linearly dependent. Finally, in Case 3,
| 〈x, y〉 | < ‖x‖ ‖y‖, and since x+ ty is never zero, x and y are linearly independent. This
proves one of the most important inequalities in all of mathematics,

Schwartz Inequality. For all x, y ∈ Rn, | 〈x, y〉 | ≤ ‖x‖ ‖y‖, with equality if and only if
x and y are linearly dependent.

Of course, since our proof only used the three properties that define an inner product, the
Schwartz Inequality is valid in any inner-product space.

. 2.2—Exercise 3. Use the Schwartz Inequality to deduce the Triangle Inequality:

‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

(Hint: Square both sides.)

2.2—Example 1. Let C([a, b]) denote the vector space of continuous real-valued func-
tions on the interval [a, b] (with pointwise vector operations, as usual). For f, g ∈ C([a, b])
define 〈f, g〉 =

∫ b

a
f(x)g(x) dx. it is easy to check that this satisfies our three conditions

for an inner product. What does the Schwartz Inequality say in this case?

6



Math 32a Fall 2003 R. Palais

Lecture 3
Geometry of Inner Product Spaces

3.1 Angles
Let x and y be two non-zero vectors in an inner product space. Then by the Schwartz

inequality, the ratio 〈x, y〉 / ‖x‖ ‖y‖ lies in the interval [−1, 1], so there is a unique angle
θ between 0 and π such that cos(θ) = 〈x, y〉 / ‖x‖ ‖y‖. In other words, we define θ to
make the identity 〈x, y〉 = ‖x‖ ‖y‖ cos(θ) hold. What is the geometric meaning of θ? Let’s
first consider a special case. Namely take for x the unit vector in the x direction, (1, 0),
and let y be an arbitrary vector in R2. If r = ‖y‖ and φ is the angle between x and
y (the so-called polar angle of y), then clearly y = (r cos(φ), r sin(φ)), so it follows that
〈x, y〉 = (1)(r cos(φ)) + (0)(r sin(φ)) = r cos(φ) and hence 〈x, y〉 / ‖x‖ ‖y‖ = cos(φ), so in
this case the angle θ is exactly the angle φ between x and y.

. 3.1—Exercise 1. Carry out the computation for the general case of two non-zero
vectors in the plane with lengths r1 and r2 and polar angles φ1 and φ2, so that x =
(r1 cos(φ1), r1 sin(φ1)) and y = (r2 cos(φ2), r2 sin(φ2)). Show that in this case too the ratio
〈x, y〉 / ‖x‖ ‖y‖ is the cosine of the angle (φ1−φ2) between x and y. (Hint: use the Cosine
Addition Formula: cos(A±B) = cos(A) cos(B)∓ sin(A) sin(B).)

Henceforth we will refer to θ as the angle between x and y. In particular, if 〈x, y〉 = 0,
so that θ = π/2, then we say that x and y are orthogonal .

3.2 Orthonormal Bases for an Inner Product Space
We begin by recalling the basic facts concerning linear dependence, dimension, and bases

in a vector space V . (If you prefer to be concrete, you may think of V as being Rn.) We
say that vectors v1, . . . , vn in V are linearly dependent if there are scalars α1, . . . , αn, not
all zero. such that the linear combination α1v1 + · · ·+ αnvn is the zero vector. It is easy
to see that this is equivalent to one of the vi being a linear combination of the others.
If v1, . . . , vn are not linearly dependent, than we say that they are linearly independent.
The vectors v1, . . . , vn are said to span V if every element of V can be written as a linear
combination of the vi, and if V is spanned by some finite set of vectors then we say that
V finite dimensional, and we define the dimension of V , dim(V ), to be the least number
of vectors needed to span V . A finite set of vectors v1, . . . , vn in V is called a basis for
V if it is both linearly independent and spans V . It is easy to see that this is equivalent
to demanding that every element of V is a unique linear combination of the vi. The
following is a the basic theorem tying thse concepts together.

Theorem. If V is an n-dimensional vector space, then every basis for V has exactly n
elements. Moreover, if v1, . . . , vn is any set of n elements of V , then they form a basis
for V if and only if they are linearly independent or if and only if they span V . In other
words, n elements of V are linearly independent if and only if they span V .

7



Math 32a Fall 2003 R. Palais

In what follows, we assume that V is an inner-product space. If v ∈ V is a non-zero
vector, we define a unit vector e with the same direction as V by e := v/ ‖v‖. This is
called normalizing v, and if v already has unit length then we say that v is normalized .
We say that k vectors e1, . . . , ek in V are orthonormal if each ei is normalized and if
the ei are mutually orthogonal. Note that these conditions can be written succinctly as
〈ei, ej〉 = δi

j , where δi
j is the so-called Kronecker delta symbol and is defined to be zero if

i and j are different and 1 if they are equal.

. 3.2—Exercise 1. Show that if e1, . . . , ek are orthonormal and v is a linear combi-
nation of the ei, say v = α1v1 + · · · + αkvk, then the αi are uniquely determined by
the formulas αi = 〈v, ei〉. Deduce from this that orthonormal vectors are automatically
linearly independent.

Orthonormal bases are also referred to as frames and as we shall see they play an
extremely important role in all things having to do with explicit computation in inner-
product spaces. Note that if e1, . . . , en is an orthonormal basis for V then every element of
V is a linear combination of the ei, so that by the exercise each v ∈ V has the expansion
v =

∑n
i=1 〈v, ei〉 ei.

3.2—Example 1. The “standard basis” for Rn, is δ1, . . . , δn, where δi = (δ11 , . . . , δ
i
n). It

is clearly orthonormal.

3.3 Orthogonal Projection
Let V be an inner product space and W a linear subspace of V . We recall that the

orthogonal complement of W , denoted by W⊥, is the set of those v in V that are orthogonal
to every w in W .

. 3.3—Exercise 1. Show that W⊥ is a linear subspace of V and that W ∩W⊥ = 0.

If v ∈ V , we will say that a vector w in W is its orthogonal projection on W if u = v−w
is in W⊥.

. 3.3—Exercise 2. Show that there can be st most one such w. (Hint: if w′ is another,
so u′ = v − u ∈W⊥ then u− u′ = w′ − w is in both W and W⊥.)

3.3.1 Remark. Suppose ω ∈W . Then since v−ω = (v−w)+ (w−ω) and v−w ∈W⊥

while (w − ω) ∈W , it follows from the Pythagorean identity that ‖v − ω‖2 = ‖v − w‖2 +
‖w − ω‖2. Thus, ‖v − ω‖ is strictly greater than ‖v − w‖ unless ω = w. In other words,
the orthogonal projection of v on w is the unique point of W that has minimum
distance from v.

We call a map P : V → W orthogonal projection of V onto W if v − Pv is in W⊥ for
all v ∈ V . By the previous exercise this mapping is uniquely determined if it exists (and
we will see below that it always does exist).

. 3.3—Exercise 3. Show that if P : V → W is orthogonal projection onto W , then P
is a linear map. Show also that if v ∈W , then Pv = v and hence P 2 = P .

8



Math 32a Fall 2003 R. Palais

. 3.3—Exercise 4. Show that if e1, . . . , en is an orthonormal basis for W and if for
each v ∈ V we define Pv :=

∑n
i=1 〈v, ei〉 ei, then P is orthogonal projection onto W . In

particular, orthogonal projection onto W exists for any subspace W of V that has some
orthonormal basis. (Since the next section shows that any W has an orthonormal basis,
orthogonal projction on a subspace is always defined.)

3.4 The Gram-Schmidt Algorithm
There is a beautiful algorithm, called the Gram-Schmidt Procedure, for starting with

an arbitrary sequence w1, w2, . . . , wk of linearly independent vectors in an inner product
space V and manufacturing an orthonormal sequence e1, . . . , ek out of them, Moreover it
has the nice property that for all j ≤ k, the sequence e1, . . . , ej spans the same subspace
Wj of V as is spanned by w1, . . . , wj .

In case k = 1 this is easy. To say that w1 is linearly independent just means that it is
non-zero, and we take e1 to be its normalization: e1 := w1/ ‖w1‖. Surprisingly, this trivial
special case is the crucial first step in an inductive procedure.

In fact, suppose that we have constructed orthonormal vectors e1, . . . , em (where m < k)
and that they span the same subspace Wm that is spanned by w1, . . . , wm. How can we
make the next step and construct em+1 so that e1, . . . , em+1 is orthonormal and spans the
same subspace as w1, . . . , wm+1?

First note that since the e1, . . . , em are linearly independent and span Wm, they are
an orthonormal basis for Wm, and hence we can find the orthogonal projection ωm+1 of
wm+1 onto Wm using the formula ωm+1 =

∑m
i=1 〈wm+1, ei〉 ei. Recall that this means that

εm+1 = wm+1 − ωm+1 is orthogonal to Wm, and in particular to e1, . . . , em. Now εm+1

cannot be zero! Why? Because if it were then we would have wm+1 = ωm+1 ∈ Wm,
so wm+1 would be a linear combination of w1, . . . , wm, contradicting the assumption that
w1, . . . , wk were linearly independent. But then we can define em+1 to be the normaliza-
tion of εm+1, i.e., em+1 := εm+1/ ‖εm+1‖, and it follows that em+1 is also orthogonal to
e1, . . . , em, so that e1, . . . , em+1 is orthonormal. Finally, it is immediate from its definition
that em+1 is a linear combination of e1, . . . , em and wm+1 and hence of w1, . . . , wm+1,
completing the induction. Let’s write the first few steps in the Gram-Schmidt Process
explicitly.

1 e1 := w1/ ‖w1‖. % Normalize w1 to get e1.

2a ω2 := 〈w2, e1〉 e1. % Get projection ω2 of w2 on W1,

2b ε2 := w2 − ω2. % subtract ω2 from w2 to get W⊥
1 component ε2 of w2,

2c e2 := ε2/ ‖ε2‖. % and normalize it to get e2.

3a ω3 := 〈w3, e1〉 e1 + 〈w3, e2〉 e2. % Get projection ω3 of w3 on W2,

3b ε3 := w3 − ω3. % subtract ω3 from w3 to get W⊥
2 component ε3 of w3,

3c e3 := ε3/ ‖ε3‖. % and normalize it to get e3.

. . .

9



Math 32a Fall 2003 R. Palais

If W is a k-dimensional subspace of an n-dimensional inner-product space V then we can
start with a basis for for W and extend it to a basis for V . If we now apply Gram-Schmidt
to this basis, we end up with an orthonormal basis for V with the first k elements in W
and with the remaining n− k in W⊥. This tells us several things:

• W⊥ has dimension n− k.

• V is the direct sum of W and W⊥. This just means that every element of V can be
written uniquely as the sum w + u where w ∈W and u ∈W⊥.

• (W⊥)⊥ = W .

• If P is the orthogonal projection of V on W and I denotes the identity map of V then
I − P is orthogonal projection of V on W⊥.

.Project 1. Implement Gram-Schmidt as a Matlab
Function
In more detail, create a Matlab M-file GramSchmidt.m in which you define a Matlab

function GramSchmidt(M) taking as input a rectangular matrix M of real numbers of
arbitrary size m × n, and assuming that the m rows of M are linearly independent, it
should transform M into another m × n matrix in which the rows are orthonormal, and
moreover such that the subspace spanned by the first k rows of the output matrix is the
same as the space spanned by the first k rows of the input matrix. Clearly, in writting
your algorithm, you will need to know the number of rows, m and the number of columns
n of M. You can find these out using the Matlab size function. In fact, size(M) returns
(m,n) while size(M,1) returns m and size(M,2) returns n. Your algorithm will have to do
some sort of loop, iterating over each row in order. Be sure to test your function on a
number of different matrices of various sizes. What happens to your function if you give
it as input a matrix with linearly dependent rows. (Ideally it should report this fact and
not just return garbage!)

10



Math 32a Fall 2003 R. Palais

Lecture 4
Linear Maps And The Euclidean Group.

I assume that you have seen the basic facts concerning linear transformations and ma-
trices in earlier courses. However we will review these facts here to establish a common
notation. In all the following we assume that the vector spaces in question have finite
dimension.

4.1 Linear Maps and Matrices
Let V and W be two vector spaces. A function T mapping V into W is called a linear

map if T (αv1+βv2) = αT (v1)+βT (v2) for all scalars α, β and all v1, v2 ∈ V . We make the
space L(V,W ) of all linear maps of V into W into a vector space by defining the addition
and scalar multiplication laws to be “pointwise”. i.e., if S, T ∈ L(V,W ), then for any
v ∈ V we define (αT + βS)(v) := αT (v) + βS(v)

4.1.1 Remark. If v1, . . . , vn is any basis for V and ω1, . . . , ωn are arbitrary elements of
W , then there is a unique T ∈ L(V,W ) such that T (vi) = ωi. For if v ∈ V , then v has
a unique expansion of the form v =

∑n
i=1 αivi, and then we can define T by T (v) :=∑n

i=1 αiωi, and it is easily seen that this T is linear, and that it is the unique linear
transformation with the required properties.

In particular, if w1, . . . , wm is a basis for W , then for 1 ≤ i ≤ n and 1 ≤ j ≤ m we define
Eij to be the unique element of L(V,W ) that maps vi to wj and maps all the other vk to
the zero element of W .

4.1.2 Definition. Suppose T : V → W is a linear map, and that as above we have a
basis v1, . . . , vn for V and a basis w1, . . . , wm for W . For 1 ≤ j ≤ n, the element Tvj of
W has a unique expansion as a linear combination of the wi, T (vj) =

∑m
i=1 Tijwi. These

mn scalars Tij are called the matrix elements of T relative to the two bases vi and wj .

4.1.3 Remark. It does not make sense to speak of the matrix of a linear map until bases
are specified for the domain and range. However, if T is a linear map from Rn to Rm,
then by its matrix we always understand its matrix relative to the standard bases for Rn

and Rm.

4.1.4 Remark. If V is a vector space then we abreviate L(V, V ) to L(V ), and we often
refer to a linear map T : V → V as a linear operator on V . To define the matrix of a linear
operator on V we only need one basis for V .

. 4.1—Exercise 1. Suppose that v ∈ V has the expansion v =
∑n

j=1 αjvj , and that
Tv ∈ W has the expansion Tv =

∑m
i=1 βiwi. Show that we can compute the components

βi of Tv from the components αj of v and the matrix for T relative to the two bases, using
the formula βi =

∑n
j=1 Tijαj .

11



Math 32a Fall 2003 R. Palais

Caution! Distinguish carefully between the two formulas: T (vj) =
∑m

i=1 Tijwi and βi =∑n
j=1 Tijαj . The first is essentially the definition of the matrix Tij while the second is the

formula for computing the components of Tv relative to the given basis for W from the
components of v relative to the given basis for V .

. 4.1—Exercise 2. Show that T =
∑n

i=1

∑m
j=1 TijEij , and deduce that Eij is a basis

for L(V,W ), so in particular, L(V,W ) has dimension nm, the product of the dimensions
of V and W .

4.2 Isomorphisms and Automorphisms
If V and W are vector spaces, then a linear map T : V → W is called an isomorphism

of V with W if it is bijective (i.e., one-to-one and onto), and we say that V and W are
isomorphic if there exists an isomorphism of V with W . An isomorphism of V with itself is
called an automorphism of V , and we denote the set of all automorphisms of V by GL(V ).
(GL(V ) is usually referred to as the general linear group of V—check that it is a group.)

. 4.2—Exercise 1. If T : V → W is a linear map and v1, . . . .vn is a basis for V then
show that T is an isomorphism if and only if Tv1, . . . , T vn is a basis for W . Deduce
that two finite-dimensional vector spaces are isomorphic if and only if they have the same
dimension.

There are two important linear subspaces associated to a linear map T : V → W . The
first, called the kernel of T and denoted by ker(T ), is the subspace of V consisting of all
v ∈ V such that T (v) = 0, and the second, called the image of T , and denoted by im(T ),
is the subspace of W consisting of all w ∈W of the form Tv for some v ∈ V .

Notice that if v1 and v2 are in V , then T (v1) = T (v2) if and only if T (v1 − v2) = 0, i.e.,
if and only if v1 and v2 differ by an element of ker(T ). Thus T is one-to-one if and only if
ker(T ) contains only the zero vector.

Proposition. A necessary and sufficient condition for T : V →W to be an isomorphism
of V with im(T ) is for ker(T ) to be the zero subspace of V .

Theorem. If V and W are finite dimensional vector spaces and T : V → W is a linear
map, then dim(ker(T )) + dim(im(T )) = dim(V ).

PROOF. Choose a basis v1, . . . , vk for ker(T ) and extend it to a basis v1, . . . , vn for all
of V . It will suffice to show that T (vk+1), . . . , T (vn) is a basis for im(T ). We leave this as
an (easy) exercise.

Corollary. If V and W have the same dimension then a linear map T : V → W is an
isomorphism of V with W if it is either one-to-one or onto.

Recall that if V is an inner product space and v1, v2 ∈ V , then we define the distance
between v1 and v2 as ρ(v1, v2) := ‖v1 − v2‖. This makes any inner-product space into a
metric space. A mapping f : V → W between inner-product spaces is called an isometry
if it is distance preserving, i.e., if for all v1, v2 ∈ V , ‖f(v1)− f(v2)‖ = ‖v1 − v2‖.

12



Math 32a Fall 2003 R. Palais

4.2.1 Definition. If V is an inner product space then we define the Euclidean group of
V , denoted by Euc(V ), to be the set of all isometries f : V → V . We define the orthogonal
group of V , denoted by O(V ) to be the set of f ∈ Euc(V ) such that f(0) = 0.

4.2.2 Remark. We will justify calling Euc(V ) a group shortly. It is clear that Euc(V )
is closed under composition, and that elements of Euc(V ) are one-to-one, but at this point
it is not clear that an element f of Euc(V ) maps onto all of V , so f might not have an
inverse in Euc(V ). A similar remark holds for O(V ).

Proposition. If f ∈ O(V ) then f preserves inner-products, i.e., if v1, v2 ∈ V then
〈fv1, fv2〉 = 〈v1, v2〉.

PROOF. Clearly f preserves norms, since ‖f(v)‖ = ‖f(v)− f(0)‖ = ‖v − 0‖ = ‖v‖, and
we also know that, ‖f(v1)− f(v2)‖2 = ‖v1 − v2‖2. Then 〈fv1, fv2〉 = 〈v1, v2〉 now follows
easily from the polarization identity in the form: 〈v, w〉 = 1

2 (‖v‖2 + ‖w‖2 − ‖v − w‖2).

Theorem. O(V ) ⊆ GL(V ), i.e., elements of O(V ) are invertible linear transformations.

PROOF. Let e1, . . . , en be an orthonormal basis for V and let εi = f(ei). By the preceding
proposition 〈εi, εj〉 = 〈ei, ej〉 = δi

j , so that the εi also form an orthonormal basis for V .
Now suppose that v1, v2 ∈ V and let αi, βi and , γi be respectively the components of
v1, v2, and v1 + v2 relative to the orthonormal basis ei, and similarly let α′i, β

′
i and , γ′i be

the components of f(v1), f(v2), and f(v1 + v2) relative to the orthonormal basis εi. To
prove that f(v1 + v2) = f(v1) + f(v2) it will suffice to show that γ′i = α′i + β′i. Now we
know that γi = αi + βi, so it will suffice to show that α′i = αi, β′i = βi, and γ′i = γi. But
since αi = 〈v1, ei〉 while α′i = 〈f(v1), εi〉 = 〈f(v1), f(ei)〉, α′i = αi follows from the fact that
f preserves inner-products, and the other equalities follow likewise.. A similar argument
shows that f(αv) = αf(v). Finally, since f is linear and one-to-one, it follows that f is
invertible.

4.2.3 Remark. It is now clear that we can equivalently define O(V ) to be the set of
linear maps T : V → V that preserves inner-products.

Every a ∈ V gives rise to a map τa : V → V called translation by a, defined by, τa(v) =
v + a. The set T (V ) of all τa, a ∈ V is clearly a group since τa+b = τa ◦ τb and τ0 is the
identity. Moreover since (v1 + a)− (v2 + a) = v1− v2, it follows that τa is an isometry, i.e.
T (V ) ⊆ Euc(V )

Theorem. Every element f of Euc(V ) can be written uniquely as an orthogonal trans-
formation O followed by a translation τa.

PROOF. Define a := f(0). Then clearly the composition τ−a ◦ f leaves the origin fixed,
so it is an element O of O(V ), and it follows that f = τa ◦O. (We leave uniqueness as an
exercise.)

Corollary. Every element f of Euc(V ) is a one-to-one map of V onto itself and its inverse
is also in V , so Euc(V ) is indeed a group of transformations of V .

PROOF. In fact we see that f−1 = O−1 ◦ τ−a.

13



Math 32a Fall 2003 R. Palais

Lecture 5
Adjoints of Linear Maps and The Spectral Theorem

5.1 The Dual Vector Space of a Vector Space
If V is a vector space then the vector space L(V,R) of linear maps of V into the one-

dimensional vector space of scalars, R plays an important role in many considerations.
It is called the dual space of V and is denoted by V ∗. Elements of V ∗ are called linear
functionals on V .

5.1.1 Remark. If v1, . . . , vn is any basis for V , then (since 1 is a basis for R) it follows
from 4.1.1 that there is a uniquely determined basis `1, . . . , `n for V ∗ such that `i(vj) = δi

j .
This is called the dual basis to v1, . . . , vn. In particular, V ∗ has the same dimension as V .

5.2 The Self-Duality of Inner-Product Spaces
If V is an inner-product space, then there is an important way to represent elements of

V ∗. Namely, recall that the inner-product is linear in each variable when the other variable
is held fixed. This means that for each vector v ∈ V we can define an element v∗ : V → R
of V ∗ by the formula v∗(x) := 〈x, v〉. Since the inner product is linear in both variables,
it follows that the map v 7→ v∗ is linear. If v∗ = 0, then in particular 0 = v∗(v) = 〈v, v〉, so
by positive definiteness v = 0, i.e., the kernel of the map v 7→ v∗ is zero, and since V and
V ∗ have the same dimension, it follows that this map is an isomorphism—i.e., every linear
functional on an inner-product space V can be expressed uniquely as the inner-product
with some fixed element of V . This is often expressed by saying that inner-product spaces
are “self-dual”.

5.2.1 Remark. Note that if ei is an orthonormal basis for V , then e∗i is the dual basis
for V ∗.

5.3 Adjoint Linear Maps
Now let V and W be finite dimensional inner-product spaces and T : V → W a linear

map. We will next define a linear map T ∗ : W → V called the adjoint of T that satisfies
the identity 〈Tv,w〉 = 〈v, T ∗w〉 for all v ∈ V and all w ∈W .

If we fix w in W , then to define T ∗w we note that the map v → 〈Tv,w〉 is clearly a
linear functional on V , i.e., an element of V ∗, so by self-duality there is a uniquely defined
element T ∗w in V such that 〈v, T ∗w〉 = 〈Tv,w〉 for all v in V .

We recapitulate the above as a formal definition.

14



Math 32a Fall 2003 R. Palais

5.3.1 Definition. Let V,W be finite dimensional inner-product spaces and T ∈ L(V,W ).
The adjoint of T is the unique element T ∗ ∈ L(W,V ) satisfying the identity:

〈v, T ∗w〉 = 〈Tv,w〉 .

Here are some exercises involving adjoints and their basic properties.

. 5.3—Exercise 1. Show that (T ∗)∗ = T .

. 5.3—Exercise 2. Recall that if Tij is an m× n matrix (i.e., m rows and n columns)
and Sji an n×m matrix, then Sji is called the transpose of Tij if Tij = Sji for 1 ≤ i ≤ m,
1 ≤ j ≤ n. Show that if we choose orthonormal bases for V and W , then the matrix of T ∗

relative to these bases is the transpose of the matrix of T relative to the same bases.

. 5.3—Exercise 3. Show that ker(T ) and im(T ∗) are orthogonal complements in V ,
and similarly, im(T ) and ker(T ∗) are each other’s orthogonal complements in W . (Note
that by Exercise 1, you only have to prove one of these.)

. 5.3—Exercise 4. Show that a linear operator T on V is in the orthogonal group O(V )
if and only if TT ∗ = I (where I denotes the identity map of V ) or equivalently, if and only
if T ∗ = T−1.

If T : V → V is a linear operator on V , then T ∗ is also a linear operator on V , so it makes
sense to compare them and in particular ask if they are equal.

5.3.2 Definition. A linear operator on an inner-product space V is called self-adjoint if
T ∗ = T , i.e., if 〈Tv1, v2〉 = 〈v1, T v2〉 for all v1, v2 ∈ V .

Note that by Exercise 3 above, self-adjoint operators are characterized by the fact that
their matrices with respect to an orthonormal basis are symmetric.

. 5.3—Exercise 5. Show that if W is a linear subspace of the inner-product space V ,
then the orthogonal projection P of V on W is a self-adjoint operator on V .

5.3.3 Definition. If T is a linear operator on V , then a linear subspace U ⊆ V is called
a T -invariant subspace if T (U) ⊆ U , i.e., if u ∈ U implies Tu ∈ U .

5.3.4 Remark. Note that if U is a T -invariant subspace of V , then T can be regarded
as a linear operator on U by restriction, and clearly if T is self-adjoint, so is its restriction.

. 5.3—Exercise 6. Show that if T : V → V is a self-adjoint operator, and U ⊆ V is a
T -invariant subspace of V , the U⊥ is also a T -invariant subspace of V .

5.4 Eigenvalues and Eigenvectors of a Linear Operator.
In this section, T : V → V is a linear operator on a real vector space V . If λ is a real

number, then we define the linear subspace Eλ(T ) of V to be the set of v ∈ V such that
Tv = λv. In other words, if I denotes the identity map of V , then Eλ(T ) = ker(T − λI).

15



Math 32a Fall 2003 R. Palais

Of course the zero vector is always in Eλ(T ). If Eλ(T ) contains a non-zero vector, then
we say that λ is an eigenvalue of T and that Eλ(T ) is the λ-eigenspace of T . A non-zero
vector in Eλ(T ) is called an eigenvector of T belonging to the eigenvector λ. The set of all
eigenvalues of T is called the spectrum of T (the name comes from quantum mechanics)
and it is denoted by Spec(T ).

. 5.4—Exercise 1. Show that a linear operator T on V has a diagonal matrix in a
particular basis for V if and only if each element of the basis is an eienvector of T , and
that then Spec(T ) consists of the diagonal elements of the matrix.

The following is an easy but very important fact.

Theorem. If T is a self-adjoint linear operator on an inner-product space V and λ1, λ2

are distinct real numbers, then Eλ1(T ) and Eλ2(T ) are orthogonal subspaces of V . In
particular, eigenvectors of T that belong to different eigenvalues are orthogonal.

. 5.4—Exercise 2. Prove this theorem. (Hint: Let vi ∈ Eλi
(T ), i = 1, 2. You must

show that 〈v1, v2〉 = 0. Start with the fact that 〈Tv1, v2〉 = 〈v1, T v2〉.)
A general operator T on a vector space V need not have any eigenvalues, that is, Spec(T )

may be empty. For example a rotation in the plane (by other than π or 2π radians) clearly
has no eigenvectors and hence no eigenvalues. On the other hand self-adjoint operators
always have at least one eigenvector. That is:

Spectral Lemma. If V is an inner-product space of positive, finite dimension and if
T : V → V is a self-adjoint operator on V , then Spec(T ) is non-empty, i.e., T has at least
one eigenvalue and hence at least one eigenvector.

We will prove this result later after some preparation. But next we show how it leads to
an easy proof of the extremely important:

Spectral Theorem for Self-Adjoint Operators. If V is an inner inner-product space
of posiive, finite dimension and T : V → V is a self-adjoint operator on V , then V has an
orthonormal basis consisting of eigenvectors of T . In other words, T has a diagonal matrix
in some orthonormal basis for V .

PROOF. We prove this by induction on the dimension n of V . If n = 1 the theorem is
trivial, since any non-zero vector in V is clearly an eigenvector, Thus we can assume that
the theorem is valid for all self-adjoint operators on inner-product spaces of dimension
less than n. By the Spectral Lemma, we can find at least one eigenvector w for T . Let
e1 = w/ ‖w‖ and let W be the one-dimensional space spanned by w. The fact that w is
an eigenvector implies that W is a T -invariant linear subspace of V , and by 5.3, so is W⊥.
Since W⊥ has dimension n − 1, by the inductive hypothesis T restricted to W⊥ has an
orthonormal basis e2, . . . .en of eigenvectors of T , and then e1, . . . , en is an orthonormal
basis of V consisting of eigenvectors of T .

16



Math 32a Fall 2003 R. Palais

5.5 Finding One Eigenvector of a Self-Adjoint Operator
In this section we will outline the strategy for finding an eigenvector v for a self-adjoint

operator T on an inner product space V . Actually carrying out this strategy will involve
some further preparation. In particular, we will need first to review the basic facts about
differential calculus in vector spaces (i.e., “multivariable calculus”).

We choose an orthonormal basis e1, . . . , en for V , and let Tij denote the matrix of T in
this basis.

We define a real-valued function F on V by F (x) = 〈Tx, x〉. F is called the quadratic
form on V defined by T . The name comes from the following fact.

. 5.5—Exercise 1. Show that if x = x1e1 + · · · + xnen, then F (x) =
∑n

i,j=1 Tijxixj ,
and using the symmetry of Tij deduce that ∂F

∂xi
= 2

∑n
k=1 Tikxk.

We will denote by S(V ) the set {x ∈ V | ‖x‖ = 1}, i.e., the “unit sphere” of normalized
vectors. Note that if x = x1e1 + · · ·+xnen, then x ∈ S(V ) if and only if x2

1 + · · ·+x2
n = 1,

so if we define G : V → R by G(x) := x2
1 + · · ·+ x2

n − 1, then S(V ) = {x ∈ V | G(x) = 0}.

5.5.1 Remark. Now Tij = ∂F
∂xi

= 2
∑n

k=1 Tikxk is just twice the i-th component of Tx in
the basis ej . On the other hand ∂G

∂xi
= 2xi, which is twice the i-th component of x in this

basis. It follows that a point x of S(V ) is an eigenvector of T provided there is a constant
λ (the eigenvalue) such that ∂F

∂xi
(x) = λ ∂G

∂xi
(x). If you learned about constrained extrema

and Lagrange multipliers from advanced calculus, this should look familiar. Let me quote
the relevant theorem,

Theorem on Constrained Extrema. Let F and G be two differentiable real-valued
functions on Rn, and define a “constraint surface” S ⊆ Rn by S = {x ∈ V | G(x) = 0}.
Let p ∈ S be a point where F assumes its maximum value on S, and assume that the
partial derivatives of G do not all vanish at p. Then the partial derivatives of F and of
G are proportional at p, i.e., there is a constant λ (the “Lagrange Multiplier”) such that
∂F
∂xi

(x) = λ ∂G
∂xi

(x) for i = 1, . . . , n.

(We will sketch the proof of the Theorem on Constrained Extrema in the next lecture.)

Thus, to find an eigenvector of T , all we have to do is choose a point of S(V )
where the quadratic form F (x) = 〈Tx, x〉 assumes its maximum value on S(V ).

17



Math 32a Fall 2003 R. Palais

Lecture 6
Differential Calculus on Inner-product Spaces

In this section, we will use without proof standard facts that you should have seen in your
multi-variable calculus classes.

6.1 Review of Basic Topology.
V will denote a finite dimensional inner-product space, and e1, . . . , en some orthonormal
basis for V . We will use this basis to identify Rn with V , via the map (x1, . . . , xn) 7→
x1e1 + · · ·+ xnen, and we recall that this preserves inner-products and norms, and hence
distances between points. In particular, this means that a sequence vk = vk

1e1 + . . .+ vk
nen

of vectors in V converges to a vector v = v1e1 + . . . + vnen if an only if each of the n
component sequences vk

i of real numbers converges to the corresponding real number vi,
and also, that the sequence vk is Cauchy if and only if each component sequence of real
numbers is Cauchy. This allows us to reduce questions about convergence of sequences in
V to more standard questions about convergence in R. For example, since R is complete
( i.e., every Cauchy sequence of real numbers is convergent) it follows that V is also
complete.

Recall that a subset S of Rn is called compact if any sequence of points in S has a sub-
sequence that converges to a point of S, and the Bolzano-Weierstrass Theorem says that
S is compact if and only if it is closed and bounded. (Bounded means that {‖s‖ | s ∈ S} is
a bounded set of real numbers, and closed means that any limit of a sequence of points of
S is itself in S.) Because of the distance preserving identification of V with Rn it follows
that for subsets of V too, compact is the same as closed and bounded.

. 6.1—Exercise 1. Recall that a set O ⊆ V is called open if whenever p ∈ O there is
an ε > 0 such that ‖x− p‖ < ε implies that x ∈ O. Show that O is open in V if and only
if its complement is closed.

If S ⊆ V and f : S → W is a map of S into some other inner-product space, then f is
called continuous if whenever a sequence sk in S converges to a point s of S, it follows
that f(sk) converges to f(s). (More succinctly, limk→∞ f(sk) = f(limk→∞ sk), so one
sometimes says a map is continuous if it “commutes with taking limits”.)

. 6.1—Exercise 2. Show that if f : S → W is continuous, then if A is an open (resp.
closed) subset of W , then f−1(A) is open (resp. closed) in S. Deduce from this that S(V ),
the unit sphere of V , is a closed and hence compact subset of V .

. 6.1—Exercise 3. Show that any continuous real-valued function on a compact subset
S of V must be bounded above and in fact there is a point s of S where f assumes its
maximum value. (Hint # 1: If it were not bounded above, there would be a sequence sn

such that f(sn) > n. Hint #2: Choose a sequence sn so that f(sn) converges to the least
upper bound of the values of f .)

18



Math 32a Fall 2003 R. Palais

6.2 Differentiable maps Between Inner-Product Spaces.
In this section, V and W are inner-product spaces.

The key concept in differential calculus is approximating a non-linear map f : V → W
near some point p, by a linear map, T , called its differential at p. To be more precise, if v
is close to zero, we should have f(p+ v) = f(p) + Tv +Rp(v) where the error term Rp(v)
should be “small” in a sense we shall make precise below.

We start with the one-dimensional case. A map σ : (a, b) → V of an interval (a, b) into V
is called a curve in V , and it is said to be differentiable at the point t0 ∈ (a, b) if the limit
σ′(t0) := limh→0

σ(t+h)−σ(t0)
h exists. Note that this limit σ′(t0) is a vector in V , called the

derivative (or the tangent vector or velocity vector) of σ at t0. In this case, the differential
of σ at t0 is the linear map Dσt0 : R → V defined by Dσt0(t) = tσ′(t0), so that the error
term is Rp(t) = σ(t0 + t)− σ(t0)− tσ′(t0). Thus, not only is Rp(t) small when t is small,
but even when we divide it by t the result, σ(t0+t)−σ(t0)

t − σ′(t0), is still small and in fact
it approaches zero as t → 0. That is, we have σ(t0 + t) = σ(t0) +Dσt0(t) + |t|ρ(t) where
|ρ(t)| → 0 as t→ 0. We use this to define the notion of differentiability more generally by
analogy.

6.2.1 Definition. . Let O be open in V , F : O → W a map, and p ∈ O. We say that
F is differentiable at p if there exists a linear map T : V → W such that for v near 0 in
V , F (p + v) = F (p) + T (v) + ‖v‖ ρ(v) where ρ(v) := F (p+v)−F (p)−T (v)

‖v‖ → 0 as ‖v‖ → 0.
We call T the differential of F at p and denote it by DFp. If F : O → W is differentiable
at each point of O and if DF : O → L(V,W ) is continuous we say that F is continuously
differentiable (or C1) in O.

6.2.2 Definition. Assuming F : O →W is as above and is differentiable at p ∈ O, then
for v ∈ V , we call DFp(v) the directional derivative of F at p in the direction v.

. 6.2—Exercise 1. Show that DFp is well-defined, i.e., if S : V →W is a second linear
map satisfying the same property as T , then necessarily S = T . (Hint: By subtraction
one finds that for all v close to zero ‖(S−T )(v)‖

‖v‖ → 0 as ‖v‖ → 0. If one now replaces v by

tv and uses the linearity of S and T , one finds that for fixed v, ‖(S−T )(v)‖
‖v‖ → 0 as t→ 0.)

Chain Rule. Let U, V,W be inner-product spaces, Ω an open set of U and O and open
set of V . Suppose that G : Ω → V is differentiable at ω ∈ Ω and that F : O → W
is differentiable at p = G(ω) ∈ O. Then F ◦ G is differentiable at ω and D(F ◦ G)ω =
DFp ◦DGω.

. 6.2—Exercise 2. Prove the Chain Rule.

. 6.2—Exercise 3. Show that if p, v ∈ V then the map σ : R → V , σ(t) = p + tv is
differentiable at all t0 ∈ R and that σ′(t0) = v for all t0 ∈ R. More generally, if w0 ∈ W
and T ∈ L(V,W ) show that F : V → W defined by F (v) := w0 + Tv is differentiable at
all v0 in V and that DFv0 = T . (So a linear map is its own differential at every point.)

Using the Chain Rule, we have a nice geometric interpretation of the directional derivative.

19



Math 32a Fall 2003 R. Palais

. 6.2—Exercise 4. Let F : O →W be differentiable at p, let v ∈ V . Let σ : R → V be
any curve in V that is differentiable at t0 with σ(t0) = p and σ′(t0) = v. Then the curve
in W , F ◦ σ : R → W is also differentiable at t0 and its tangent vector at t0 is DFp(v),
the directional derivative of F at p in the direction v.

6.3 But Where Are All the Partial Derivatives?
Let’s try to tie this up with what you learned in multi-variable calculus. As above, let

us assume that O is open in V and that F : O → W is differentiable at p ∈ O. Let
e1, . . . , en be an orthonormal basis for V and ε1, . . . , εm be an orthonormal basis for W ,
and let p = p1e1 + · · ·+ pnen.

If x = x1e1+· · ·+xnen is in O, then its image F (x) ∈W will have an expansion in the basis
εi, F (x) = F1(x)ε1+· · ·+Fm(x)εm. If as usual we identify x with its n-tuple of components
(x1, . . . , xn), then we have m functions of n variables, F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)
that describe the mapping F relative to the two bases ei and εj .

. 6.3—Exercise 1. Show that the partial derivatives of the Fi at (p1, . . . , pn) all exist,
and in fact, show that the ∂Fi(p1,...,pn)

∂xj
are the components of the directional derivative of

F at p in the direction ej relative to the basis εi.

. 6.3—Exercise 2. The n ×m matrix ∂Fi(p1,...,pn)
∂xj

is called the Jacobian matrix of F
at p (relative to the two bases ej and εi). Show that it is the matrix of DFp relative to
these two bases, so that if v = v1e1 + · · ·+ vnen then the i-th component of the directional
derivative of F at p in the direction v is

∑n
j=1 Fijvj .

6.3.1 Remark. It is clear from these exercises that differentials and Jacobian matrices
are logically equivalent. So which should one use? For general theoretical discussions it
is usually more natural and intuitive (and easier) to reason directly about differentials of
maps. However, when it comes to a question concerning a particular map F that requires
computing some of its properties, then one often must work with its partial derivatives to
carry out the necessary computations.

The following is a standard advanced calculus result that provides a simple test for when
a map F : O →W such as above is C1.

Theorem. A necessary and sufficient condition for a map F : O →W as above to be C1

is that all its partial derivatives ∂Fi(x1,...,xn)
∂xj

are continuous functions on O.

. 6.3—Exercise 3. Consider the map F : R2 → R defined by F (x, y) = 2xy2

x2+y2 for
(x, y) 6= (0, 0) and F (0, 0) = 0. Show that the partial derivatives of F exist everywhere
and are continuous except at the origin. Show also that F is actually linear on each straight
line through the origin, but nevertheless F is not differentiable at the origin. (Hint: In
polar coordinates, F = r sin(2θ) cos(θ).)

20



Math 32a Fall 2003 R. Palais

6.4 The Gradient of a Real-Valued Function
Let’s specialize to the case W = R, i.e., we consider a differentiable real-valued function
f : V → R (perhaps only defined on an open subset O of V ). In this case it is customary
to denote the differential of f at a point p by dfp rather than Dfp. Notice that dfp is in
the dual space V ∗ = L(V,R) of V . We recall the “meaning” of dfp, namely dfp(v) is the
directional derivative of f in the direction v, i.e., the rate of change of f along any path
through p in the direction v. So if σ(t) is a smooth curve in V with σ(0) = p and with
tangent vector σ′(0) = v at p, then dfp(v) = ( d

dt )t=0f(σ(t)).

Next recall the self-duality principle for inner-product spaces: any ` of V ∗ can be expressed
in the form `(v) = 〈v, ω〉 for a unique ω ∈ V . So in particular, for each p ∈ O, there is a
unique vector ∇fp in V such that

dfp(v) = 〈v,∇fp〉 ,
and the vector ∇fp defined by this identity is called the gradient of f at p.

A set of the form f−1(a) = {v ∈ V | f(v) = a} (where a ∈ R) is called a level set of f and
more precisely the a-level of f .

. 6.4—Exercise 1. Show that if the image of a differentiable curve σ : (a, b) → V is in
a level set of f then ∇fσ(t) is orthogonal to σ′(t). (Hint: The derivative of f(σ(t)) is zero.)

A point p where df (or ∇f) vanishes is called a critical point of f . So for example any
local maximum or local minimum of f is a critical point.

. 6.4—Exercise 2. If p is not a critical point of f then show that ∇fp

‖∇fp‖ is the unit vector
in the direction in which f is increasing most rapidly, and that ‖∇fp‖ is the magnitude of
this rate of increase. (Hint: Use the Schwartz inequality.)

. 6.4—Exercise 3. Suppose that σ : (a, b) → V and γ : (a, b) → V are differentiable
curves. Show that d

dt 〈σ(t), γ(t)〉 = 〈σ′(t), γ(t)〉+〈σ(t), γ′(t)〉, and in particular d
dt ‖σ(t)‖2 =

2 〈σ(t), σ′(t)〉. Deduce that if σ : (a, b) → V has its image in the unit sphere S(V ) then
σ(t) and σ′(t) are orthogonal.

. 6.4—Exercise 4. For p ∈ S(V ), define TpS(V ), the tangent space to S(V ) at p, to be
all v ∈ V of the form σ′(t0) where σ(t) is a differentiable curve in S(V ) having σ(t0) = p.
By the previous exercise, p is orthogonal to everything in TpS(V ). Show that conversely
any v orthogonal to p is in TpS(V ), so the tangent space to S(V ) at p is exactly the
orthogonal complement of p. (Hint: Define σ(t) := cos(‖v‖ t)p+sin(‖v‖ t) v

‖v‖ . Check that
σ(0) = p, σ′(t) = v, and that σ(t) ∈ S(V ) for all t.

. 6.4—Exercise 5. Let T be a self-adjoint operator on V and define f : V → R by
f(v) := 1

2 〈Tv, v〉. Show that f is differentiable and that ∇fv = Tv.

Proof of Spectral Lemma. We must find a p in S(V ) that is an eigenvector of the
self-adjoint operator T : V → V . By Exercise 4 we must show that ∇fp is a multiple of p.
But by Exercise 4, the scalar multiples of p are just those vectors orthogonal to TpS(V ),
so it will suffice to find p witht ∇fp orthogonal to TpS(V ). If we choose p a point of S(V )
where f assumes its maximum value on S(V ), that is automatic.

21



Math 32a Fall 2003 R. Palais

Lecture 7
Normed Spaces and Integration

7.1 Norms for Vector Spaces.
Recall that a metric space is a very simple mathematical structure. It is given by a set
X together with a distance function for X, which is a mapping ρ from X ×X → R that
satisfies three properties:

• Positivity: ρ(x1, x2) ≥ 0 with equality if and only if x1 = x2.

• Symmetry: ρ(x1, x2) = ρ(x2, x1).

• Triangle Inequality: ρ(x1, x3) ≤ ρ(x1, x2) + ρ(x2, x3).

(You should think of the triangle inequality as saying that “things close to the same thing
are close to each other”.)

For the metric spaces that turn up in practice, X is usually some subset of a vector space
V and the distance function ρ has the form ρ(x1, x2) = N(x1 − x2) where the function
N : V → R is what is called a “norm” for V ,

7.1.1 Definition. A real-valued function on a vector space V is called a norm for V if
it satisfies the following three properties:

• Positivity: N(v) ≥ 0 with equality if and only if v = 0.

• Positive Homogeneity: N(αv) = |α|N(v).

• Triangle Inequality: N(x1 + x2) ≤ N(x1) +N(x2).

If N is a norm for V then we call ρ
N

(x1, x2) := N(x1−x2) the associated distance function
(or metric) for V . A vector space V together with some a choice of norm is called a normed
space, and the norm is usually denoted by ‖ ‖. If V is complete in the associated metric
(i.e., every Cauchy sequence converges), then V is called a Banach spacee.

. 7.1—Exercise 1. Show that if N is a norm for V then ρ
N

really defines a distance
function for V .

7.1.2 Remark. We have seen that for an inner-product space V , we can define a norm
for V by ‖v‖ :=

√
〈v, v〉. Moreover, we could then recover the inner-product from this

norm by using the so-called polarization identity: ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2 〈x, y〉.
It is natural to wonder if every norm “comes from an inner product” in this way, or
if not which ones do. The answer is quite interesting. If we replace y by −y in the
polarization identity and then add the result to the original polarization identity, we get
‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2. This has a nice interpretation: it says that the
sum of the squares of the two diagonals of any parallelogram is equal to the sum of the
squares of the four sides—and so it is called the Parallelogram Law . It is a pretty (and
non-obvious!) fact that the Parallelogram Law is not only a necessary but also a sufficient
condition for a norm to come from an inner product.

22



Math 32a Fall 2003 R. Palais

There is a remarkable fact about linear maps between normed spaces: if they have even a
hint of continuity then they are very strongly continuous. To be precise:

7.1.3 Theorem. Let V and W be normed spaces and T : V →W a linear map from V
to W . Then the following are equivalent:

1) There is at least one point v0 ∈ V where T is continuous.

2) T is continuous at 0.

3) There is a constant K such that ‖Tv‖ ≤ K ‖v‖ for all v ∈ V .

4) T satisfies a Lipschitz condition.

5) T is uniformly continuous.

PROOF. First note that since ‖(xn + y)− (x+ y)‖ = ‖xn − x‖ it follows that xn → x is
equivalent to (xn + y) → (x+ y), a fact we will use several times

Assume 1) and let vn → 0. Then (vn+v0) → v0, so by 1) T (vn+v0) → Tv0, or by linearity,
Tvn + Tv0 → Tv0; which is equivalent to Tvn → 0, hence 1) implies 2). Assuming 2), we
can find a δ > 0 such that if ‖x‖ ≤ δ then ‖T (x)‖ < 1. Now

∥∥∥ δv
‖v‖

∥∥∥ = δ, so
∥∥∥T ( δv

‖v‖

)∥∥∥ < 1,

hence ‖Tv‖ < K ‖v‖ where K = 1
δ , so 2) implies 3). Since Tv1 − Tv2 = T (v1 − v2), 3)

implies that K is a Lipschitz constant for T , and finally 4) ⇒ 5) ⇒ 1) is trivial.

. 7.1—Exercise 2. Show that if V and W are finite dimensional inner-product spaces
then any linear map T : V → W is automatically continuous. Hint: Choose bases, and
look at the matrix representation of T .

7.1.4 Remark. This theorem shows that if T : V →W is continuous, then T is bounded
on the unit sphere of V . Thus |||T ||| := sup‖v‖=1 ‖Tv‖ is well-defined and is called the
norm of the linear map T . It is clearly the smallest Lipschitz constant for T .

7.1.5 Extension Theorem For Continuous Linear Maps. Let V be a normed
space, U a linear subspace of V , W a Banach space, and T : U → W a continuous linear
map. Then T has a unique extension to a linear map T̃ : Ū → W (where as usual Ū
denotes the closure of U in V ). Moreover ||| T̃ ||| = |||T |||.

PROOF. Suppose v ∈ Ū . Then there is a sequence un ∈ U such that un → v. Then un

is a Cauchy sequence, and since T is Lipschitz it follows that Tun is Cauchy in W , and
since W is by assumption a Banach space (complete) it follows that Tun converges to a
limit w ∈W , and we define T̃ v := w. We leave further details as an exercise.

. 7.1—Exercise 3. If u′n is a second sequence in U that converges to v show that Tu′n
has the same limit as Tun. (Hint: Consider the sequence u1, u

′
1, u2, u

′
2, . . . .)

. 7.1—Exercise 4. Why does ||| T̃ ||| = |||T |||?

23



Math 32a Fall 2003 R. Palais

7.2 The Space B([a, b], V ) of Bounded Functions on V .

7.2.1 Definition. Let V be a finite dimensional inner-product space and [a, b] ⊆ R a
closed interval of real numbers. We denote by B([a, b], V ) the vector space of all bounded
functions σ : [a, b] → V , with pointwise vector operations, and we define a function σ 7→
‖σ‖∞ on B([a, b], V ) by ‖σ‖∞ = supa≤t≤b ‖σ(t)‖.

. 7.2—Exercise 1. Show that ‖ ‖∞ really defines a norm for B([a, b], V ).

Henceforth we shall always regard B([a, b], V ) as a metric space with the distance function
defined by the norm ‖ ‖∞. But what does convergence mean in this metric space?

. 7.2—Exercise 2. Let σn : [a, b] → V be a sequence in B([a, b], V ) and σ ∈ B([a, b], V ).
To say that the sequence σn converges to σ of course means by definition that the sequence
of real numbers ‖σn − σ‖∞ converges to zero. Show that this is the case if and only if the
sequence of functions σn(t) converges uniformly to the function σ(t) on the interval [a, b],
i.e., if and only if for every ε > 0 there is a positive integer N such that the inequality
‖σn(t)− σ(t)‖ holds for all t ∈ [a, b] provided n > N .

7.2.2 Remark. A similar proof shows that the sequence σn is Cauchy in B([a, b], V ) if
and only if the sequence of functions σn(t) is uniformly Cauchy on [a, b], i.e., if and only
if for every ε > 0 there is a positive integer N such that the inequality ‖σn(t)− σm(t)‖
holds for all t ∈ [a, b] provided both m and n are greater than N . Now if σn(t) is uniformly
Cauchy on [a, b], then a fortiori σn is a Cauchy sequence in V for each t ∈ [a, b], and since
V is complete, σn(t) converges to some element σ(t) in V , and then it is easy to see that
σ is in B([a, b], V ) and that σ − σn → 0. This proves that B([a, b], V ) is a Banach space,
i.e., any Cauchy sequence in B([a, b], V ) converges to an element of B([a, b], V ).

7.3 Quick and Dirty Integration

We will now see that it is quite easy to define the integral,
∫ b

a
f(t) dt, of a continuous map

f : [a, b] → V , and in fact we shall define it for a class of f considerably more general than
continuous. In all of the following we assume that V is a finite dimensional inner-product
space.

7.3.1 Definition. A partition Π of [a, b] is a finite sequence a = t0 ≤ t1 ≤ . . . ≤ tn = b,
and we say that a function f : [a, b] → V is adjusted to the partition Π if f is constant
on each of the sub-intervals (ti, ti+1). We call f a step-function if there exists a partition
to which it is adjusted, and we denote by S([a, b], V ) the set of all step functions. Clearly
S([a, b], V ) ⊆ B([a, b], V ). If f1 and f2 are two step-functions, and Πi is a partition adjusted
to fi, then any partition that contains all the points of Π1 and Π2 is adjusted to both f1
and f2 and hence to any linear combination of them. This shows that S([a, b], V ) is a
linear subspace of B([a, b], V ).

7.3.2 Definition. If f : [a, b] → V is a step-function and if f is adjusted to a partition
Π = t0 ≤ t1 ≤ . . . ≤ tn, then we define its integral , I(f) ∈ V , by I(f) :=

∑n
i=1(ti−ti−1)vi,

where vi is the constant value of f on the interval (ti−1, ti).

24



Math 32a Fall 2003 R. Palais

. 7.3—Exercise 1. Show that the integral I : S([a, b], V ) → V is a well-defined linear
map and satisfies ‖I(f)‖ ≤ (b − a) ‖f‖∞, so that I is continuous and has norm ||| I ||| =
(b − a). Hint: The only (slightly) tricky point is to show that I(f) does not depend on
the choice of a partition to which f is adjusted. Reduce this to showing that when you
subdivide one subinterval of a partition, the integral does not change.

We can now use our Extension Theorem For Continuous Linear Maps to conclude that I
has a unique extension to a continuous linear map I : S̄([a, b], V ) → V , where S̄([a, b], V )
denotes the closure of the step functions in the space B([a, b], V ) of bounded functions.
For f ∈ S̄([a, b], V ) we will also denote its integral, I(f), by

∫ b

a
f(t) dt, and we will refer

to elements of S̄([a, b], V ) as integrable functions. Note that according to the extension
theorem, the inequality

∥∥∥∫ b

a
f(t) dt

∥∥∥ ≤ (b − a) ‖f‖∞ continues to hold for any integrable
function f .

7.3.3 Proposition. Integration commutes with linear maps. That is, if T : V → W
is linear and f : [a, b] → V is integrable, then T ◦ f : [a, b] → W is integrable and

T (
∫ b

a
f(t) dt) =

∫ b

a
T (f(t)) dt.

PROOF. The Proposition is obvious for step functions, and it then follows for integrable
functions by the uniqueness of the extension.

It is natural to wonder just how inclusive the space of integrable functions is. We note
next that it contains all continuous functions.

7.3.4 Proposition. The space C([a, b], V ) of continuous maps of [a, b] into V is a linear
subspace of the space S̄([a, b], V ) of integrable functions.

PROOF. By a standard result of analysis, if f ∈ C([a, b], V ) then f is uniformly con-
tinuous. That is, given ε > 0, there is a δ > 0 such that if t1 and t2 are in [a, b] and
|t1 − t2| < δ, then ‖f(t1)− f(t2)‖ < ε. Choose an integer N so large that b−a

N < δ and
partition [a, b] into N equal subintervals, and let φ be the step function that is constant
on each subinterval of this partition and agrees with f at the left endpoint. Then clearly
‖f − φ‖∞ < ε, proving that f is in the closure of S([a, b], V )

. 7.3—Exercise 2. The “standard result of analysis” says that, if X is a compact metric
space then a continuous map f : X → Y is uniformly continuous. Prove this. Hint: One
approach is to prove the “contrapositive” statement, i.e., show that if X is not uniformly
continuous then there is at least one point x of X where f is not continuous. For this,
pick an ε so that for each integer n there are two points xn and x′n with ρ(xn, x

′
n) < 1

n
but ρ(f(xn), f(x′n)) > ε. By compactness, a subsequence xnk

converges to some point x.
Show that x′nk

also converges to x and deduce that f is not continuous at x.

7.3.5 Remark. The above proof generalizes to show that even a piecewise continuous
f : [a, b] → V is integrable, where f : [a, b] → V is called piecewise continuous if there is a

25



Math 32a Fall 2003 R. Palais

partition of [a, b] such that f is continuous on each of its open subintervals, with a limit
at each endpoint of the subinterval.

. 7.3—Exercise 3. Show that if f : [a, b] → V is integrable then
∥∥∥∫ b

a
f(t) dt

∥∥∥ ≤∫ b

a
‖f(t)‖ dt. Hint: For a step function, this follows from the triangle inequality for norms.

. 7.3—Exercise 4. . Show that if f : [a, b] → V is integrable, and a < c < b, then∫ b

a
f(t) dt =

∫ c

a
f(t) dt+

∫ b

c
f(t) dt

. 7.3—Exercise 5. Let f : [a, b] → V be continuous and define F : [a, b] → V by
F (t) :=

∫ t

a
f(s) ds. Show that F is differentiable and that F ′ = f .

Hint: 1
h [F (t0 + h)− F (t0)]− f(t0) = 1

h

∫ t0+h

t0
(f(s)− f(t0)) ds.

We next prove the vector version of the Fundamental Theorem of Integral Calculus (allow-
ing us to evaluate a definite integral if we know an anti-derivative for the integrand). As in
the classic case it depends on knowing that only constant functions have a zero derivative.

7.3.6 Lemma. If f : [a, b] → V is differentiable and f ′ is identically zero, then f is
constant.

PROOF. This can be reduced to the classic special case that V = R (proved in elementary
Calculus as an easy consequence of Rolle’s Theorem). In fact, if ` ∈ V ∗, then (` ◦ f)′ =
` ◦ f ′ = 0 so (` ◦ f) is constant by the special case. But since this holds for every ` ∈ V ∗
it follows easily that f itself must be constant.

. 7.3—Exercise 6. Prove the vector version of the Fundamental Theorem of Integral
Calculus, That is, let f : [a, b] → V be continuous and let Φ : [a, b] → V be an antiderivative
of f , i.e., Φ is differentiable and Φ′ = f . Show that

∫ b

a
f(t) dt = Φ(b)− Φ(a). Hint: If we

define F (t) :=
∫ t

a
f(s) ds, then we know F and Φ have the same derivative, so F − Φ has

derivative 0, and by the lemma F and Φ differ by a constant vector.

7.3.7 Finite Difference Formula. Let O be a convex open set in V and let F : O →
W be differentiable. If v0, v1 ∈ O, then F (v1) − F (v0) =

∫ 1

0
DFσ(t)(v1 − v0) dt, where

σ(t) = v0 + t(v1 − v0), 0 ≤ t ≤ 1 is the line segment joining v0 to v1.

PROOF. By the chain rule, (F ◦ σ)′(t) = DFσ(t)(σ′(t)), and clearly σ′(t) = v1 − v0.
Thus (F ◦ σ) is an anti-derivative for DFσ(t)(v1 − v0), and the result follows from the
Fundamental Theorem.

7.3.8 Corollary. Let O be a convex open set in V and let F : O →W be continuously
differentiable. Then F satisfies a Lipschitz condition on any closed, bounded subset S of
O. In fact, if K is an upper bound for |||DFp ||| for p ∈ S, then K is a Lipschitz bound
for F .

. 7.3—Exercise 7. Use the Finite Difference Formula to prove the corollary.

26



Math 32a Fall 2003 R. Palais

7.4 Numerical Integration (or Quadrature Rules)
Since one usually cannot find an anti-derivative for an integrand in closed form, it is

important to be able to “evaluate an integral numerically”—meaning approximate it with
arbitrary precision. In fact, this is so important that there are whole books devoted the
study of numerical integration methods (aka quadrature rules). We will consider only two
such methods, one known as the Trapezoidal Rule and the other as Simpson’s Rule. In
what follows, we will assume that the integrand f is always at least continuous, but for the
error estimates that we will mention to be valid, we will need f to have several continuous
derivatives.

7.4.1 Definition. By a quadrature rule we mean a function M that assigns to each
continuous function f : [a, b] → V (mapping a closed interval [a, b] into an inner-product
space V ) a vector M(f, a, b) ∈ V—which is supposed to be an approximation of the
integral,

∫ b

a
f(t) dt. A particular quadrature rule M is usually given by specifying a linear

combination of the values of f at certain points of he interval [a, b]; that is, it has the
general form M(f, a, b) :=

∑n
i=1 wif(ti), where the points ti ∈ [a, b] are called the nodes

of M and the scalars wi are called its weights. The error of M for a particular f and [a, b]
is defined as Err(M,f, a, b) :=

∥∥∥∫ b

a
f(t) dt−M(f, a, b)

∥∥∥.
7.4—Example 1. The Trapezoidal Rule: MT (f, a, b) := b−a

2 [f(a) + f(b)].
In this case, there are two nodes, namely the two endpoints of the interval, and they have
equal weights, namely half the length of the interval. Later we shall see the origin of this
rule (and explain its name).

7.4—Example 2. Simpson’s Rule: MS(f, a, b) := b−a
6 [f(a) + 4f(a+b

2 ) + f(b)].
So now the nodes are the two endpoints, as before, and in addition the midpoint of the
interval. And the weights are b−a

6 for the two endpoints and 2(b−a)
3 for the midpoint.

7.4.2 Remark. Notice that in both examples the weights add up to b − a. This is no
accident; any “reasonable” quadrature rule should have a zero error for a constant function,
and this easily implies that the weights must add to b− a.

7.4.3 Proposition. If f : [a, b] → V has two continuous derivatives, and ‖f ′′(t)‖ < C

for all t ∈ [a, b] then Err(MT , f, a, b) ≤ C (b−a)3

12 . Similarly, if f : [a, b] → V has four

continuous derivatives, and ‖f ′′′′(t)‖ < C for all t ∈ [a, b] then Err(MS , f, a, b) ≤ C (b−a)5

90

7.4.4 Remark. The proof of this proposition is not difficult—it depends only the Mean
Value Theorem—but it can be found in any numerical analysis text and will not be repeated
here.

7.4.5 Definition. If M is a quadrature rule then we define a sequence Mn of derived
quadrature rules by Mn(f, a, b) :=

∑n−1
i=0 M(f, a + ih, a + (i + 1)h) where h = b−a

n . We
say that the rule M is convergent for f on [a, b] if the sequence Mn(f, a, b) converges to∫ b

a
f(t) dt.

27



Math 32a Fall 2003 R. Palais

In other words, to estimate the integral
∫ b

a
f(t) dt using the n-th derived ruleMn, we simply

divide the interval [a, b] of integration into n equal sub-intervals, estimate the integral on
each sub-interval using M , and then add these estimates to get the estimate of the integral
on the whole interval.

7.4.6 Remark. We next note an interesting relation between the errors of M and of Mn.
Namely, with the notation just used in the above definition, we see that by the additivity
of the integral,

∫ b

a
f(t) dt =

∑n−1
i=0

∫ a+(i+1)h

a+ih
f(t) dt, hence from the definition of Mn and

the triangle inequality, we have Err(Mn, f, a, b) ≤
∑n−1

i=0 Err(M,f, a+ ih, a+(i+1)h). We
can now use this together with Proposition 7.4.3 to prove the following important result:

7.4.7 Theorem. If f : [a, b] → V has two continuous derivatives, and ‖f ′′(t)‖ < C for

all t ∈ [a, b] then Err(MT
n , f, a, b) ≤ C (b−a)3

12n2 . Similarly, if f : [a, b] → V has four continuous

derivatives, and ‖f ′′′′(t)‖ < C for all t ∈ [a, b] then Err(MS
n , f, a, b) ≤ C (b−a)5

90n4

. 7.4—Exercise 1. Fill in the details of the proof of this theorem.

7.4.8 Remark. This shows that both the Trapezoidal Rule and Simpson’s Rule are con-
vergent for any reasonably smooth function. But it also shows that Simpson’s Rule is far
superior to the Trapezoidal Rule. For just fifty per cent more “effort” (measured by the
number of evaluations of f) one gets a far more accurate result.

Where did the formulas for the Trapezoidal Rule and Simpson’s Rule come from? It helps
to think of the classical case of a real-valued function f , so we can regard

∫ b

a
f(t) dt as

representing the area under the graph of f between a and b. Now, if f is differentiable
and the interval [a, b] is short, then the graph of f is well-approximated by the straight
line segment joining (a, (f(a)) to (b, f(b)), so the area under of the graph of f should be
well-approximated by the area between the x-axis and this line segment. The latter area
is of course a trapezoid (whence the name) and it has the area given by the Trapezoidal
Rule formula. Simpson’s Rule arises if instead of interpolating f by a linear function that
agrees with f at a and b we instead interpolate by a quadratic function cx2 + dx+ e that
agrees with f at a and b and also at the mid-point a+b

2 .

. 7.4—Exercise 2. Using the method of “undetermined coefficients”, show that there
is a unique choice of coefficients c, d, e such that the quadratic polynomial cx2 + dx + e
agrees with the function f at the three points a, b and a+b

2 . Find c, d, and e explicitly and
integrate the polynomial from a to b, and check that this gives MS(f, a, b).

7.5 Second Matlab Project.
The second Matlab project is to develop Matlab code to implement the Trapezoidal Rule

and Simpson’s Rule, and then to do some experimentation with your software, checking
that the error estimates of theorem 7.4.7 are satisfied for some test cases where the function
f has a known anti-derivative and so can be evaluated exactly. In more detail:

28



Math 32a Fall 2003 R. Palais

1) Write a Matlab function M-file defining a function TrapezoidalRule(f,a,b,n). This should
return the value of MT

n (f, a, b). Here of course the parameters a and b represent real
numbers and the parameter n a positive integer. But what about the parameter f, i.e.,
what should it be legal to substitute for f when the TrapezoidalRule(f,a,b,n) is called?
Answer: f should represent a function of a real variable whose values are arrays (of
some fixed size) of real numbers. The function that you are permitted to substitute for
f should either be a built-in Matlab function (such as sin) or an inline function in the
Matlab Workspace, or a function that is defined in some other M-File.

2) Write a second Matlab function M-file defining a function SimpsonsRule(f,a,b,n) that
returns MS

n (f, a, b).

3) Recall that
∫ t

0
dx

1+x2 = arctan(t), so that in particular
∫ 1

0
4 dx
1+x2 = 4 arctan(1) = π. Using

the error estimates for the Trapezoidal Rule and Simpson’s Rule, calculate how large n
should be to calculate π correct to d decimal places from this formula using Trapezoidal
and Simpson. Set format long in Matlab and get the value of π to fifteen decimal places
by simply typing pi. Then use your Trapezoidal and Simpson functions from parts 1)
and 2) to see how large you actually have to choose n to calculate π to 5, 10, and 15
decimal places.

4) Be prepared to discuss your solutions in the Computer Lab.

29



Math 32a Fall 2003 R. Palais

Lecture 8
Ordinary Differential Equations (aka ODE)

8.1 The Initial Value Problem for an ODE.
Suppose we know the wind velocity at every point of space and at every instant of time.
A puff of smoke drifts by, and at a certain moment we observe the precise location of a
particular smoke particle. Can we then predict where that particle will be at all future
times? By making this metaphorical question precise we will be led to the concept of an
initial value problem for an ordinary differential equation.

We will interpret “space” to mean Rn, or more generally an inner-product space V , and
an “instant of time” will be represented by a real number t. Thus, knowing the wind
velocity at every point of space and at all instants of time means that we have a function
X : V ×R → V that associates to each (v, t) in V ×R a vector X(v, t) in V representing
the wind velocity at v at time t. Such a mapping is called a time-dependent vector field
on V . We will always be working with such X that are at least continuous, and usually
X will even be continuously differentiable. In case X(v, t) does not actually depend on t
then we call X a time-independent vector field on V , or simply a vector field on V . Note
that this is the same as giving a map X : V → V .

How should we model the path taken by the smoke particle? An ideal smoke particle is
characterized by the fact that it “goes with the flow”, i.e., it is carried along by the wind,
meaning that if x(t) is its location at a time t, then its velocity at time t will be the wind
velocity at that point and time, namely X(x(t), t). But the velocity of the particle at time
t is x′(t) = dx

dt , so the path of a smoke particle will be a differentiable curve x : (a, b) → V
such that x′(t) = X(x(t), t) for all t ∈ (a, b). Such a curve is called a solution curve of
the time-dependent vector field X and we also say that“x satisfies the ordinary differential
equation dx

dt = X(x, t)”.

Usually we will be interested in solution curves of a differential equation dx
dt = X(x, t) that

satisfy a particular initial condition. This means that we have singled out some special
time t0 (often, t0 = 0), and some specific point v0 ∈ V , and we look for a solution of
the ODE that satisfies x(t0) = v0. (In our smoke particle metaphor, this corresponds to
observing the particle at v0 as our clock reads t0.) The pair of equations dx

dt = X(x, t) and
x(t0) = v0 is called an “initial value problem” (abbreviated as IVP) for the ODE dx

dt = X.
The reason that it is so important is that the so-called Existence and Uniqueness Theorem
for ODE says (more or less) that, under reasonable assumptions on X, the initial value
problem has a “unique” solution.

8.1.1 Remark. If the vector field X is time-independent, then the ODE dx
dt = X is often

called autonomous.

8.1.2 Remark. In the case V = Rn, X(x, t) = (X1(x, t), . . . , Xn(x, t)) so that written
out in full, the ODE dx

dt = X looks like dxi

dt = Xi(x1(t), . . . , xn(t), t), i = 1, . . . n. In this
form it is usually referred to as a “system of ordinary differential equations”.

30



Math 32a Fall 2003 R. Palais

8.1—Example 1. X a constant vector field, i. e., X(v, t) = u, where u is some fixed
element of V . The solution with initial condition x(t0) = v0 is clearly the straight line
x(t) := v0 + (t− t0)u.

8.1—Example 2. X is the “identity” vector field, X(v, t) = v. The solution with initial
condition x(t0) = v0 is clearly x(t) := e(t−t0)v0. (Later we will see how to generalize this
to an arbitrary linear vector field, i.e., one of the form X(v, t) = Tv where T : V → V is a
continuous linear map.)

8.1—Example 3. A vector field that is “space-independent”, i. e., X(v, t) = f(t) where
f : R → V is continuous. The solution with initial condition x(t0) = v0 is x(t) =
v0 +

∫ t

to
f(s) ds.

8.2 The Local Existence and Uniqueness Theorem.
In what follows, X : V ×R → V is a time dependent vector field on V , v0 ∈ V , I = [a, b]
is an interval of real numbers, and t0 ∈ I. We define a map F = FX

t0,v0
of C(I, V ) to itself

by: F (σ)(t) := v0 +
∫ t

t0
X(σ(s), s) ds.

The following proposition follows immediately from the definitions and the Fundamental
Theorem of Integral Calculus.

Proposition. A necessary and sufficient condition for σ : I → V to be a solution of the
initial value problem dx

dt = X(x, t) and x(t0) = v0 is that σ be a fixed point of FX
t0,v0

.

This immediately suggests using successive approximations as a strategy for solving the
initial value problem. Start say with the constant curve x0 : I → V given by x0(t) = v0,
and define xn : I → V inductively by xn+1 := FX

t0,v0
(xn), and attempt to show that xn

converges to a fixed point of FX
t0,v0

, perhaps by showing that the Contraction Principle
applies. As we shall now see, this simple idea actually works for a very general class of
ODE.

. 8.2—Exercise 1. Carry out the above strategy for the case of the time-independent
vector field X(v) := v with t0 = 0. We saw above that the solution in this case is
x(t) = etv0. Show by induction that xn(t) = Pn(t)v0, where Pn is the n-th order Taylor
polynomial for et, i.e., Pn(t) =

∑n
k=0

tk

k! .

Local Existence and Uniqueness Theorem For ODE. Let X : V ×R → V be a C1

time-dependent vector field on V , p ∈ V , and t0 ∈ R. There are positive constants ε and
δ depending on X, p, and t0 such that if I = [t0 − δ, t0 + δ], then for each v0 ∈ V with
‖v0 − p‖ < ε the differential equation σ′(t) = X(σ(t), t) has a unique solution σ : I → V
satisfying σ(t0) = v0.

PROOF. If ε > 0, then using the technique explained earlier we can find a Lipschitz
constant M for X restricted to the set of (x, t) ∈ V × R such that ‖x− p‖ ≤ 2ε and
|t− t0| ≤ ε. Let B be the maximum value of ‖X(x, t)‖ on this same set, and choose δ > 0
so that K = Mδ < 1 and Bδ < ε, and define Y to be the set of σ in C(I, V ) such that

31



Math 32a Fall 2003 R. Palais

‖σ(t)− p‖ ≤ 2ε for all |t| ≤ δ. It is easy to see that Y is closed in C(I, V ), hence a complete
metric space. The theorem will follow from the Banach Contraction Principle if we can
show that for ‖v0‖ < ε, F = FX

t0,v0
maps Y to itself and has K as a Lipschitz bound.

If σ ∈ Y then ‖F (σ)(t)− p‖ ≤ ‖v0 − p‖+
∫ t

0
‖X(σ(s), s)‖ ds ≤ ε+ δB ≤ 2ε, so F maps Y

to itself. And if σ1, σ2 ∈ X then ‖X(σ1(t), t)−X(σ2(t), t)‖ ≤M ‖σ1(t)− σ2(t)‖, so

‖F (σ1)(t)− F (σ2)(t)‖ ≤
∫ t

0

‖X(σ1(s), s)−X(σ2(s), s)‖ ds

≤
∫ t

0

M ‖σ1(s)− σ2(s)‖ ds

≤
∫ t

0

Mρ(σ1, σ2) ds

≤ δMρ(σ1, σ2) ≤ Kρ(σ1, σ2).

and it follows that ρ(F (σ1), F (σ2) ≤ Kρ(σ1, σ2).

. 8.2—Exercise 2. Show that continuity of V is not sufficient to guarantee uniqueness
for an IVP. Hint: The classic example (with V = R) is the initial value problem dx

dt =
√
x,

and x(0) = 0. (Note that this is C1, except at the point x = 0.) Show that for each
T > 0, we get a distinct solution x

T
(t) of this IVP by defining x

T
(t) = 0 for t < T and

x
T
(t) = 1

4 (t− T )2 for t ≥ T .

8.2.1 Remark. The existence and uniqueness theorems tell us that for a given initial
condition we can solve our initial value problem (uniquely) for a short time interval. The
next question we will take up is for just how long we can “follow a smoke particle”. You
might guess for each initial condition p in V we should have a solution xp : R → V
with xp(t0) = p. But such global in time existence is too much to expect in general.
For example, take V = R and consider the differential equation dx

dt = x2 with the initial
condition x(0) = x0. An easy calculation shows that the unique solution is x(t) = x0

1−tx0
.

Note that x0, this solution “blows up” at time T = 1
x0

, and by the uniqueness theorem,
no solution can exist for a time greater than T .

You may object that a particle of smoke will never go off to infinity in a finite amount
of time! Perhaps the smoke metaphor isn’t so good after all. The answer is that a real,
physical wind field has bounded velocity, and it isn’t hard to show that in this case we do
indeed have global in time existence.

We are now going to make a simplification, and restrict attention to time-independent
vector fields (which we shall simply call vector fields). That may sound like a tremendous
loss of generality, but in fact it is no loss of generality at all!

. 8.2—Exercise 3. Let X(v, t) be a time-dependent vector field in V , and define an
associated time independent vector field X̃ in V × R by X̃(y) = (X(y), 1). Show that
y(t) = (x(t), f(t)) is a solution of the differential equation dy

dt = X̃(y) if and only if
f(t) = t + c and x(t) is a solution of dx

dt = X(x, t + c). Deduce that if y(t) = (x(t), f(t))
solves the IVP dy

dt = X̃(y), y(t0) = (x0, t0), then x(t) solves dx
dt = X(x, t), x(t0) = x0.

32



Math 32a Fall 2003 R. Palais

This may seem like a swindle—we don’t seem to have done much beyond coalescing the
original time variable t with the space variables, i.e., we have switched from a space + time
description to a space-time description. But there is another important difference, namely
X̃ takes values in V ×R. In any case, this is a true reduction of the non-autonomous case
to the autonomous case, and it is important, since autonomous differential equations have
special properties that make them easier to study. Here is one such special property of
autonomous systems.

8.2.2 Proposition. If x : (a, b) → V is any solution of the autonomous differentiable
equation dx

dt = X(x) and t0 ∈ R, then y : (a+ t0, b+ t0) → V defined by y(t) = x(t− t0)
is also a solution of the same equation.

. 8.2—Exercise 4. Prove the above Proposition.

Consequently, when considering the IVP for an autonomous differentiable equation we can
assume that t0 = 0. For if x(t) is a solution with x(0) = p, then x(t− t0) will be a solution
with x(t0) = p.

8.2.3 Remark. There is another trick that allows us to reduce the study of higher order
differential equations to the case of first order equations. Consider the second order differ-
ential equation: d2x

dt2 = f(x, dx
dt , t). Introduce a new variable v, (the velocity) and consider

the following related system of first order equations: dx
dt = v and dv

dt = f(x, v, t). It is pretty
obvious there is a close relation between curves x(t) satisfying x′′(t) = f(x(t), x′(t), t) and
pairs of curves x(t), v(t) satisfying x′(t) = v(t) and v′(t) = f(x(t), v(t), t).

. 8.2—Exercise 5. Define the notion of an initial value problem for the above second
order differential equation, and write a careful statement of the relation between solutions
of this initial value problem and the initial value problem for the related system of first
order differential equations.

We will now look more closely at the uniqueness question for solutions of an initial value
problem. The answer is summed up succinctly in the following result.

8.2.4 Maximal Solution Theorem. Let dx
dt = X(x) be an autonomous differential

equation in V and p any point of V . Among all solutions x(t) of the equation that satisfy
the initial condition x(0) = p, there is a maximum one, σp, in the sense that any solution
of this IVP is the restriction of σp to some interval containing zero.

. 8.2—Exercise 6. If you know about connectedness you should be able to prove this
very easily. First, using the local uniqueness theorem, show that any two solutions agree
on the intersection of their domains. Then define σp to be the union of all solutions.

Henceforth whenever we are considering some autonomous differential equation, σp will
denote this maximal solution curve with initial condition p. The interval on which σp is
defined will be denoted by (α(p), ω(p)), where of course α(p) is either −∞ or a negative
real number, and ω(p) is either ∞ or a positive real number.

33



Math 32a Fall 2003 R. Palais

We have seen that the maximal solution need not be defined on all of R, and it is important
to know just how the solution “blows up” as t approaches a finite endpoint of its interval of
definition. A priori it might seem that the solution could remain in some bounded region,
but it is an important fact that this is impossible—if ω(p) is finite then the reason the
solution cannot be continued past ω(p) is simply that σ(t) escapes to infinity (in the sense
that ‖σp(t)‖ → ∞) as t approaches ω(p).

8.2.5 No Bounded Escape Theorem. If ω(p) <∞ then limt→ω(p) ‖σp(t)‖ = ∞, and
similarly, if α(p) > −∞ then limt→α(p) ‖σp(t)‖ = ∞.

. 8.2—Exercise 7. Prove the No Bounded Escape Theorem.
(Hint: If limt→ω(p) ‖σ(p)‖ 6= ∞, then by Bolzano-Weierstrass there would be a sequence tk
converging to ω(p) from below, such that σp(tk) → q. Then use the local existence theorem
around q to show that you could extend the solution beyond ω(p). Here is where we get
to use the fact there is a neighborhood O of q such that a solution exists with any initial
condition q′ in O and defined on the whole interval (−ε, ε). For k sufficiently large, we
will have both σp(tk) in O and tk > ω − ε, which quickly leads to a contradiction.)

Here is another interesting and important special properties of autonomous systems.

. 8.2—Exercise 8. Show that the images of the σp partition V into disjoint smooth
curves (the “streamlines” of smoke particles). These curves are referred to as the orbits of
the ODE. (Hint: If x(t) and ξ(t) are two solutions of the same autonomous ODE and if
x(t0) = ξ(t1) then show that x(t0 + s) = ξ(t1 + s).)

. 8.2—Exercise 9. Show that if the vector field X : V → V is Ck then each maximal
solution σp : (αp, ωp) → V is Ck+1. (Hint: To begin with we know that σp is differentiable
and hence continuous, so t 7→ X(σp(t)) is at least continuous. Now use the relation
σ′p(t) = X(σp(t)) to argue by induction.)

8.2.6 Remark. In the next section we will discuss the smoothness of σp(t) as a function
of p and t jointly, and see that it is of class Ck.

8.2.7 Definition. A Ck vector field X : V → V (and also the autonomous differential
equation dx

dt = X(x)) is called complete if α(p) = −∞ and ω(p) = ∞ for all p in V . In this
case, for each t ∈ R we define a map φt : V → V by φt(p) = σp(t). The mapping t 7→ φt

is called the flow generated by the differential equation dx
dt = X(x).

8.2.8 Remark. Using our smoke particle metaphor, the meaning of φt can be explained
as follows: if a puff of smoke occupies a region U at a given time, then t units of time later
it will occupy the region φt(U). Note that φ0 is clearly the identity mapping of Rn

. 8.2—Exercise 10. Show that the φt satisfy φt1+t2 = φt1φt2 , so that in particular
φ−t = φ−1

t . By the next section, each φt is actually a “diffeomorphism” of V , i.e., both it
and its inverse are C1. So the flow generated by a complete, autonomous C1 vector field is
a homomorphism of the additive group of real numbers into the group of diffeomorphisms
of V .

34



Math 32a Fall 2003 R. Palais

8.3 Smoothness of Solutions of ODE.
As we saw above, it is an easy exercise to show that each solution of the differential
equation dx

dt = X(x) will be Ck+1 if X is Ck. But in practice it is also important to
know how solutions of an ODE depend on initial conditions. Also, if we have a family of
X(x, α) of vector fields depending on some parameters α = (α1, . . . , αk) ∈ Rk, we would
like to know how the solutions of the corresponding IVP depend on these parameters. The
following theorem answers all these questions. We will not give the proof here. It can
be found in any good textbook on ODE. (One excellent source is Differential Equations,
Dynamical Systems, and Linear Algebra by Morris Hirsch and Stephen Smale. See in
particular Chapter 15.)

Theorem. Let X : V ×Rk → V be a Ck map. We regard X(x, α) as a family of vector
fields on V depending on the parameter α ∈ Rk, and denote by t 7→ σα

p (t) the maximal

solution of the ODE dx
dt = X(x, α) with σα

p (0) = p. Then the map (p, t, α) 7→ σα
p (t) is of

class Ck.

35



Math 32a Fall 2003 R. Palais

Lecture 9
Linear ODE and Numerical Methods

9.1 Linear Differential Equations.
If A : V → V is a continuous linear operator on V then we can also consider A as a vector
field on V . The corresponding autonomous ODE, dx

dt = Ax is called a linear differential
equation on V .

Denote by C(R, V ) the continuous maps of R into V , and let F = FA
x0

be the map
of C(R, V ) to itself defined by F (x)(t) := x0 +

∫ t

0
A(x(s)) ds. Since A is linear, this

can also be written as F (x)(t) := x0 + A
∫ t

0
x(s) ds. We know that the solution of the

IVP with initial value x0 is just the unique fixed point of F , so let’s try to find it by
successive approximations starting from the constant path x0(t) = x0. If we recall that
the sequence of successive approximations, xn, is defined recursively by xn+1 = F (xn),
then an elementary induction gives xn(t) =

∑n
k=0

1
k! (tA)kx0, suggesting that the solution

to the initial value problem should be given by the limit of this sequence, namely the
infinite series

∑∞
k=0

1
k! (tA)kx0. Now (for obvious reasons) given a linear operator T acting

on V , the limit of the infinite series of operators
∑∞

k=0
1
k!T

k is denoted by eT or exp(T ) so
we can also say that the solution to our IVP should be etAx0.

The convergence properties of the series for eTx follow easily from the Weierstrass M-test.
If we define Mk = 1

k! |||T |||
kr, then

∑
Mk converges to e|||T |||r, and since

∥∥ 1
k!T

kx
∥∥ < Mk

when ‖x‖ < r, it follows that
∑∞

k=0
1
k!T

kx converges absolutely and uniformly to a limit,
eTx, on any bounded subset of V .

. 9.1—Exercise 1. Provide the details for the last statement.
(Hint: Since the sequence of partial sums

∑n
k=0Mk converges, it is Cauchy, i.e., given

ε > 0, we can choose N large enough that
∑m+k

m Mk < ε provided m > N . Now if

‖x‖ < r,
∥∥∥∑m+k

k=0
1
k!T

kx−
∑m

k=0
1
k!T

kx
∥∥∥ <∑m+k

m Mk < ε, proving that the infinite series

defining eTx is uniformly Cauchy and hence uniformly convergent in ‖x‖ < r.)

Since the partial sums of the series for eTx are linear in x, so is their limit, so eT is indeed
a linear operator on V .

Next observe that since a power series in t can be differentiated term by term, it follows
that d

dte
tAx0 = AetAx0, i.e., x(t) = etAx0 is a solution of the ODE dx

dt = Ax. Finally,
substituting zero for t in the power series gives e0Ax0 = x0. This completes the proof of
the following proposition.

9.1.1 Proposition. If A is a linear operator on V then the solution of the linear
differential equation dx

dt = Ax with initial condition x0 is x(t) = etAx0.

As a by-product of the above discussion we see that a linear ODE dx
dt = Ax is complete,

and the associated flow φt is just etA. By a general fact about flows it follows that
e(s+t)A = esAetA, and e−A = (eA)−1, so exp : A 7→ eA is a map of the vector space L(V )

36



Math 32a Fall 2003 R. Palais

of all linear maps of V into the group GL(V ) of invertible elements of L(V ) and for each
A ∈ L(V ), t 7→ etA is a homomorphism of the additive group of real numbers into GL(V ).

. 9.1—Exercise 2. Show more generally that if A and B are commuting linear operators
on V then eA+B = eAeB . (Hint: Since A and B commute, the Binomial Theorem is valid
for (A+B)k, and since the series defining eA+B is absolutely convergent, it is permissible
to rearrange terms in the infinite sum. For a different proof, show that etAetBx0 satisfies
the initial value problem dx

dt = (A+B)x, x(0) = x0, and use the uniqueness theorem.)

. 9.1—Exercise 3. Now assume that V is a finite dimensional inner-product space.
Show that

(
eA
)∗ = eA∗

. (Hint: Recall that (AB)∗ = B∗A∗.) Show that if A is skew-
adjoint (meaning A∗ = −A) than eA is in the orthogonal group. Conversely show that if
etA is in the orthogonal group for all t ∈ R then A must be skew-adjoint.

. 9.1—Exercise 4. Let’s say that A ∈ L(V ) is tangent to the orthogonal group O(V )
at the identity if there is a differentiable path σ : (a, b) → L(V ) defined near 0, such that
σ(t) ∈ O(V ) for all t, σ(0) = I, and σ′(0) = A. From what we have just seen, every
skew-adjoint A is tangent to O(V ) at I. Show that conversely any A that is tangent to
O(V ) at I must be skew-adjoint. (Hint: Differentiate the identity σ(t)σ(t)∗ = I at t = 0.)

9.2 Numerical Solutions of ODE.
Once we go beyond the linear case, only a few rather special initial value problems can

be solved in closed form using standard elementary functions. For the general case it is
necessary to fall back on constructing a solution numerically. But what algorithm should
we use? A natural first guess is successive approximations. But while that is a powerful
theoretical tool for studying general properties of initial value problems—and in particular
for proving existence and uniqueness—it turns out to be so inefficient as an approach to
calculating numerical solutions, that it is rarely used.

In fact there is no unique answer to the question of what numerical algorithm to use
for solving ODEs, for there is no one method that is “best” in all situations. There are
integration routines that are fast and accurate when used with the majority of equations
one meets. Perhaps the most popular of these is the fourth order Runge-Kutta algorithm
(which we will consider below). But there are many special situations that require a more
sophisticated approach. Indeed, this is still a very active area of research, and there are
literally dozens of books on the subject.

The initial goal will be to give you a quick first impression of how numerical methods work
by describing one of the oldest numerical approaches to solving an initial value problem,
the so-called “Euler Method”. While rarely a good choice for practical computation, it is
intuitive, simple, and effective, and it is also the basis for some of the more sophisticated
algorithms. This makes it an excellent place to become familiar with the basic concepts
that enter into the numerical integration of ODE.

37



Math 32a Fall 2003 R. Palais

In what follows we will suppose that X is a C1 time-dependent vector field on V , and
given t0 in R and x0 in V we will denote by σ(X,x0, t0, t) the maximal solution, x(t), of
the differential equation dx

dt = X(x, t) satisfying the initial condition x(t0) = x0. The goal
in the numerical integration of ODE is to devise effective methods for approximating x(t)
on an interval I = [t0, T ]. The strategy that many methods use is to interpolate N equally
spaced gridpoints t1, . . . tN in the interval I, defined by tk := t0 + k∆t with ∆t = T−t0

N ,
and then use some rule to define values x1, . . . , xN in V , in such a way that when N is
large each xk is close to the corresponding x(tk). The quantity max1≤k≤N

∥∥xk − x(tk)
∥∥ is

called the global error of the algorithm, and if it converges to zero as N tends to infinity
(for every choice of X, t0, x0, and T ), then we say that we have a convergent algorithm.
Euler’s Method is a convergent algorithm of this sort.

One common way to construct the algorithm that produces the values x1, . . . , xN uses a
recursion based on a so-called “stepping procedure”, namely a function, Σ(X,x0, t0,∆t),
having as inputs:

1) a time-dependent vector field X on V ,

2) an initial condition x0 in V ,

3) an initial time t0 in R, and

4) a “time-step” ∆t in R,

and with output a point of V that for small ∆t approximates σ(X,x0, t0, t0 + ∆t) well.
More precisely, the so-called “local truncation error”, defined by

∥∥σ(X,x0, t0, t0 + ∆t)− Σ(X,x0, t0,∆t)
∥∥ ,

should approach zero at least quadratically in the time-step ∆t. Given such a step-
ping procedure, the approximations xk of the x(tk) are defined recursively by xk+1 =
Σ(X,xk, tk,∆t). Numerical integration methods that follow this general pattern are re-
ferred to as finite difference methods.

9.2.1 Remark. There are two sources that contribute to the global error,
∥∥xk − x(tk)

∥∥.
First, each stage of the recursion will give an additional local truncation error added to
what has already accumulated up to that point. But, in addition, after the first step,
there will be an error because the recursion uses Σ(X,xk, tk,∆t) rather than the unknown
Σ(X,x(tk), tk,∆t). (In practice there is a third source of error, namely machine round-off
error from using floating-point arithmetic. We will usually ignore this and pretend that our
computers do precise real number arithmetic, but there are situations where it is important
to take it into consideration.)

For Euler’s Method the stepping procedure is simple and natural. It is defined by:

Euler Step

ΣE(X,x0, t0,∆t) := x0 + ∆tX(x0, t0).

38



Math 32a Fall 2003 R. Palais

It is easy to see why this is a good choice. If as above we denote σ(X,x0, t0, t), by x(t),
then by Taylor’s Theorem,

x(t0 + ∆t) =x(t0) + ∆t x′(t0) +O(∆t2)

=x0 + ∆tX(x0, t0) +O(∆t2)

=ΣE(X,x0, t0,∆t) +O(∆t2),

so
∥∥σ(X,x0, t0, t0 + ∆t)− Σ(X,x0, t0,∆t)

∥∥, the local truncation error for Euler’s Method,
does go to zero quadratically in ∆t. When we partition [0, T ] into N equal parts, ∆t =
T−t0

N , each step in the recursion for computing xk will contribute a local truncation error
that is O(∆t2) = O( 1

N2 ). Since there are N steps in the recursion and at each step we add
O( 1

N2 ) to the error, this suggests that the global error will be O( 1
N ), and hence will go to

zero as N tends to infinity. However, because of the remark above, this is not a complete
proof that Euler’s Method is convergent, and we will not give the details of the rigorous
argument.

. 9.2—Exercise 1. Show that Euler’s Method applied to the initial value problem
dx
dt = x with x(0) = 1 gives limN→∞(1 + t

N )N = et.

Two positive features of Euler’s method are it’s intuitiveness and the ease with which it
can be programmed. Beyond that there is little to recommend it as a practical method
for solving real-world problems. It requires very small time steps to get reasonable accu-
racy, making it too slow for serious applications, and in fact it is rarely used except for
pedagogical purposes.

On the other hand, as we have already said, there is one excellent general purpose finite
difference method for solving IVPs, and it goes by the name Runge-Kutta—or more prop-
erly the fourth order Runge-Kutta Method—since there is a whole family of Runge-Kutta
methods. The stepping procedure for fourth order Runge-Kutta is:

Runge-Kutta Step

ΣRK4
(X,x0, t0,∆t) := x0 + 1

6 (k1 + 2k2 + 2k3 + k4), where:
k1 = ∆tX(x0, t0)
k2 = ∆tX(x0 + 1

2k1, t0 + ∆t
2 )

k3 = ∆tX(x0 + 1
2k2, t0 + ∆t

2 )
k4 = ∆tX(x0 + k3, t0 + ∆t)

It is of course natural to ask where this formula comes from. But if you recall Simpson’s
Rule then the above should not look all that unreasonable, and indeed if f(x, t) = φ(t)
then recall that the solution of the IVP reduces to the integral of φ and in this case the
Runge-Kutta formula reduces precisely to Simpson’s Rule. But even better, like Simpson’s
Rule, Runge-Kutta is fourth order, meaning that the local truncation error goes to zero
as the fifth power of the step-size, and the global error as the fourth power. So if for a
fixed step-size we have attained an accuracy of 0.1, then with one-tenth the step-size (and
so ten times the number of steps and ten times the time) we can expect an accuracy of
0.00001, whereas with the Euler method, ten times the time would only increase accuracy
from 0.1 to 0.01.

39



Math 32a Fall 2003 R. Palais

. 9.2—Exercise 2. Write a Matlab M-File function Euler(X,x0,T,n) that estimates
x(T ), the solution at time T of the initial value problem dx

dt = X(x), x(0) = x0 by applying
the Euler stepping method to the interval [0, T ] with n time steps. Similarly write such
a function RungeKutta(X,x0,T,n) that uses the Runge-Kutta stepping method. Make
some experiments using the case V = R, dx

dt = x with x0 = 1 and T = 1, so that x(T ) = e.
Check how large n has to be to get various degrees of accuracy using the two methods.

40



Math 32a Fall 2003 R. Palais

Lecture 10
The Theorem of Frobenius

10.1 What if Time were Two-dimensional?
With our study of ODE, we have completed the review of the analytical tools that will be
required for our study curve theory. However, when we turn later to the study of surfaces,
there is an additional tool we will need. This is embodied in a theorem of Frobenius that
we consider next.

One approach to the Frobenius Theorem is consider what would become of the local
existence and uniqueness theorem for the IVP for ODE if “time”, instead of being one-
dimensional, was two-dimensional. That is, suppose that an instant of time is represented
not by a single real number t ∈ R, but by an ordered pair (t1, t2) of real numbers. (We
still assume that “space” is represented by points of a vector space, V , although shortly
we will specialize to the case V = Rn.) What is the natural generalization of an ODE and
its associated initial value problem?

The history of a smoke particle—that is, a particle that streams along with the wind—will
now be described not by a “world-line” t 7→ x(t) from R to V but by a “world-sheet”
(t1, t2) 7→ x(t1, t2), a map from our pair of “time” parameters in R2 to V . And since their
are now two time coordinates, the particle will have not one but rather two velocity vectors
associated to it at time (t1, t2), namely ∂x(t1,t2)

∂t1
and ∂x(t1,t2)

∂t2
. Thus the “wind” must now

be described not by a single time-dependent vector field X : V ×R → V , but by a pair
of time-dependent vector fields X1 : V ×R2 → V and X2 : V ×R2 → V . Operationally,
the definition of Xi(v, t1, t2) is as follows: place a smoke particle at v, and at time (t1, t2)
let it go, and measure its velocity ∂x(t1,t2)

∂ti
. In all that follows we will assume that these

vector fields X1 and X2 are Ck, k ≥ 2.

The ordinary differential equation IVP dx
dt = X(x, t), x(t0) = v0 describing a smoke particle

motion when time is one-dimensional is now replaced by a similar IVP for a “system of
first order partial differential equations”:

1) x(t01, t
0
2) = v0,

(∗) 2)
∂x

∂t1
= X1(x, t1, t2),

3)
∂x

∂t2
= X2(x, t1, t2),

An Algorithm for Constructing Solutions of the System (∗).
We now describe a simple and intuitive algorithm that we will refer to as Algorithm F for
constructing the solution x(t1, t2) of the initial value problem (∗) near (t1, t2) = (t01, t

0
2),

provided a solution exists. To be more precise, the algorithm will produce a map (t1, t2) 7→
x(t1, t2), defined for (t1, t2) in a neighborhood U of (t01, t

0
2) defined by |ti− t0i | < ε, i = 1, 2,

and for which the following five statements a) to e) are valid:

41



Math 32a Fall 2003 R. Palais

a) x(t1, t2) satisfies the initial value condition 1) of (∗),
b) x(t1, t2) satisfies 2) of (∗), at least along the line t2 = t02.

c) x(t1, t2) satisfies 3) of (∗) in all of U ,

d) x : U → V is Ck,

e) The properties a), b), c) uniquely determine the function x(t1, t2) near (t01, t
0
2), hence it

will be the unique solution of (∗) near (t01, t
0
2), if any solution exists.

The strategy behind Algorithm F comes from a subtle change in point of view. Instead of
regarding 2) and 3) of (∗) as a pair of coupled PDE with independent variables t1 and t2,
we consider them as two independent ODEs, the first with t1 as independent variable and
t2 as parameter, and the second with these roles reversed.

Algorithm F is defined as follows. First we solve the ODE initial value problem dy
dt = Y (y, t)

and y(t01) = v0, where Y (v, t) := X1(v, t, t02). By the local existence and uniqueness
theorem for ODE, if ε is sufficiently small then the solution will exist for |t− t01| < ε, and
moreover y(t) will be Ck+1. We now define x(t1, t02) = y(t1) for |t1 − t01| < ε. This of
course guarantees that no matter how we define (t1, t2) for other values of t2, statements
a) and b) will be valid. Moreover, by the uniqueness of solutions of the IVP for ODEs, it
is clear that conversely if a) and b) are to hold then we must define x(t1, t02) this way on
|t1 − t01| < ε.

Next we consider the ODE dz
dt = Z(z, t, t1) where t1 is considered a parameter and the

vector field Z is defined by Z(v, t, t1) := X2(v, t1, t). It again follows from the local
existence and uniqueness theorem for ODE that if ε is sufficiently small, then for each t1
with |t1 − t01| < ε, the IVP dz

dt = Z(z, t, t1), z(t02) = y(t1) = x(t1, t02) has a unique solution
zt1(t) for |t − t02| < ε. We now define x(t1, t2) in U by x(t1, t2) = zt1(t2). We note that
because of the initial condition z(t02) = y(t1) = x(t1, t02), this extends the definition of
x(t1, t2) in the first part of the algorithm, so properties a) and b) still hold. But now in
addition, c) also clearly holds, and moreover in order for c) to hold then by the uniqueness
theorem for ODE the way we extended the definition of x(t1, t2) to all of U was the only
way possible; in other words property e) is established. Finally, property d) is immediate
from the Theorem of Section 8.3 (concerning the smoothness of solutions of ODE with
respect to initial conditions and parameters).

[That completes the formal description of Algorithm F. We now restate it in less formal
and more intuitive language. First find x(t1, t2) along the line t2 = t02 by freezing the value
of t2 at t02 and regarding the partial differential equation ∂x

∂t1
= X1(x, t1, t2) as an ODE

in which t2 is just a parameter. Then, regard the PDE ∂x
∂t2

= X2(x, t1, t2) as an ODE in
which t1 is a parameter, and for each parameter value t1 near t01 solve this ODE, taking
for initial value at t2 = t02 the value x(t1, t02), found in the first step.]

The question we will consider next is under what conditions the function x(t1, t2) defined
by Algorithm F satisfies equation 2) of the system (∗) in all of U , and not just along the
segment t1 = t01.

42



Math 32a Fall 2003 R. Palais

First we look at a couple of examples.

10.1—Example 1. Take V = R, and define X1(x, t1, t2) = X2(x, t1, t2) = x, so the
system of PDE is ∂x

∂t1
= ∂x

∂t2
= x. In this case Algorithm F leads to the function x(t1, t2) =

v0e(t1−t01)e(t2−t02) which clearly does solve the system (∗).

10.1—Example 2. Let V = R, define X1(x, t1, t2) = x, X2(x, t1, t2) = 1 and take as
initial condition x(0, 0) = 1. Now the system of partial differential equations is ∂x

∂t1
= x

and ∂x
∂t2

= 1. Applying Algorithm F, the first equation together with the initial condition
gives x(t1, 0) = et1 , and the second equation then implies that x(t1, t2) = et1 + t2. In this
case the first of the two partial differential equations is clearly not satisfied off the line
t2 = 0!

So we see life is not going to be quite as simple as with one-dimensional time. For certain
choices of X1 and X2 it will be possible to solve the IVP locally for every choice of initial
condition x(t01, t

0
2) = v0, while for other X1 and X2 this will not be so. Let’s give a name

to distinguish between these cases.

10.1.1 Definition. Let X1 : V × R2 → V and X2 : V × R2 → V be C2 maps. We
call the system of PDEs ∂x

∂t1
= X1(x, t1, t2) and ∂x

∂t2
= X2(x, t1, t2) is integrable, if for

every (t01, t
0
2) ∈ R2 and v0 ∈ V , their is a solution x of this system that is defined in a

neighborhood of (t01, t
0
2) and that satisfies the initial condition x(t(t01, t

0
2)) = v0

What the Frobenius Theorem does is provide a necessary and sufficient condition for a
system to be integrable. Moreover, this condition is both natural and easy and practical
to apply. Since it becomes somewhat easier to formulate in the case that V = Rn, we will
assume we are in that case from now on. (Of course this is no real loss of generality, since
it simply amounts to choosing a basis for V .)

The vector fields X1 and X2 can now be described by 2n Ck real-valued functions X1
j and

X2
j on Rn ×R2:

Xi(x, t1, t2) = Xi(x1, . . . , xn, t1, t2) = (Xi
1(x1, . . . , xn, t1, t2), . . . , Xi

n(x1, . . . , xn, t1, t2))

10.1.2 Definition. Let X1 : Rn×R2 → Rn and X2 : Rn×R2 → Rn be C2 vector fields
on Rn depending on two real parameters t1 and t2. We will call X1 and X2 compatible if
the following n conditions hold identically:

∂X1
i

∂t2
+

n∑
j=1

∂X1
i

∂xj
X2

j =
∂X2

i

∂t1
+

n∑
j=1

∂X2
i

∂xj
X1

j , 1 ≤ i ≤ n.

Frobenius Theorem. If Xi : Rn ×R2 → Rn i = 1, 2 are two C2 vector fields on Rn,
then the system of PDEs ∂x

∂t1
= X1(x, t1, t2) and ∂x

∂t2
= X2(x, t1, t2) is integrable if and

only if X1 and X2 are compatible.

43



Math 32a Fall 2003 R. Palais

PROOF. We first check the necessity of the condition. We assume the system is integrable
and show that the compatibility identities hold at an arbitrary point (x0, t01, t

0
2) ∈ Rn×R2.

Let x(t1, t2) be a solution of ∂x
∂ti

= Xi(x, t1, t2), i = 1, 2 defined near (t01, t
0
2) and satisfying

x((t01, t
0
2)) = x0. From d) and e) above we know that x is C2, so in particular its second

cross partial-derivatives at (x0, t01, t
0
2) exist and are equal. If we differentiate the equation

∂xi(t1,t2)
∂t1

= X1
i (x(t1, t2), t1, t2) with respect to t2, using the chain-rule, we find:

∂

∂t2

∂x(t1, t2)
∂t1

=
∂X1

i (x, t1, t2)
∂t2

+
n∑

j=1

∂X1
i (x, t1, t2)
∂xj

∂xj(t1, t2)
∂t2

=
∂X1

i (x, t1, t2)
∂t2

+
n∑

j=1

∂X1
i (x, t1, t2)
∂xj

X2
j (x, t1, t2),

so if we interchange the roles of t1 and t2, set the cross-derivatives equal and evaluate at
(x0, t01, t

0
2) we get precisely the compatibility identities at that point.

Now assume that X1 and X2 are compatible. Given (x0, t01, t
0
2) ∈ Rn×R2 use Algorithm F

to define x(t1, t2) in U and define z(t1, t2) in U by z(t1, t2) := ∂x(t1,t2)
∂t1

−X1(x(t1, t2), t1, t2).
To complete the proof we must show that z is identically zero in U . But for that it will
suffice to show that z satisfies the linear ODE ∂z

∂t2
=
∑n

j=1
∂X2

∂xj
zj . For zero is a solution

of this equation and z has the initial value zero at t2 = 0 by property b) of Algorithm
F, and then by uniqueness of solutions z must be zero. From the definition of z and the
chain-rule,

∂z

∂t2
=

∂

∂t2

∂x(t1, t2)
∂t1

− ∂X1

∂t2
−

n∑
j=1

∂X1

∂xj

∂xj

∂t2

=
∂

∂t1

∂x(t1, t2)
∂t2

−

∂X1

∂t2
+

n∑
j=1

∂X1

∂xj
X2

j


=

∂

∂t1
X2(x(t1, t2), t1, t2)−

∂X1

∂t2
+

n∑
j=1

∂X1

∂xj
X2

j


=
∂X2

∂t1
+

n∑
j=1

∂X2

∂xj

∂xj

∂t1
−

∂X1

∂t2
+

n∑
j=1

∂X1

∂xj
X2

j


=
∂X2

∂t1
+

n∑
j=1

∂X2

∂xj

∂xj

∂t1
−

∂X2

∂t1
+

n∑
j=1

∂X2

∂xj
X1

j


=

n∑
j=1

∂X2

∂xj

(
∂xj

∂t1
−X1

j

)
=

n∑
j=1

∂X2

∂xj
zj

44



Math 32a Fall 2003 R. Palais

10.2 Fifth Matlab Project.

Your assignment for the fifth project is to implement Algorithm F in Matlab. This should
consist of an M-File, AlgorithmF.m, defining a Matlab function AlgorithmF(X1,X2,...),
together with various auxilliary M-Files that implement certain subroutines required by
the algorithm. (As usual, it is a matter of programming taste to what extent you use
subfunctions as opposed to functions defined in separate M-Files.)

Let’s consider in more detail just what the inputs and output to AlgorithmF should be.
First, the output should represent the function x(t1, t2) that solves the IVP (∗). But since
we are going to get this solution by solving some ODEs numerically (using Runge-Kutta),
in Matlab the output x will be a two-dimensional array x(i,j) of vectors of length n, To be
specific, we take the domain U of x to be a rectangle a1 ≤ t1 ≤ b1 and a2 ≤ t2 ≤ b2, and
we will use (a1,a2) for the point (t01, t

0
2) where the initial condition x(t01, t

0
2) = x0 is given.

So far then we see that the first line of our M-File will look something like:

function x = AlgorithmF(X1,X2,x0,a1,a2,b1,b2,...)

We still have to specify the size of the output array x. This is given by two positive integers,
T1Res and T2Res that give the number of subintervals into which we divide the intervals
[a1,b1] and [a2,b2]. Let’s define h1 := (b1 - a1)/T1Res and h2 := (b2 - a2)/T2Res. We
take T1Res + 1 subdivision points in [a1,b1], a1 + i * h1, i = 0,1, ..., T1Res, and similarly
we take T2Res + 1 subdivision points [a2,b2], a2 + j * h2, j = 0,1, ..., T2Res, It will
be convenient to store these in arrays T1 and T2 of length T1Res + 1 and T2Res + 1
respectively. That is, T1(i) = a1 + i * h1 and T2(i) = a2 + i * h2. Then the array x(i,j)
will have size T1Res + 1 by T2Res + 1. Namely, we will store at x(i,j) the value of the
solution x(t1, t2) of (∗) at the point (T1(i),T2(j)), or more exactly the approximate value
found by our implementation of AlgorithmF in which we solve the ODEs approximately
using Runge-Kutta. So now the first line of our M-File has become:

function x = AlgorithmF(X1,X2,x0,a1,a2,b1,b2,T1Res,T2Res,...)

There is still one more input parameter needed, namely a real number StepSize that
determines the accuracy of the Runge-Kutta algorithm. Strictly speaking StepSize is not
the actual size of the steps used in the Runge-Kutta integration, but an upper bound for
it. When we propagate the solution of an ODE y(t) from a value t = t0 where we already
know it to a next value t = t0 + h where we need it, we will divide h in a number N of
equal steps to make h/N less than StepSize and use that many steps in our Runge-Kutta
method. (Since we will usually settle for accuracy of about 10−8 and Runge-Kutta is
fourth order, in practice we usually take StepSize approximately 0.01). So finally the first
line of our M-File has become:

function x = AlgorithmF(X1,X2,x0,a1,a2,b1,b2,T1Res,T2Res,StepSize)

The first two input parameters X1 and X2 represent the vector fields defining the system
of PDE we are dealing with. Each is a function of n + 2 variables, x1, x2,...,xn,t1,t2, In
practice the actual functions substituted for these parameters will be taken from functions
defined either in an M-File or an inline expression.

45



Math 32a Fall 2003 R. Palais

Once you understand the above discussion well you should find writing the actual code for
AlgorithmF to be straightforward. We start by assigning to x(0,0) the value x0, Then, for
i = 0 to T1Res, we inductively find x(i+1,0) from x(i,0) by using Runge-Kutta to solve
the ODE ∂x

∂t1 = X1(x, t1, a2) on the interval [T1(i),T1(i+1)] with initial value x(i,0) at
time t1 = T1(i). Then, in a similar manner, for each i from 0 to T1Res, and each j from
0 to T2Res, we inductively find x(i,j+1) from x(i,j) by applying Runge-Kutta to solve the
ODE ∂x

∂t2 =X2(x,T1(i),t2) on the interval [T2(j),T2(j+1)] with initial value x(i,j) at time
t2 = T2(j).

After the solution array x is constructed, it should be displayed either in wireframe (using
meshgrid) or in patch mode (using surf).

Here is an “extra credit” addition to project 5. Write an M-File that defines a function
that checks whether the two vector fields X1 and X2 are compatible. I suggest that you
do this by checking numerically whether the two sides of the n compatibility conditions
are equal at the points (T1(i),T2(j)). Here, to allow for roundoff errors, “equal” should
mean that the absolute value of the difference is less than some tolerance. Use centered
differences to compute the partial derivatives. See if you can make your test of equality
“scale invariant”. This means that if it succeeds or fails for X1 and X2, it should do the
same if you multiply both X1 and X2 by the same scalar.

46



Math 32a Fall 2003 R. Palais

Lecture 11
Differentiable Parametric Curves

11.1 Definitions and Examples.

11.1.1 Definition. A differentiable parametric curve in Rn of class Ck (k ≥ 1) is a Ck

map t 7→ α(t) = (α1(t), . . . , αn(t)) of some interval I (called the domain of α) into Rn.
We call α regular if its velocity vector, α′(t), is non-zero for all t in I. The image of the
mapping α is often referred to as the trace of the curve α.

Some Conventions To avoid endless repetition, in all that follows we will assume that α is
a regular, differentiable parametric curve in Rn of class Ck (k ≥ 2), and we will abbreviate
this by referring to α as a “parametric curve”, or just as a “curve”. Frequently we will
take the domain I of α to be the closed interval [a, b]. In case n = 2 we will often write
α(t) = (x(t), y(t)) and similarly when n = 3 we will often write α(t) = (x(t), y(t), z(t)).

11.1—Example 1. A Straight Line. Let x0, v0 ∈ Rn with v0 6= 0. Then α(t) = x0 + tv0

is a straight line in Rn with constant velocity v0. The domain is all of R.

11.1—Example 2. Let r > 0, n = 2, take I = [0, 2π] and define α(t) = (r cos(t), r sin(t)).
The trace of α is the set of (x, y) satisfying x2 + y2 = r2, so α is a parameterization of the
circle of radius r centered at the origin.

11.1—Example 3. Let r, b > 0, n = 3, I = R, and define α(t) = (r cos(t), r sin(t), bt).
The trace of α is a helix of radius r and pitch 2π

b .

11.2 Reparametrizaion by Arclength.
Suppose φ : [c, d] → R is Ck and φ′(t) > 0 for all t ∈ [c, d]. Then φ is monotonic and
so a one-to-one map of [c, d] onto [a, b] where a = φ(c) and b = φ(d). Moreover, by the
Inverse Function Theorem, ψ = φ−1 is Ck and ψ′(φ(t)) = 1/φ′(t). If α : [a, b] → Rn is a
parametric curve, then α̃ := α ◦ φ : [c, d] → Rn is a parametric curve with the same trace
as α. In this setting, φ is called a parameter change and α̃ is called a reparametrization
of α. Since α and α̃ have the same trace, in some naive sense at least, they represent the
same “curve”.

Of course for many purposes, the way a curve is parametric is of crucial importance—for
example, reparametrizing a solution of an ODE will nearly always result in a non-solution.
However in geometric considerations it is natural to concentrate on the trace and regard
two parametric curves that differ by a change of parameterization as representing the same
object. Formally speaking, differing by a change of parameterization is an equivalence
relation on the set of parametric curves, and we regard the corresponding equivalence
classes as being the primary objects of study in differential geometry. This raises a problem.

47



Math 32a Fall 2003 R. Palais

Whenever we define some property of parametric curves, then we should check that it is
independent of the choice of parameterization. As we shall now see, there is an elegant way
to avoid this complication. Namely, among all the parameterizations of a parametric curve
α there is one that is the“most natural” choice, namely parameterization by arclength, and
in our theoretical study of curves and their properties we will usually pefer this one over
others and define properties of a curve using this parameterization.

Recall that in elementary Calculus, if α : [a, b] → Rn is a parametric curve, then its length
L is defined as L :=

∫ b

a
‖α′(t)‖ dt. More generally, the arclength along α is the function

s : [a, b] → [0, L] defined by s(t) =
∫ t

a
‖α′(τ)‖ dτ . Since s′(t) = ‖α′(t)‖ > 0, as remarked

above it has a Ck inverse t : [0, L] → [a, b], and α̃ : [0, L] → Rn defined by α̃(s) = α(t(s)) is
a reparameterization of α called its parameterization by arclength. Note that by definition,
the length of α̃ between 0 and s is s, so the name is well-chosen.

. 11.2—Exercise 1. Show that a parametric curve α is parametrized by arclength if
and only if ‖α′(t)‖ is identically equal to 1.

11.2.1 Remark. From now on we will usually assume that α is parametrized by its
arclength. It is traditional to signify this by using s as the variable name when dealing
with such paths.

Notation If α(s) is a curve parametrized by arclength, then we will denote its unit tangent
vector at s by −→t (s) := α′(s).

11.2.2 Remark. In R2 there is an important orthogonal transformation that we shall
denote by Rπ

2
. It is defined by Rπ

2
(x, y) = (y,−x), and geometrically speaking it rotates

any vector v through 90 degrees into a vector orthogonal to v. If α is a curve in R2

parametrized by arclength, then we define its normal at s by −→n (s) = Rπ
2

−→
t (s).

11.2.3 Remark. In Rn for n > 2, there is no natural way to assign a normal to a curve
at every point that works in complete generality. To convince yourself of this, just think
of the case of a straight line in R3—there is a whole circle of directions at each point that
are normal to the line, and no way to prefer any one of them. However, at a point where
α′′(s) 6= 0, we define the unit normal −→n (s) to α at s by −→n (s) := α′′(s)

‖α′′(s)‖ . (Recall that
since ‖α′(s)‖ is identically equal to one, it follows that its derivative α′′(s) is orthogonal
to α′(s).)

. 11.2—Exercise 2. Show that when the straight line α(t) = x0 +tv0 is reparametrized
by arclength the result is α̃(s) = x0 + su where u = v0

‖v0‖

. 11.2—Exercise 3. Consider the circle of radius r, α(t) = (r cos(t), r sin(t)), with
I = [0, 2π]. Show that s(t) = rt, so that t(s) = s/r, and deduce that reparameterization
by arclength gives α̃(s) = (r cos(s/r), r sin(sr)), and −→t (s) = (− sin(s/r), cos(s/r)).

What is the Curvature of a Curve?

How should we define the “curvature” of a curve? For a plane curve, α(s) = (x(s), y(s))

48



Math 32a Fall 2003 R. Palais

there is a natural and intuitive definition—namely the rate at which its unit tangent
vector α′(s) = (x′(s), y′(s)) is “turning”. Now since α′(s) is a unit vector, we can write it
as α′(s) = (cos(θ(s)), sin(θ(s))) where θ(s) is the angle α′(s) makes with the x-axis. Thus
we can define the curvature k(s) of α at s as θ′(s)—the rate of change of this angle with
respect to arclength. Notice that α′′(s) = θ′(s)(− sin((θ(s)), cos((θ(s))) = k(s)Rπ

2

−→
t (s) =

k(s)−→n (s), so we make the following definition:

11.2.4 Definition. If α is a curve in R2 that is parametrized by arclength, then its
curvature at α(s) is defined to be the scalar k(s) such that α′′(s) = k(s)−→n (s).

Note that in the plane, R2, the curvature k(s) can be either positive or negative. Its
absolute value is of course given by |k(s)| = ‖α′′(s)‖.

11.2.5 Definition. If α is a curve in Rn, n > 2 that is parametrized by arclength, then
its curvature at α(s) is defined to be k(s) := ‖α′′(s)‖.

. 11.2—Exercise 4. Show that if α(t) = (x(t), y(t)) is a plane parametrized curve that
is not necessarily parametrized by arclength, then its curvature at α(t) is given by the
following formula. Hint: θ = tan−1(y′/x′).

x′(t)y′′(t)− y′(t)x′′(t)(
x′(t)2 + y′(t)2

) 3
2

.

11.2.6 Remark. Recall that when n > 2 at points where k(s) := ‖α′′(s)‖ > 0 the normal
−→n (s) was defined by by −→n (s) := α′′(s)

‖α′′(s)‖ , so the equality α′′(s) = k(s)−→n (s) holds in this
case too. But note the subtle difference; for a plane curve the curvature can be positive or
negative, while in higher dimensions it is (by definition) always positive.

. 11.2—Exercise 5. Show that a straight line has curvature zero, and that a circle of
radius r has constant curvature 1/r.

. 11.2—Exercise 6. Show that straight lines are the only curves with zero curvature,
but show that curves with positive constant curvature are not necessarily circles. (Hint:
Show that a helix has constant curvature.) However, in R2, show that a curve of constant
positive curvature k must be a circle of radius 1/k.

Osculating Circles and Evolutes

At any point α(s) of a plane curve α there are clearly circles of any radius that are tangent
to α at this point. In fact, just move out a distance r from α(s) along the normal −→n (s)
and construct the circle with radius r centered at that point. However there is one special
tangent circle that is “more tangent” than the others, in the sense that it has “second order
contact” with α. This is the so-called osculating circle at α(s) and is the circle having
the same curvature as α at this point, namely k(s). Recalling that a circle of radius r
has curvature 1/r, we see that the radius of the osculating circle is 1/k(s), and its center,
called the center of curvature of α at α(s) is clearly the point c(s) := α(s)− (1/k(s))−→n (s).

49



Math 32a Fall 2003 R. Palais

As the point α(s) varies over the curve α, the corresponding centers of curvature trace out
a curve called the evolute of the original curve α.

11.3 The Fundamental Theorem of Plane Curves

Recall that Euc(Rn) denotes the Euclidean group of Rn, i.e., all the distance preserving
maps of Rn to itself. We have seen that every element of Euc(Rn) can be written as the
composition of a translation and an orthogonal transformation.

11.3.1 Definition. Two parametric curves α1 and α2 in Rn are called congruent if there
is an element g ∈ Euc(n) such that α2 = g ◦ α1.

11.3.2 Proposition. The curvature function of a parametrized curve is invariant under
congruence. That is, if two parametrized curves in Rn are congruent, then their curvature
functions are identical.

. 11.3—Exercise 1. Prove this Proposition.

It is a remarkable fact that for plane curves the converse is true, so remarkable that it
goes by the name The Fundamental Theorem of Plane Curves. The Fundamental Theo-
rem actually says more—any continuous function k(s) is the curvature function for some
parametrized plane curve, and this curve is uniquely determined up to congruence. In fact,
we will get an explicit formula below for the curve in terms of k.

11.3.3 Proposition. Let k : [0, L] → R be continuous and let α(s) = (x(t), y(t)) be a
parametrized plane curve that is parametrized by arclength. A neccessary and sufficient
condition for α to have k as its curvature function is that θ, x, y be a solution on [0, L] of
the following system of first order ODE:

dθ

ds
= k(s),

dx

ds
= cos(θ),

dy

ds
= sin(θ).

. 11.3—Exercise 2. Prove this Proposition.

The first ODE of the above system integrates immediately to give θ(σ) = θ0 +
∫ σ

0
k(τ) dτ .

If we now substitute this into each of the remaining equations and integrate again we
obtain the following important corollary.

11.3.4 Corollary. If k : [0, L] → R is a continuous function, then the set of plane
curves α(s) = (x(s), y(s)) that are parametrized by arclength and have k as their curvature

50



Math 32a Fall 2003 R. Palais

function are just those of the form:

x(s) := x0 +
∫ s

0

cos
(
θ0 +

∫ σ

0

k(τ) dτ
)
,

y(s) := y0 +
∫ s

0

sin
(
θ0 +

∫ σ

0

k(τ) dτ
)
.

. 11.3—Exercise 3. Use this corollary to rederive the fact that straight lines and circles
are the only plane curves with constant curvature.

11.3.5 Remark. Note the geometric meaning of the constants of integration x0, y0 and
θ0. The initial point α(0) of the curve α is (x0, y0),while θ0 is the angle that the initial
tangent direction α′(0) makes with the x-axis. If in particular we take all three constants
to be zero and call the resulting curve α0, then we get the general solution from α0 by first
rotating by θ0 and then translating by (x0, y0). This proves:

11.3.6 Fundamental Theorem of Plane Curves. Two plane curves are congruent
if and only if they have the same curvature function. Moreover any continuous function
k : [0, L] → R can be realized as the curvature function of a plane curve.

Why the Fancy Name?

“Fundamental Theorem” sounds rather imposing— what’s the big deal? Well, if you
think about it, we have made remarkable progress in our understanding of curve theory
in the past few pages—progress that actually required many years of hard work—and
that progress is summed up in the Fundamental Theorem. There are two major insights
involved in this progress. The first is that, from the viewpoint of geometry, we should
consider curves that differ by parameterization as “the same”, and that we can avoid the
ambiguity of description this involves by choosing parameterization by arclength. (The
lack of any analogous “canonical parameterization” for a surface will make our study
of surface thory considerably more complicated.) The second insight is that, from the
geometric viewpoiint again, congruent curves should also be regarded as “the same”, and
if we accept this then the simplest geometric description of a plane curve—one that avoids
all redundency—is just its curvature function.

11.4 Sixth Matlab Project.

The Matlab project below is concerned in part with the visualization and animation of
curves. Before getting into the details of the project, I would like to make a few general
remarks on the subject of mathematical visualization that you should keep in mind while
working on this project—or for that matter when you have any programming task that
involves visualization and animation of mathematical objects.

1) How should you choose an error tolerance?

First, an important principle concerning the handling of errors in any computer graphics
context. Books on numerical analysis tell you how to estimate errors and how to keep

51



Math 32a Fall 2003 R. Palais

them below a certain tolerance, but they cannot tell you what that tolerance should be—
that must depend on how the numbers are going to be used. Beginners often assume they
should aim for the highest accuracy their programming system can provide—for example
fourteen decimal places for Matlab. But that will often be far more than is required for
the task at hand, and as you have already seen, certain algorithms may require a very long
time to attain that accuracy. The degree of one’s patience hardly seems to be the best
way to go about choosing an error tolerance.

In fact, there is often is a more rational way to choose appropriate error bounds. For
example, in financial calculations it makes no sense to compute values with an error less
than half the smallest denomination of the monetary unit involved. And when making
physical calculations, it is useless to calculate to an accuracy much greater than can be
measured with the most precise measuring instruments available. Similarly, in carpentry
there is little point to calculating the length of a board to a tolerance less than the width
of the blade that will make the cut.

This same principle governs in mathematical visualization. My approach is to choose a
tolerance that is “about half a pixel”, since any higher accuracy won’t be visible anyway.
It is usually fairly easy to estimate the size of a pixel. There are roughly 100 pixels per
inch, so for example if you are are graphing in a six inch square window, and the axes go
from minus one to one, then six hundred pixels equals two length units, so half a pixel
accuracy means a tolerance of 1

600 or roughly 0.002.

1) How should you represent a curve?

Mathematically a curve in Rn is given by a map of an interval [a, b] into Rn. We can only
represent the curve on a computer screen when n = 2 or n = 3. Let’s consider the case of
plane curves (n = 2) first. If α(t) = (x(t), y(t)) then for any N we can divide the interval
[a, b] into N equal subintervals of length h = b−a

N , namely [tk, tk+1], where tk = a + kh
and k = 0, . . . , N − 1. We associate to α and N an approximating “N -gon” αN (i.e., a
polygon with N sides) with vertices vk := (x(tk), y(tk)). It is some αN with N suitably
large) that actually gets drawn on the computer screen when we want to display α. This
reduces the actual drawing problem to that of drawing a straight line segment, and the
latter is of course built into every computer system at a very low level.

In Matlab the code for plotting the curve α, or rather the polygon α30 would be:

N = 30
h = (b-a)/N;
t = a:h:b ;
plot(x(t),y(t)), axis equal;

To plot a curve α(t) = (x(t), y(t), z(t)) in R3 is really no more difficult. In Matlab the
only change is that the last line gets replaced by:
plot3(x(t),y(t),z(t)), axis equal;

only now one has to be more careful about interpreting just what it is that one sees on the
screen in this case. The answer is that one again is seeing a certain polygon in the plane,
but now it is the projection of the polygon in R3 with vertices at vk := (x(tk), y(tk), z(tk)).
(The projection can be chosen to be either an orthographic projection in some direction

52



Math 32a Fall 2003 R. Palais

or else a perspective projection from some point.)

1) How do you create animations?

Viisualization can be a powerful tool for gaining insight into the nature of complex math-
ematical objects, and frequently those insights can be further enhanced by careful use of
animation. Remember that time is essentially another dimension, so animations allow us
to pack a lot more information onto a computer screen in a format that the human brain
can easily assimilate. The number of ways that animation can be used are far to numer-
ous to catalog here, but in addition to obvious ones, such as rotating a three dimensional
object, one should also mention ”morphing”. Mathematical objects frequently depend on
several parameters (e.g., think of the family of ellipses: x = a cos(θ), y = b sin(θ)). Mor-
phing refers to moving along a curve in the space of parameters and creating frames of an
animation as you go.

All animation techniques use the same basic technique—namely showing a succession of
“frames” on the screen in rapid succession. If the number of frames per second is fast
enough, and the change between frames is small enough, then the phenomenon of “persis-
tence of vision” creates the illusion that one is seeing a continuous process evolve. Com-
puter games have become very popular in recent years, and they depend so heavily on
high quality animation that the video hardware in personal computers has improved very
rapidly. Still, there are many different methods (and tricks) involved in creating good
animations, and rather than try to cover them here we will have some special lectures
on various animation techniques, with particular emphasis on how to implement these
techniques in Matlab.

Matlab Project # 6.

Your assignment for the sixth project is to implement the Fundamental Theorem of Plane
Curves using Matlab. That is, given a curvature function k : [0, L] → R, construct and
plot a plane curve x : [0, L] → R2 that has k as its curvature function. To make the
solution unique, take the initial point of x to be the origin and its initial tangent direction
to be the direction of the positive x-axis. You should also put in an option to plot the
evolute of the curve as well as the curve itself. Finally see if you can build an animation
that plots the osculating circle at a point that moves along the curve x. For uniformity,
name your M-File PlaneCurveFT, and let it start out:
function x = PlaneCurveFT(k,L,option)

If option is not given (i.e., nargin = 2) or if option = 0, then just plot the curve x. If
option = 1, then plot x and, after a pause, plot its evolute in red. Finally, if option =
2, then plot x and its evolute, and then animate the osculating circle (in blue) along the
curve, also drawing the radius from the center of curvature.

[To find the curve x, you first integrate k to get −→t = x′, and then integrate −→t . The
curvature, k, will be given as a Matlab function, so you can use the version of Simpson’s
Rule previously discussed for the first integration. But −→t will not be in the form of a
Matlab function that you can substitute into that version of Simpson’s Rule, so you will
need to develop a slightly modified version of Simpson’s. where the input is a matrix that
gives the values of the integrand at the nodes rather than the integrand as a function.]

53



Math 32a Fall 2003 R. Palais

Lecture 12
Curves in 3-Space

Some Definitions and Notations. In this section α : [0, L] → R3 will denote a curve
in R3 that is parametrized by arclength and is of class Ck, k ≥ 2. We recall that the
unit tangent to α at s is defined by −→

t (s) := α′(s). (That it is a unit vector is just the
definition of α being parametrized by arclength.) The curvature of α is the non-negative
real-valued function k : [0, L] → R defined by k(s) := ‖α′′(s)‖, and we call α a Frenet
curve if its curvature function is strictly positive. For a Frenet curve, we define its normal
vector −→n (s)at s by −→n (s) := α′′(s)

k(s) . Since −→t (s) has constant length one, it is orthogonal to

its derivative −→t ′(s) = α′′(s), hence:

12.0.1 First Frenet Equation. If α : [0, L] → R3 is a Frenet curve then its normal

vector −→n (s) is a unit vector that is orthogonal to
−→
t (s), and

−→
t
′
(s) = k(s)−→n (s).

For the remainder of this section we will assume that α is a Frenet curve.

12.0.2 Definition. We define the binormal vector to α at s by −→
b (s) := −→

t (s) × −→n (s).
The ordered triple of unit vectors f(s) := (−→t (s),−→n (s),−→b (s)) is called the Frenet frame
of α at α(s), and the mapping s 7→ f(s) of [0, L] →

(
R3
)3

is called the Frenet framing of
the curve α. The plane spanned by −→t (s) and −→n (s) is called the osculating plane to α at
s, and the plane spanned by −→n (s) and −→b (s) is called the normal plane to α at α(s).

12.1 Quick Review of the Vector Product
We recall that for u = (u1, u2, u3) and v = (v1, v2, v3) in R3, we define their vector-product
u× v ∈ R3 by u× v := (u2v3 − v2u3, u3v1 − u1v3, u1v2 − v1u2).

12.1.1 Remark. Symbolically we can write this definition as:

u× v = det

u1 u2 u3

v1 v2 v3
e1 e2 e3

 ,

where e1, e2, e3 is the standard basis for R3. What this means is that we get a correct
result if we use Cramer’s rule to expand this “determinant” by minors of the third row.
From this formula the following facts are immediate:

12.1.2 Proposition. The vector product is bilinear and skew-symmetric. That, is it
is linear in each argument and changes sign when the arguments are interchanged. The
vector product of u and v vanishes if and only if u and v are linearly dependent, and
(u× v) ·w is the determinant of the matrix with rows u,v, and w. In particular, (u× v) ·u
and (u× v) · v are both zero, i.e., u× v is orthogonal to both u and v.

54



Math 32a Fall 2003 R. Palais

12.1.3 Lemma. (u× v) · (x× y) = det
(
u · x v · x
u · y v · y

)
.

PROOF. Either direct verification, or use linearity in all four variables to reduce the
result to the case that all of the variables are equal to one of the standard orthonormal
basis vectors ei, in which case it is obvious.

12.1.4 Proposition. The norm of u× v is the area of the parallelogram spanned by u
and v. That is, if θ is the angle between u and v then ‖u× v‖ = ‖u‖ ‖v‖ sin(θ).

PROOF. ‖u× v‖2 = (u×v) ·(u×v) = det
(
u · u v · u
u · v v · v

)
= ‖u‖2 ‖v‖2−‖u‖2 ‖v‖2 cos2(θ)

= ‖u‖2 ‖v‖2 (1− cos2(θ)).

. 12.1—Exercise 1. Show that the “triple vector product” (u× v)×w is given by the
formula (u · w)v − (v · w)u. Hint. Since it is orthogonal to u × w it must be of the form
f(w)v+ g(w)u, where, since the result is linear in w, f and g have the form a ·w and b ·w,
so we have (u× v)× w = (a · w)v + (b · w)u, for some a and b.

. 12.1—Exercise 2. If u(t) and v(t) are smooth curves in R3, show that (u(t)×v(t))′ =
u′(t)× v(t) + (u(t)× v′(t)

12.2 The Frenet Formulas
We now return to the Frenet Frame −→t (s),−→n (s),−→b (s) for α. Recall that the binormal vec-
tor was defined by −→b (s) := −→

t (s)×−→n (s). In particular, as the vector product of orthogonal
unit vectors it is a unit vector and so its derivative orthogonal −→b

′
(s) is orthogonal to −→b (s)

and so it is a linear combination of −→t (s) and −→n (s). But in fact −→b
′
(s) is orthogonal to

−→
t (s) also, and hence it is a multiple of −→n (s). To see this we calculate:

−→
b
′
(s) = (−→t (s)×−→n (s))′

= −→
t
′
(s)×−→n (s) +−→

t (s)×−→n ′(s)
= k(s)−→n (s)×−→n (s) +−→

t (s)×−→n ′(s)
= −→

t (s)×−→n ′(s)

since −→n (s)×−→n (s) = 0. Thus −→b
′
(s) is orthogonal to both −→b (s) and −→t (s) and so:

12.2.1 Proposition. −→
b
′
(s) is a multiple of −→n (s).

12.2.2 Definition. We define the torsion of α at s to be the real number τ(s) such the
−→
b
′
(s) = τ(s)−→n (s).

12.2.3 Remark. Since −→b (s) is the normal to the osculating plane to the curve α at s, the
torsion measures the rate at which the curve is twisting out of its osculating plane. Note for

55



Math 32a Fall 2003 R. Palais

example, that if τ(s) is identically zero, then −→b (s) is a constant b0, and so the osculating
plane is fixed, and it follows easily that α(s) lies in a plane parallel to its osculating plane.
In fact, since (α(s) · b0)′ = −→

t (s) · b0 = 0, (α(s) − α(0)) · b0 = 0, which says that α lies in
the plane Π orthogonal to b0 that contains α(0).

Now that we have computed −→t ′(s) and −→b
′
(s), it is easy to compute −→n ′(s). In fact, since

−→
b (s) = −→

t (s)×−→n (s), it follows that n(s) = b(s)× t(s), so

−→n ′(s) = (−→b (s)×−→
t (s))′

= −→
b (s)×−→

t
′
(s) +−→

b
′
(s)×−→

t (s)

= −→
b (s)× (k(s)n(s)) + τ(s)−→n (s)×−→

t (s)

= −k(s)−→t (s)− τ(s)−→b (s)

The equations that express the derivative of the Frenet frame in terms of the frame itself
are referred to as the Frenet Equations. Let’s rewrite them as a single matrix equation:

Frenet Equations

 −→
t (s)
−→n (s)
−→
b (s)

′ =

 0 k(s) 0
−k(s) 0 −τ(s)

0 τ(s) 0

 −→
t (s)
−→n (s)
−→
b (s)



12.2.4 Remark. We can write this symbolicly as f ′ = Af where f = (−→t (s),−→n (s),−→b (s))
is the Frenet frame, and A is a 3 × 3 matrix with entries 0, ±k(s) and ±τ(s). The fact
that this matrix is skew-symmetric is, as we shall see next is just a reflection of the fact
that (−→t (s),−→n (s),−→b (s)) are orthonormal.

12.2.5 Proposition. Let fi : [0, L] → Rn, i = 1, . . . , n, be C1 maps and suppose that
the fi(t) are orthonormal for all t. Let aij(t) be the n×nmatrix that expresses the f ′i(t) as a
linear combination of the fi(t), i.e., f ′i(t) =

∑n
j=1 aij(t)fj(t) (so that aij(t) = f ′i(t) · fj(t)).

Then aij(t) is skew-symmetric. Conversely, if t 7→ aij(t) is a continuous map of [0, L]
into the skew-adjoint n × n matrices and φ1, . . . , φn is any orthonormal frame for Rn,
then there are unique differentiable maps fi : [0, L] → Rn such that fi(0) = φi and
f ′i(t) =

∑n
j=1 aij(t)fj(t), and these fi(t) are orthonormal for all t.

PROOF. Differentiating fi(t) · fj(t) = δij gives f ′i(t) · fj(t) + fi(t) · f ′j(t) = 0 proving the
first statement. Conversely, if we are given aij(t) and the φi, then by the existence and
uniqueness theorem for ODE, we can solve the IVP f ′i(t) =

∑n
j=1 aij(t)fj(t) and fi(0) = φi

uniquely on the interval [0, L], and we only have to show that sij(t) := fi(t) · fj(t) is
identically equal to δij . We note that sij(t) satisfies the IVP sij(0) = δij and

56



Math 32a Fall 2003 R. Palais

d

dt
(sij(t)) = f ′i(t) · fj(t) + fi(t) · f ′j(t)

=
n∑

k=1

aik(t)fk(t) · fj(t) +
n∑

k=1

ajk(t)fi(t)fk(t)

=
n∑

k=1

aik(t)skj(t) +
n∑

k=1

ajk(t)sij(t)

Since the aij(t) are skew symmetric it is clear that sij(t) = δij is also a solution, so the
converse follows from the uniquenes of the solution to this IVP.

12.3 The Fundamental Theorem of Space Curves
We are now in a position to generalize our theory of plane curves to an analogous theory
of space curves. We first make a number of simple observations.

Observation 1. The Frenet framing associated to a space curve is invariant under or-
thogonal transformations in the sense that if α and α̃ are space curves and g is an element
of the orthogonal group O(R3) such that α̃ = g ◦α, then g maps the Frenet frame of α at
s to the Frenet frame of α̃ at s.

Observation 2. The curvature and torsion functions of a plane curve are likewise invariant
under orthogonal transformation and also under translation.

. 12.3—Exercise 1. Prove the validity of these two observations. Hint; They depend
on little more than the definitions of the quantities involved and the fact that orthogonal
transformations preserve lengths of curves.

We now in a position to prove the following analogue of the Fundamental Theorem of
Plane Curves.

Fundamental Theorem of Space Curves. Two space curves are congruent if and only
if they have the same curvature and torsion functions. Moreover any pair of continuous
functions k : [0, L] → (0,∞) and τ : [0, L] → R can be realized as the curvature and
torsion functions of some space curve.

PROOF. Given k and τ , it follows from the preceding Proposition that we can find
R3 valued functions −→t (t),−→n (t),−→b (t) defined on [0, L] that are orthonormal and satisfy
the Frenet Equations. Then, just as in the planar case, we can define a curve α(s) :=∫ s

0
−→
t (t) dt. Since −→t (t) is a unit vector, α is parametrized by arclength and −→

t is clearly
its unit tangent vector, so it is a consequence of the Frenet Equations that −→n (t), and −→b (t)
are its normal and binormal and k and τ its curvature and torsion.

Now suppose α̃ is a second curve with the same curvature and torsion as α. If we translate
α by α̃(0) − α(0) and then rotate it by the rotation carrying the Frenet frames of α at 0
into that of α̃ at 0, then we get a curve congruent to α that has the same initial point and

57



Math 32a Fall 2003 R. Palais

initial Frenet frame as α̃, so it will sufice to show that if α and α̃ have the same initial
point and Frenet frame, then they are identical. But from the uniqueness of the solution of
the IVP for the Frenet equations it now follows that α and α̃ have the same Frenet frame
at all s ∈ [0, L], and it the follows that both α(s) and α̃(s) equal

∫ s

0
−→
t (t) dt.

Matlab Project # 7.

As you have probably guessed, your assignment for the seventh Matlab project is to im-
plement the Fundamental Theorem of Space Curves. That is, given a (positive) curvature
function k : [0, L] → R, and a torsion function τ : [0, L] → R, construct and plot a space
curve x that has k as its curvature function and τ as its torsion function. To make the
solution unique, take the initial point of x to be the origin and its initial tangent direction
to be the direction of the positive x-axis. You should also use plot3 to plot the curve. See if
you can create an animation that moves the Frenet Frame along the curve. For uniformity,
name your M-File SpaceCurveFT, and let it start out:

function x = SpaceCurveFT(k,tau,L)

12.4 Surface Theory: Basic Definitions and Examples

The theory of curves in the plane, three-space, and higher dimensions is deep and rich in
detail, and we have barely scratched the surface. However I would like to save enough time
to cover at least the basics of surface theory, so we will now leave the theory of curves.

How should we define a surface? As with curves, there are many possible answers, and we
will select not the most general definition but one that is both intuitive and leads quickly
to a good theory. The simplest curve is just an interval in the line, and we defined other
curves to be maps of an interval into Rn with non-vanishing derivative, The natural two
dimensional analog of an interval is a connected open set or domain O in R2.

12.4.1 Definition. A Ck parametric surface in R3 (k ≥ 3) is a Ck map F : O → R3

(where O is a domain in R2) such that its differential, DFp, has rank 2 at all points p ∈ O.

Of course, intuitively speaking, it is the image of F that constitutes the surface, but as
with curves we will allow ourselves a looseness of language and not always distinguish
carefully between F and its image.

Notation. Just as it is traditional to use t as the parameter of a curve (or s if the parameter
is arclength), it is traditional to use u and v to denote the parameters of a parametric
surface, so a surface is given by a mapping (u, v) 7→ F(u, v) = (F1(u, v),F2(u, v),F2(u, v)).
Instead of the Fi(u, v) it is also traditional to use (x(u, v).y(u.v), z(u, v)) to denote the three
components of F(u, v), and we will often use this notation without explicit mention when
it is clear what surface is under consideration.

. 12.4—Exercise 1. Show that if p0 = (u0, v0), then the condition that DFp has rank
two is equuivalent to ∂F(u0,v0)

∂u and ∂F(u0,v0)
∂v being linearly independent.

58



Math 32a Fall 2003 R. Palais

12.4.2 Definition. If F : O → R3 is a parametric surface in R3 and p ∈ O, the tangent
space to F at p is defined to be the image of the linear map DFp : R2 → R3, and we
denote it by TFp. We note that TFp is by assumption a two-dimensional linear subspace
of R3 and that ∂F(u0,v0)

∂u and ∂F(u0,v0)
∂v is clearly a basis. This is called the basis for TFp

defined by the parameters u, v. We define the normal vector to F at p to be the unit vector−→
ν (p) obtained by normalizing ∂F(u0,v0)

∂u × ∂F(u0,v0)
∂v . The map

−→
ν : O → S2, p 7→ −→

ν (p) of
O to the unit sphere S2 ⊆ R3 is called the Gauss map of the surface F .

12.4.3 Remark. You will probably guess that the “curvature” of the surface F (whatever
it means) will somehow be measured by the rate at which the normal

−→
ν (p) varies with p.

. 12.4—Exercise 2. Show that the tangent space to F at p and the tangent space to
S2 at

−→
ν (p) are the same.

12.4.4 Remark. It is natural to try to use what we have learned about curves to help
us investigate surfaces, and this approach turns out to be very effective. It (u(t), v(t)) is a
smooth parametric curve in the domainO of the of the surface F , then α(t) := F(u(t), v(t))
is a parametric curve in R3, and we shall call such curve a parametric curve on the
surface F . If we put u0 = u(t0), v0 = v(t0) and p = (u0, v0), then the by the chain-
rule, the tangent vector, α′(t0), to α(t) at t0 is DFp(u′(t0), v′(t0)), an element of the
tangent space TFp to F at p. In terms of the basis defined by the parameters u, v we have
α′(t0) = u′(t0)

∂F(u0,v0)
∂u + v′(t0)

∂F(u0,v0)
∂v .

. 12.4—Exercise 3. Show that every element of TFp is the tangent vector to some
curve on the surface F as above.

12.4.5 Remark. There is a special two-parameter “net” of curves on a surface F defined
by taking the images of the straight lines in the domain O that are parallel to the u, v
axes. Through each point p0 = (u0, v0) there are two such lines, t 7→ (u0 + t, v0) and
t 7→ (u0, v0 + t), called the u-gridline through p and the v-gridline through p, and to
visualize the surface, one plots the images under F of a more or less dense collection of
these “gridlines”.

. 12.4—Exercise 4. Show that the tangent vectors to the u and v gridlines through p
are just the elements of the basis for TFp defined by the parameters u, v.

There are two types of surfaces that everyone learns about early in their mathematical
training—graphs and surfaces of revolution.

12.4—Example 1. Graphs of Functions. Given a real-valued function f : O → R we get
a parametric surface F : O → R3 called the graph of f by F(u, v) := (u, v, f(u, v)).

12.4—Example 2. Surfaces of Revolution. Let t 7→ α(t) = (x(t), z(t)) be a curve in the
x, z-plane that does not meet the z-axis—i.e., x(t) > 0 for all t in the domain (a, b) of α, and
let O = (0, 2π)× (a, b). We define a surface F : O → R3, called the surface of revolution
(about the z-axis) defined from the curve α, by F(u, v) := (x(v) cos(u), x(v) sin(u), z(v)).

59



Math 32a Fall 2003 R. Palais

Lecture 13
The Fundamental Forms of a Surface

In the following we denote by F : O → R3 a parametric surface in R3, F(u, v) =
(x(u, v), y(u, v), z(u, v)). We denote partial derivatives with respect to the parameters
u and v by subscripts: Fu := ∂F

∂u and Fv := ∂F
∂u , and similarly for higher order derivative.

We recall that if p = (u0, v0) ∈ O then Fu(p) and Fv(p) is a basis for TFp, the tangent
space to F at p, the unit normal to F at p is

−→
ν (p) := Fu(p)×Fv(p)

‖Fu(p)×Fv(p)‖ and that we call the

map
−→
ν : O → S2 the Gauss map of the surface F .

13.1 Bilinear and Quadratic Forms
There are two important pieces of data associated to any surface, called its First and
Second Fundamental Forms.

The First Fundamental Form encodes the “intrinsic data” about the surface—i.e., the
information that you could discover by wandering around on the surface and making
measurements within the surface.

The Second Fundamental Form on the other hand encodes the information about how the
surface is embedded into the surrounding three dimensional space—explicitly it tells how
the normal vector to the surface varies as one moves in different directions on the surface,
so you could say it tells how the surface is curved in the embedding space.

These two “fundamental forms” are invariant under congruence, and moreover, they are a
complete set of invariants for surfaces under congruence, meaning that if two surfaces have
the same first and second fundamental forms then they are congruent. This latter fact is
part of the Fundamental Theorem of Surfaces. But, it turns out that, unlike the curvature
and torsion of a curve, not every apparently possible choice of First Fundamental Form
and Second Fundamental Form for a surface can be realized by an actual surface. For this
to be the case, the two forms must satisfy certain differential identities called the Gauss-
Codazzi Equations and this fact is also part of the Fundamental Theorem of Surfaces.

Before considering the definitions of the fundamental forms on a surface, we make a short
detour back into linear algebra to consider the general notions of bilinear and quadratic
forms on a vector space.

13.1.1 Definition. Let V be a real vector space. A real-valued function B : V ×V → R is
called a bilinear form on V if it is linear in each variable separately when the other variable
is held fixed. The bilinear form B is called symmetric ( respectively skew-symmetric) if
B(v1, v2) = B(v2, v1) (respectively B(v1, v2) = −B(v2, v1)) for all v1, v2 ∈ V .

. 13.1—Exercise 1. Show that every bilinear form on a vector space can be decomposed
uniquely into the sum of a symmetric and a skew-symmetric bilinear form.

60



Math 32a Fall 2003 R. Palais

13.1.2 Definition. A real-valued function Q on a vector space V is called a quadratic
form if it can be written in the form Q(v) = B(v, v) for some symmetric bilinear form B
on V . (We say that Q is determined by B. )

. 13.1—Exercise 2. (Polarization Again.) Show that if Q is a quadratic form on V
then the bilinear form B on V such that Q(v) = B(v, v) is uniquely determined by the
identity B(v1, v2) = 1

2 (Q(v1 + v2)−Q(v1)−Q(v2)).

Notation. Because of this bijective correspondence between quadratic forms and bilinear
forms, it will be convenient to use the same symbol to denote them both. That is, if Q
is a quadratic form then we shall also write Q for the bilinear form that determines it, so
that Q(v) = Q(v, v).

13.1.3 Remark. Suppose that V is an inner-product space. Then the inner product is
a bilinear form on V and the quadratic form it determines is of course Q(v) = ‖v‖2. More
generally, if A : V → V is any linear operator on V , then BA(v1, v2) = 〈Av1, v2〉 is a
bilinear form on V and BA is symmetric (respectively, skew-symmetric) if and only if A is
self-adjoint (respectively, skew-adjoint).

. 13.1—Exercise 3. Show that any bilinear form on a finite dimensional inner-product
space is of the form BA for a unique choice of self-adjoint operator A on V , and hence
any quadratic form on an inner-product space is of the form QA(v) = 〈Av, v〉 for a unique
choice of self-adjoint operator A on V .

13.1.4 Remark. If B is a bilinear form on a vector space V and if v1, . . . , vn is a basis for
V then the bij = B(vi, vj) are called the matrix of coefficients of the form B in this basis.
Clearly, if u =

∑
i uivi and w =

∑
i wivi, than B(u,w) =

∑
ij bijuiwj . The bilinear form

B is symmetric if and only if the matrix bij is symmetric, and in that case the quadratic
form Q determined by B is Q(u) =

∑
ij bijuiuj .

13.1.5 Remark. Suppose that T : V → V is a self-adjoint operator on an inner-product
space V , and that v1, . . . , vn is a basis for V . What is the relation between the matrix
bij = 〈Tvi, vj〉 of the symmetric bilinear form BT defined by T , and the matrix A of T in
the basis v1, . . . , vn? Your first guess may be that these two matrices are equal, however
life is not quite that simple.

13.1.6 Proposition. Let T : V → V be a self-adjoint operator on an inner-producr
space V . If b = (bij) is the matrix of coefficients of the bilinear form BT determined
by T and A is the matrix of T , both with respect to the same basis v1, . . . , vn for V ,
then A = g−1b, where g is the matrix of inner-products gij = 〈vi, vj〉, i.e., the matrix of
coefficients of the bilinear form given by the inner-product.

PROOF. By the definition of A, Tvi =
∑n

i=1Akivk, hence bij = 〈
∑n

i=1Akivk, vj〉 =
Akigkj , i.e., b = Atg, where At is the transpose of A, Hence At = bg−1, and since b and g
are symmetric, A = (bg−1)t = g−1b.

61



Math 32a Fall 2003 R. Palais

13.2 Quadratic Forms on a Surface

13.2.1 Definition. If F : O → R3 is a parametric surface in R3, then a quadratic form
on F , Q, we mean a function p 7→ Qp that assigns to each p in O a quadratic form Qp on
the tangent space TFp of F at p.

13.2.2 Remark. Making use of the bases Fu(p),Fv(p) in the TFp, a quadratic form Q
on F is described by the symmetric 2 × 2 matrix of real-valued functions Qij : O → R
defined by Qij(p) := Q(Fxi(p),Fxj (p)), (where x1 = u and x2 = v). These three functions
Q11, Q12, and Q22 on O determine the quadratic form Q on F uniquely: if w ∈ TFp,
then w = ξFu(p) + ηFv, and Qp(w) = Q11(p) ξ2 + 2Q12(p) ξ η + Q22(p) η2. We call the
Qij the coefficients of the quadratic form Q, and we say that Q is of class Ck if its three
coefficients are Ck. Note that we can choose any three functions Qij and use the above
formula for Qp(w) to define a unique quadratic form Q on F with these Qij as coefficients.
This means that we can identify quadratic forms on a surface with ordered triples
of real-valued functions on its domain.

Notation. Because of the preceding remark, it is convenient to have a simple way of
referring to the quadratic form Q on a surface having the three coefficients A,B,C. There
is a classical and standard notation for this, namely:

Q = A(u, v) du2 + 2B(u, v) du dv + C(u, v) dv2.

. 13.2—Exercise 1. To see the reason for this notation—and better understand its
meaning—consider a curve in O given parametrically by t 7→ (u(t), v(t)), and the corre-
sponding image curve α(t) := F(u(t), v(t)) on F . Show that

Q(α′(t)) = A(u(t), v(t))
(
du

dt

)2

+B(u(t), v(t))
(
du

dt

)(
dv

dt

)
+ C(u(t), v(t))

(
dv

dt

)2

.

The point is that curves on F are nearly always given in the form t 7→ F(u(t), v(t)), so a
knowledge of the coefficients A,B,C as functions ot u, v is just what is needed in order to
compute the values of the form on tangent vectors to such a curve from the parametric
functions u(t) and v(t). As a first application we shall now develop a formula for the length
of the curve α.

Definition of the First Fundamental Form of a Surface F
Since TFp is a linear subspace of R3 it becomes an inner-product space by using the
restriction of the inner product on R3. Then the First Fundamental Form on F , denoted
by IF , is defined by IFp (w) := ‖w‖2, and its coefficients are denoted by EF , FF , GF . When
there is no chance of ambiguity we will omit the superscript from IF and its coefficients.
Thus:

IF = EF (u, v) du2 + 2FF (u, v) du dv +GF (u, v) dv2,

where the functions EF , FF , and GF are defined by:

EF := Fu · Fu = x2
u + y2

u + z2
u,

FF := Fu · Fv = xuxv + yuyv + zuzv,

GF := Fv · Fv = x2
v + y2

v + z2
v .

62



Math 32a Fall 2003 R. Palais

The Length of a Curve on a Surface

Let t 7→ (u(t), v(t)) be a parametric curve in O with domain [a, b]. By the above exercise,
the length, L, of the curve α : t 7→ F(u(t), v(t)) is:

L =
∫ b

a

√
I(α′(t)) dt

=
∫ b

a

√
E(u(t), v(t))

(
du

dt

)2

+ F (u(t), v(t))
(
du

dt

)(
dv

dt

)
+G(u(t), v(t))

(
dv

dt

)2

dt .

Alternative Notations for the First Fundamental Form.
The First Fundamental Form of a surface is so important that there are several other
standard notational conventions for referring to it. One whose origin should be obvious is
to denote to it by ds2, and call ds =

√
ds2 the “line element” of the surface.

13.3 The Shape Operator and Second Fundamental Form
We next consider the differential Dνp of the Gauss map ν : O → S2 at a point p of O.
Strictly speaking it is a linear map of R2 → R3, but as we shall now see it has a natural
interpretation as a map of TpF to itself. As such it plays a central role in the study of the
extrinsic properties of F and is called the shape operator of F at p. Moreover, we shall
also establish the important fact that the shape operator is a self-adjoint operator on TpF
and so defines a quadratic form on F , the Second Fundamental Form of the surface.

In fact, since DFp is by definition an isomorphism of R2 onto TpF , given w ∈ TpF , we can
define Dνp(w) := ( d

dt )t=0ν(α(t)), where α is any curve of the form α(t) := F(γ(t)) with
γ(t) a curve in O with γ(0) = p such that DFp(γ′(0)) = w. Then since ν(α(t)) ∈ S2 for
all t, it follows that Dνp(w) ∈ Tν(p)S

2 = ν⊥p = TFp, completing the proof that Dνp maps
TFp to itself.

13.3.1 Definition. The linear map −Dνp : TpF → TpF is called the shape operator of
the surface F at p.

13.3.2 Remark. The reason for the minus sign will appear later. (It gives the curvatures
of the standard surfaces their correct sign.)

13.3.3 Theorem. The shape operator is self-adjoint.

. 13.3—Exercise 1. Prove this. Hint—you must show that for all w1, w2 ∈ TpF ,
〈Dνpw1, w2〉 = 〈w1, Dνpw2〉. However it suffices to to prove this for w1 and w2 taken from
some basis for TpF . (Why?) In particular you only need to show this when the wi are
taken from {Fu,Fv}. For this, take the partial derivatives of the identities 〈Fu, ν〉 = 0 and
〈Fv, ν〉 = 0 with respect to u and v (remembering that νu = Dν(Fu)), so that for example
〈Dν(Fu)),Fv〉 = 〈νu,Fv〉 = (〈ν,Fv〉)u − 〈ν,Fvu〉 = −〈ν,Fvu〉, etc.

63



Math 32a Fall 2003 R. Palais

Definition of the Second Fundamental Form of a Surface F

We define the Second Fundamental Form of a surface F to be the quadratic form defined
by the shape operator. It is denoted by IIF , so for w ∈ TpF ,

IIFp (w) = −〈Dνp(w), w〉 .

We will denote the components of the Second Fundamental Form by LF ,MF , NF , so that

IIF = LF (u, v) du2 + 2MF (u, v) du dv +NF (u, v) dv2,

where the functions LF , MF , and NF are defined by:

LF := −Dν(Fu) · Fu = ν · Fuu,

MF := −Dν(Fu) · Fv = ν · Fuv,

NF := −Dν(Fv) · Fv = ν · Fvv.

As with the First Fundamental Form, we will usually omit the superscript F from IIF and
its components when it is otherwise clear from the context.

Matrix Notation for First and Second Fundamental Form Components
It is convenient when making computations involving the two fundamental forms to have
a more uniform matrix style notation for their components relative to the standard ba-
sis Fu,Fv for TpF . In such situations we will put t1 = u and t2 = v and write I =∑

i,j gij dti dtj and II =
∑

i,j `ij dti dtj . Thus g11 = E, g12 = g21 = F, g22 = G, and
`11 = L, `12 = `21 = M, `22 = N . The formulas giving the gij and `ij in terms of partial
derivatives of F are more uniform with this notation (and hence easier to compute with):
gij = Fti

· Ftj
, and `ij = −νti

· Ftj
= ν · Ftitj

.

We will refer to the 2× 2 matrix gij as g and its inverse matrix by g−1, and we will denote
the matrix elements of the inverse matrix by gij . By Cramer’s Rule:

g−1 =
1

det(g)

(
g22 −g12
−g12 g11

)
,

i.e., g11 = g22/det(g), g22 = g11/det(g), and g12 = g21 = −g12/det(g).

13.3.4 Remark. By Proposition 13.1.6, the matrix of the Shape operator in the basis
Ft1 ,Ft2 is g−1`.

. 13.3—Exercise 2. Show that ‖Fu ×Fv‖2 = det(g) = EG − F 2, so that the unit

normal to F is ν = Fu×Fv√
EG−F 2 . Hint—recall the formula (u×v) ·(x×y) = det

(
u · x v · x
u · y v · y

)
from our quick review of the vector product.

64



Math 32a Fall 2003 R. Palais

Geometric Interpretation of the Second Fundamental Form

Definition. Let α(s) = F(u(s), v(s)) be a regular curve on F and let n(s) denote its
unit normal, so α′′(s) = k(s)n(s), where k(s) is the curvature of α. We define the normal
curvature to α, denoted by kn(s), to be the component of α′′(s) in the direction normal to
F , i.e., the dot product of α′′(s) = k(s)n(s) with ν(α(s)), so that kn(s) = k(s) cos(θ(s)),
where θ(s) is the angle between the normal n(s) to α and the normal ν(α(s)) to F .

13.3.5 Meusnier’s Theorem. If α(s) is a regular curve on a surface F , then its normal
curvature is given by the formula kn(s) = IIF (α′(s)). In particular, if two regular curves
on F pass through the same point p and have the same tangent at p, then they have the
same normal curvature at p.

PROOF. Since α is a curve on F , α′(s) is tangent to F at α(s), so α′(s) · ν(α(s)) is
identically zero. Differentiating gives α′′(s) · ν(α(s)) + α′(s) ·Dν(α′(s)) = 0, so kn(s) :=
α′′(s) · ν(α(s)) = −α′(s) ·Dν(α′(s)) = II(α′(s)).

13.3.6 Remark. Recall that the curvature of a curve measures its second order proper-
ties, so the remarkable thing about Meusnier’s Theorem is that it says, for a curve α that
lies on a surface F , kn, the normal component of the curvature of α depends only on its
first order properties (α′) and the second order properties of F (Dν). The obvious conclu-
sion is that kn measures the curvature of α that is a consequence of its being constrained
to lie in the surface.

13.3.7 Remark. If w is a unit tangent vector to F at p, then w and ν(p) determine a
plane Π through p that cuts F in a curve α(s) lying on F with α(0) = p and α′(0) = w,
This curve α is called the normal section of F in the direction by w. Since α lies in the
plane Π, α′′(0) is tangent to Π, and since it is of course orthogonal to w = α′(0), it follows
that α′′(0) must be parallel to ν(p)—i.e., the angle θ that α′′(0) makes with ν(p) is zero,
and hence by the definition of the normal curvature, kn = k cos(θ) = k, i.e., for a normal
section, the normal curvature is just the curvature, so we could equivalently define the
Second Fundamental Form of F by saying that for a unit vector w ∈ TpF , II(w) is the
curvature of the normal section at p in the direction w. (This is how I always think of II.)

. 13.3—Exercise 3. Show that the First and Second Fundamental Forms of a Surface
are invariant under congruence. That is, if g is an element of the Euclidean group Euc(R3),
then g ◦ F has the same First and Second Fundamental Forms as F .

The Principal Directions and Principal Curvatures

Since the Shape operator, −Dνp, is a self-adjoint operator on TpF , by the Spectral Theorem
there an orthonormal basis e1, e2 for TpF consisting of eigenvectors of the Shape operator.
The corresponding eigenvalues λ1, λ2 are called the principal curvatures at p, and e1 and
e2 are called principal directions at p. Recall that in general, if T : V → V is a self-adjoint
operator, then a point on the unit sphere of V where the corresponding quadratic form
〈Tv, v〉 assumes a minimum or maximum value is an eigenvector of T . Since TpF is two-
dimensional, we can define λ1 and λ2 as respectively the minimum and maximum values

65



Math 32a Fall 2003 R. Palais

of IIp(w) on the unit sphere (a circle!) in TpF , and e1 and e2 as unit vectors where these
minimum and maximum values are assumed. We define the Gaussian Curvature K and
the Mean Curvature H at p to be respectively the determinant and trace of the Shape
operator −Dνp, so K = λ1λ2 and H = λ1 + λ2.

13.3.8 Remark. It is important to have a good formulas for K, H, and the principal
curvatures in terms of the coefficients of the first and second fundamental forms (which
themselves can easily be computed from the parametric equations for the surface). Recall-
ing from 13.3.4 that the matrix of the Shape operator in the usual basis Fu,Fv is g−1`, it
follows that:

K =
det(`)
det(g)

=
`11`22 − `212
g11g22 − g2

12

.

. 13.3—Exercise 4. Show that the Mean Curvature is given in terms of the coefficients
of the first and second fundamental forms by the formula:

H =
g22`11 − 2g12`12 + g11`22

g11g22 − g2
12

.

(Hint: The trace of an operator is the sum of the diagonal elements of its matrix with
respect to any basis.)

13.3.9 Remark. Now that we have formulas for H and K in terms of the gij and `ij ,
it is easy to get formulas for the principal curvatures λ1, λ2 in terms of H and K (and so
in terms of gij and `ij). Recall that the so-called characteristic polynomial of the Shape
operator is χ(λ) := det(−Dν−λI) = (λ−λ1)(λ−λ2) = λ2−Hλ+K, so that its roots, which
are the principal curvatures λ1, λ2 are given by λ1 = H−

√
H2−4K
2 and λ2 = H+

√
H2−4K
2 .

13.3.10 Remark. There is a special case one should keep in mind, and that is when
λ1 = λ2, i.e., when IIp is constant on the unit sphere of TpF . Such a point p is called an
umbillic point of F . While at a non-umbillic point the principal directions e1 and e2 are
uniquely determined up to sign, at an umbilic point every direction is a principal direction
and we can take for e1, e2 any orthonormal basis for the tangent space at p.

Parallel Surfaces

We define a one-parameter family of surfaces F(t) : O → R3 associated to the surface F
by F(t)(u, v) = F(u, v)− ν(u, v). Clearly F(0) = F and ‖F(t)(u, v)−F(u, v)‖ = t. Also,
DF(t)p = DFp + tDνp, and since Dνp maps TpF to itself, it follows that TpF(t) = TpF
(at least for t sufficiently small). So, for obvious reasons, we call F(t) the parallel surface
to F at distance t.

. 13.3—Exercise 5. Since TpF(t) = TpF , it follows that the First Fundamental Forms
IF(t) of the parallel surfaces can be regarded as a one-parameter family of quadratic forms
on F . Show that IIF =

(
d
dt

)
t=0

IF(t).

66



Math 32a Fall 2003 R. Palais

13.3—Example 1. A plane is a surface F : R2 → R3 given by a map of the form
p 7→ x0 + T (p) where T : R2 → R3 is a linear map of rank two. If we call Π the image
of P (a two-dimensional linear subspace of R3), then clearly the image of F is x0 + Π,
the tangent space to F at every point is Π, and the normal vector νp is the same at every
point (one of the two unit vectors orthogonal to Π). Here are three ways to see that the
Second Fundamental Form of such a surface is zero:

a) The normal sections are all straight lines, so their curvatures vanish.

b) Since ν is constant, the parallel surfaces F(t) are obtained from F by translating it by
tν, a Euclidean motion, so all of the First Fundamental Forms IF(t) are the same, and
by the preceding exercise IIF = 0.

c) Since the Gauss Map ν : R2 → S2 is a constant, the Shape operator −Dν is zero.

13.3—Example 2. The sphere of radius r. We have already seen how to parametrize
this using longitude and co-latitude as the parameters. Also, any hemisphere can be
parametrized in the usual way as a graph. However we will not need any parmetrization
to compute the Second Fundamental Form. We use two approaches.

a) The normal sections are all great circles, so in particular they are circles of radius r, and
so have curvature 1

r . Thus the Shape operator is 1
r times the identity.

b) If F(t) is the parallel surface at distance t, then clearly F(t) = r+t
r F = (1 + t

r )F , so
IF(t) = (1 + t

r )IF , and this time the exercise gives IIF = 1
r I
F .

It follows that the Gauss Curvature of the sphere is K = 1
r2 , and its mean curvature is

H = 2
r .

67



Math 32a Fall 2003 R. Palais

Lecture 14
The Fundamental Theorem of Surface Theory

Review of Notation.

• In what follows, (t1, t2) 7→ F(t1, t2) is a parametric surface in R3, F : O → R3.

• Partial derivatives with respect to t1 and t2 are denoted by subscripts: Fti := ∂F
∂ti

,

Ftitj
:= ∂2F

∂titj
, etc.

• The standard basis for TpF—the tangent space to F at a point p ∈ O—is Ft1 ,Ft2 .

• The unit normal to F at p is ν(p) = Ft1 (p)×Ft2 (p)

‖Ft1 (p)×Ft2 (p))‖ .

• The matrix g of the First Fundamental Form with respect to the standard basis is the
2× 2 matrix gij = Fti

(p) · Ftj
(p).

• The Shape operator at p is the self-adjoint operator −Dνp : TpF → TpF .

• The Shape operator defines the Second Fundamental Form which has the 2× 2 matrix
of coefficients ` given by `ij = −νti

· Ftj
= ν · Ftitj

.

• The matrix of the Shape operator in the standard basis is g−1`.

14.1 The Frame Equations.
At each point p ∈ O we define the standard frame at p, f(p) = (f1(p), f2(p), f3(p)) to be the
basis of R3 given by f1(p) := Ft1(p), f2(p) := Ft2(p), f3(p) := ν(p). Note that f1(p), f2(p)
is just the standard basis for TpF . We will regard f as a map from O into 3× 3 matrices,
with the rows being the three basis elements. Since f(p) is a basis for R3, any v ∈ R3 can
be written uniquely as a linear combination of the fi(p): v =

∑
i cifi(p). In particular,

we can take in turn for v each of (fj)tk
(p) and this defines uniquely a 3× 3 matrix P k

ji(p)
such that (fj)tk

(p) =
∑

j P
k
ji(p)fi(p). We can write these equations as a pair of equations

between five matrix-valued functions f, ft1 , ft2 , P
1, and P 2, defined on O, namely:

ft1 = f P 1

ft2 = f P 2

and we call these equations the frame equations for the surface F .

What makes these equations so interesting and important is that, as we will see below, the
matrix-valued functions P 1 and P 2 can be calculated explicitly from formulas that display
them as fixed expressions in the coeffients gij and `ij of the First and Second Fundamental
Forms and their partial derivatives. Thus, if the First and Second Fundamental
Forms are known, we can consider the Frame Equations as a coupled pair of
first order PDE for the frame field f, and it follows from the Frobenius Theorem that
we can solve these equations and find the frame field, and then with another integration we
can recover the surface F . Thus the frame equations are analogous to the Frenet equations
of curve theory, and lead in the same way to a Fundamental Theorem. Now the fun begins!

68



Math 32a Fall 2003 R. Palais

14.1.1 Lemma. Let V be an inner-product space, f = (f1, . . . , fn) a basis for V , and G
the matrix of inner-products Gij =

〈
fi, fj

〉
. Given x =

∑n
i=1 xi fi in V , let ξi := 〈x, fi〉.

Then ξi =
∑n

j=1Gjixj =
∑n

j=1G
t
ijxj , or in matrix notation, (ξ1, . . . , ξn) = (x1, . . . , xn)Gt,

so (x1, . . . , xn)t = G−1(ξ1, . . . , ξn)t.

PROOF. ξi =
〈∑n

j=1 xjfj , fi

〉
=
∑n

j=1 xj

〈
fj , fi

〉
.

14.1.2 Remark. Here is another way of phrasing this result. The basis f1, . . . , fn for V
determines two bases for the dual space V ∗, the dual basis `i defined by `i(fj) = δij and the
basis f∗i , defined by f∗i (v) := 〈v, fi〉, and these two bases are related by f∗i =

∑n
j=1Gij`j .

14.1.3 Theorem.

P 1 = G−1A1 =

 g11 g12 0
g12 g22 0
0 0 1

 1
2 (g11)t1

1
2 (g11)t2 −`11

(g12)t1 − 1
2 (g11)t2

1
2 (g22)t1 −`12

`11 `12 0



P 2 = G−1A2 =

 g11 g12 0
g12 g22 0
0 0 1

 1
2 (g11)t2 (g12)t2 − 1

2 (g22)t1 −`12
1
2 (g22)t1

1
2 (g22)t2 −`22

`12 `22 0


PROOF. In the lemma (with n = 3) take f = f(p), the standard frame for F at p, so that

G =

 g11 g12 0
g12 g22 0
0 0 1


and hence

G−1 =

 g11 g12 0
g12 g22 0
0 0 1


(recall that the g−1 = gij is the matrix inverse to g = gij), and take x = (fj)tk

, so by the
conclusion of the Lemma, Ak

ij = ξi = (fj)tk
· fi. Thus, for example, for i = 1, 2:

Ak
ii = (fi)tk

· fi = Ftitk
· Fti =

1
2
(Fti

· Fti
)tk

=
1
2
(gii)tk

.

Next note that (g12)t1 = (Ft1 · Ft2)t1 = Ft1t1 · Ft2 +Ft1 · Ft1t2 = Ft1t1 · Ft2 + 1
2 (g11)t2 , so:

A1
21 = (f1)t1 · f2 = Ft1t1 · Ft2 = (g12)t1 −

1
2
(g11)t2 .

and interchanging the roles of t1 and t2 gives

A2
12 = (f2)t2 · f1 = Ft2t2 · Ft1 = (g12)t2 −

1
2
(g22)t1 . Also

A1
12 = (f2)t1 · f1 = Ft1t2 · Ft1 =

1
2
(Ft1 · Ft1)t2 =

1
2
(g11)t2 and

A2
21 = (f1)t2 · f2 = Ft1t2 · Ft2 =

1
2
(Ft1 · Ft1)t2 =

1
2
(g11)t2 .

69



Math 32a Fall 2003 R. Palais

For i = 1, 2,
Ak

i3 = (f3)tk
· fi = νtk

· Fti = Dν(Ftk
) · Fti = −`ki,

and since f3 is orthogonal to fi, 0 = (f3 · fi)tk
= (f3)tk

· fi + f3 · (fi)tk
, hence

Ak
3i = (fi)tk

· f3 = −(f3)tk
· fi = −Ak

i3.

Finally, since f3 · f3 = ‖ν‖2 = 1, (f3 · f3)tk
= 0, so

Ak
33 = (f3)tk

· f3 =
1
2
(f3 · f3)tk

= 0.

Henceforth we regard the 3× 3 matrix-valued functions G, G−1, Ak and P k in O as being
defined by the formulas in the statement of the above theorem.

14.1.4 Corollary (Gauss-Codazzi Equations). If gij and `ij are the coefficients of
the First and Second Fundamental Forms of a surface F : O → R3, then the matrix-valued
functions P 1 and P 2 defined in O by the above Theorem satisfy the matrix identity

P 1
t2 − P 2

t1 = P 1P 2 − P 2P 1

called the Gauss-Codazzi Equations.

PROOF. Differentiate the first of the Frame Equations with respect to t2 and the second
with respect to t1 and set ft1t2 = ft2t1 . This gives ft2P

1+fP 1
t2 = ft1P

2+fP 2
t1 . Substituting

for ft1 and ft2 their values from the Frame Equations, gives

f (P 1
t2 − P 2

t1 − (P 1P 2 − P 2P 1)) = 0,

and since f is a non-singular matrix, the corollary follows.

14.2 Gauss’s “Theorema Egregium” (Remarkable Theorem).
Karl Friedrich Gauss was one of the great mathematicians of all time, and it was he who
develped the deeper aspects of surface theory in the first half of the nineteenth century.
There is one theorem that he proved that is highly surprising, namely that K, the Gauss
Curvature of a surface (the determinant of the shape operator), is an intrinsic quantity
that is it can be computed from a knowledge of only the First Fundamental Form, and so
it can be found by doing measurements within the surface without reference to how the
surface is embedded in space. Gauss thought so highly of this result that in his notes he
called it the “Theorema Egregium”, or the remarkable (or outstanding) theorem. Notice
that by Theorem 14.1.3, the matrix entries of P k

ij with 1 ≤ i, j ≤ 2 depend only on the gij

and their partial derivatives, so to prove the intrinsic nature of K it will suffice to get a
formula for it involving only these quantities and the gij .

70



Math 32a Fall 2003 R. Palais

14.2.1 Theorema Egregium.

K = −
(P 1

12)t2 − (P 2
12)t1 −

∑2
j=1(P

1
1jP

2
j2 − P 2

1jP
1
j2)

g11(g11g22 − g2
12)

.

PROOF. In the matrix Gauss-Codazzi Equation, consider the equation for the first row
and second column,

(P 1
12)t2 − (P 2

12)t1 =
3∑

j=1

(P 1
1jP

2
j2 − P 2

1jP
1
j2).

If we move all terms involving P k
i,j with i, j < 3 to the left hand side of the equation, the

result is:

(P 1
12)t2 − (P 2

12)t1 −
2∑

j=1

(P 1
1jP

2
j2 − P 2

1jP
1
j2) = P 1

13P
2
32 − P 2

13P
1
32.

Now use Theorem 14.1.3 to find the matrix elements on the right hand side of this equation:

P 1
13 = −(g11`11 + g12`12), P 2

13 = −(g11`12 + g12`22), P 1
32 = `12, P 2

32 = `22. Thus:

P 1
13P

2
32 − P 2

13P
1
32 = −(g11`11 + g12`12)`22 + (g11`12 + g12`22)`12 = −g11(`11`22 − `212).

Since by an earlier remark (13.3.8),

K =
det(`)
det(g)

=
`11`22 − `212
g11g22 − g2

12

,

P 1
13P

2
32 − P 2

13P
1
32 = −g11(`11`22 − `212) = −g11(g11g22 − g2

12)K

and the claimed formula for K follows.

14.2.2 The Fundamental Theorem of Surfaces. Congruent parametric surfaces in
R3 have the same First and Second Fundamental Forms and conversely two parametric sur-
faces in R3 with the same First and Second Fundamental Forms are congruent. Moreover,
if O is a domain in R2 and I =

∑2
ij=1 gij dti dtj , II =

∑2
ij=1 `ij dti dtj are C2 quadratic

forms in O with I positive definite, then there exists a parametric surface F : O → R3

with IF = I and IIF = II provided the Gauss-Codazzi equations are satisfied.

PROOF. We have already discussed the first statement. If F i : O → R3, i = 1, 2 have
the same First and Second Fundamental forms, then after translations we can assume that
they both map some point p ∈ O to the origin. Then, since F1

ti
(p) · F1

tj
(p) = gij(p) =

F2
ti

(p) · F2
tj

(p), it follows that after transforming one of the surfaces by an orthogonal
transformation we can assume that the standard frame f1 for F1 and the standard frame
f2 for F2 agree at p. But then, since F1 and F2 have identical frame equations, by the
uniqueness part of the Frobenius Theorem it follows that f1 and f2 agree in all of O, so in

71



Math 32a Fall 2003 R. Palais

particular F1
ti

= F2
ti

. But then F1 and F2 differ by a constant, and since they agree at p,
they are identical, proving the second statement.
To prove the third and final statement of the theorem, we first note that since gij is
positive definite, it is in particular invertible, so the matrix G−1 and the matrices P k of
Theorem 14.1.3, are well-defined. Moreover, since the Gauss-Codazzi equations are just
the compatibility conditions of Frobenius Theorem, it follows that we can solve the “frame
equations” fti

= f P k, k = 1, 2 uniquely given an arbitrary initial value for f at some point
p ∈ O, and for this initial frame we choose a basis f(p) for R3 such that fi(p)·fj(p) = Gij(p)
(which is possible since gij and hence Gij is positive definite).

Having solved for the frame field f, we now need to solve the system Fti
= fi, i = 1, 2 to get

the surface F : O → R3. This is another Frobenius problem, and now the compatibility
condition is (f1)t2 = (f2)t1 or by the frame equation,

∑3
j=1 P

2
j1fj =

∑3
j=1 P

1
j2fj . But

by inspection, the second column of P 1 is indeed equal to the first column of P 2, so
the compatibility equations are satisfied and we can find a unique F with F(p) = 0 and
Fti

= fi, for i = 1, 2.

It remains to show that F is a surface in R3 with
∑

ij gijdti dxj and
∑

ij `ijdti dtj as its
first and second fundamental forms, i.e.,

• Ft1 and Ft2 are independent,

• f3 is orthogonal to Ft1 and Ft2 ,

• ‖f3‖ = 1,

• Fti
· Ftj

= gij , and

• (f3)xi · fxj = −`ij .
The first step is to prove that the 3 × 3 matrix function Φ = (fi · fj) is equal to G. We
compute the partial derivatives of Φ. Since f satisfy the frame equations,

(fi · fj)t1 = (fi)t1 · fj + fi · (fj)t1

=
∑

k

P 1
kifk · fj + P 1

kjfk · fi =
∑

k

P 1
kigjk + gikP

1
kj

= (GP 1)ji + (GP 1)ij = (GP 1 + (GP 1)t)ij .

But GP 1 = G(G−1A1) = A1, so Φt1 = Gt1 and a similar computation gives Φt2 = Gt2 .
Thus Φ and G differ by a constant, and since they agree at p they are identical. Thus
fi · fj = Gij , which proves all of the above list of bulleted items but the last.
To compute the Second Fundamental Form of F , we again use the frame equations:

−(f3)t1 · fj = (g11`11 + g12`12)f1 · fj + (g12`11 + g22`12)f2 · fj

= (g11`11 + g12`12)g1j + (g12`11 + g22`12)g2j

= `11(g11g1j + g12g2j) + `12(g21g1j + g22g2j)
= `11δ1j + `12δ2j .

So −(f3)t1 · f1 = `11, −(f3)t1 · f2 = `12, and similar computations show that −(f2)t2 · fj =
`2j , proving that

∑
ij `ijdti dtj is the Second Fundamental Form of F .

72



Math 32a Fall 2003 R. Palais

The Eighth and Final Matlab Project.

The primary Matlab M-File should be called SurfaceFT.m and should start out:

function F = SurfaceFT(g11,g12,g22,l11,l12,l22,a1,b1,a2,b2,T1Res,T2Res)

where I :=
∑

ij gij(t1,t2) dti dtj and II :=
∑

ij lij(t1,t2) dti dtj are quadratic
forms in O, and the function F : O → R3 returned is supposed to be the surface having I
and II as its First and Second Fundamental Forms. For this surface to exist, we know from
the Fundamental Theorem that it is necessary and sufficient that I be positive definite and
that the Gauss-Codazzi equations be satisfied.

Of course the heavy lifting of the SurfaceFT will be done by AlgorithmF (i.e., the solution
of the Frobenius Problem) which you will apply to integrate the frame equations in order
to get the frame field f—after which you must apply AlgorithmF a second time to get the
surface F from f1 and f2.

But to carry out the first application of AlgorithmF, you must first compute the matrices
P 1 = G−1A1 and P 2 = G−1A2 that define the right hand sides of the two frame equations.
Recall that G−1 is the inverse of the 3× 3 matrix

G =

 g11(t1,t2) g12(t1,t2) 0
g12(t1,t2) g22(t1,t2) 0

0 0 1


and so it can be easily computed from the gij(t1,t2) by using Cramer’s Rule, while
the two 3 × 3 matrices A1 and A2 are given explicitly (see 14.1.3 above) in terms of the
g11(t1,t2) and their partial derivatives with respect to the ti . (Of course, once
you have both G−1 and Ai, you get P i as their matrix product.)

In order to be able to compute the Ai, you will first need to define some auxilliary functions.
Most of them can probably be subfunctions defined in the same file, though some could
be separate M-Files. For example you will want to have a function called g(t1,t2) that

returns a 2 × 2 matrix
(
g11(t1,t2) g12(t1,t2)
g12(t1,t2) g22(t1,t2)

)
and another called l(t1,t2) that

returns a 2 × 2 matrix
(
l11(t1,t2) l12(t1,t2)
l12(t1,t2) l22(t1,t2)

)
. You will then want to create the

functions G(t1,t2) and invG(t2,t2) that return the 3× 3 matrices G and G−1.

There is another complication before you can define the Matlab functions A1 and A2 that
represent A1 and A2. You not only need the functions gij(t1,t2) but also their first
partial derivatives with respect to the variables t1 and t2. I recommend that along with
the function g(t1,t2) you also define two more functions g t1(t1,t2) and g t2(t1,t2)
that return 2×2 matrices whose entries are the partial derivatives of the gij(t1,t2) with
respect to t1 and t2 respectively. As usual you can compute these partial derivatives using
symmetric differencing—you don’t need to do it symbolically.

You should define a Matlab function GaussCodazziCheck that will check whether or not
the Gauss-Codazzi Equations are satisfied. Once you have defined the two 3 × 3 matrix-

73



Math 32a Fall 2003 R. Palais

valued functions P 1 and P 2, it will be easy to write GaussCodazziCheck, since the Gauss-
Codazzi equations are just P 1

t2 − P 2
t1 = P 1P 2 − P 2P 1. The idea is to check the identities

numerically, matrix element by matrix element, at a sufficiently dense set of points, again
using symmetric differencing to compute the derivatives.

Of course, when you are all done you will need some good test cases on which to try out
you algorithm. We will discuss this elsewhere.

GOOD LUCK, AND HAVE FUN!

74



Math 32a Fall 2003 R. Palais

Appendix I

The Matlab Projects



Math 32a Fall 2003 R. Palais

.Project 1. Implement Gram-Schmidt as a Matlab
Function
In more detail, create a Matlab m-file GramSchmidt.m in which you define a Matlab

function GramSchmidt(M) taking as input a rectangular matrix M of real numbers of
arbitrary size m × n, and assuming that the m rows of M are linearly independent, it
should transform M into another m × n matrix in which the rows are orthonormal, and
moreover such that the subspace spanned by the first k rows of the output matrix is the
same as the space spanned by the first k rows of the input matrix. Clearly, in writting
your algorithm, you will need to know the number of rows, m and the number of columns
n of M. You can find these out using the Matlab size function. In fact, size(M) returns
(m,n) while size(M,1) returns m and size(M,2) returns n. Your algorithm will have to do
some sort of loop, iterating over each row in order. Be sure to test your function on a
number of different matrices of various sizes. What happens to your function if you give
it as input a matrix with linearly dependent rows. (Ideally it should report this fact and
not just return garbage!)

Addenda

• The project is a little ambiguous. It asks for a function M-File that transforms the
input matrix to a matrix with orthogonal rows. One legitimate interpretation (actually
the one I had in mind) was that the input matrix should actually be changed by the
function into one with orthogonal rows. However, if you prefer to write your function
so that it does not actually change the input matrix but it instead returns a different
matrix having orthogonal rows, that is acceptable. (But you should realize that there
are often good reasons to do the orthogonalization “in place”. For example, if the input
matrix is very large (e.g., 10000 × 10000) then there might be a memory problem in
creating a second matrix of that size.)

• Please put your name in a comment near the top of the M-File.

• Another comment (coming just after the line declaring the function) should explain
in detail just what the function does and how to call it. This will be printed in the
command window when a user types “help GramSchmidt”.

• Several of you have asked how to handle the problem of an input matrix in which the
rows are not linearly independent. You will detect this in the course of the computation
by finding that the norm of a certain vector u is zero, so you cannot normalize u to get
the next element of the orthonormal set. (By the way, you should be careful to check not
just for ‖u‖ being exactly zero, but say for ‖u‖ < 0.00001. The reason is that because
of roundoff and other errors the computation will be too unreliable if the vectors are
“almost linearly dependent”.) In this case you should not try to return any matrix and
should just use the disp() function to display an error string to tell the user about the
problem. Something like:
disp(’Input matrix rows are dependent; orthonormalization impossible.’)

76



Math 32a Fall 2003 R. Palais

.Project 2. Implement the Trapezoidal Rule
and Simpson’s Rule in Matlab

0.1 Review of Trapezoidal and Simpson’s Rules.
One usually cannot find anti-derivatives in closed form, so it is important to be able

to “evaluate an integral numerically”—meaning approximate it with arbitrary precision.
In fact, this is so important that there are whole books devoted the study of numerical
integration methods (aka quadrature rules). We will consider only two such methods, the
Trapezoidal Rule and Simpson’s Rule. In what follows, we will assume that the integrand
f is always at least continuous.

0.1.1 Definition. By a quadrature rule we mean a function M that assigns to each
continuous function f : [a, b] → V (mapping a closed interval [a, b] into an inner-product
space V ) a vector M(f, a, b) ∈ V—which is supposed to be an approximation of the
integral,

∫ b

a
f(t) dt. A particular quadrature rule M is usually given by specifying a linear

combination of the values of f at certain points of he interval [a, b]; that is, it has the
general form M(f, a, b) :=

∑n
i=1 wif(ti), where the points ti ∈ [a, b] are called the nodes

of M and the scalars wi are called its weights. The error of M for a particular f and [a, b]
is defined as Err(M,f, a, b) :=

∥∥∥∫ b

a
f(t) dt−M(f, a, b)

∥∥∥.
0.1—Example 1. The Trapezoidal Rule: MT (f, a, b) := b−a

2 [f(a) + f(b)].
In this case, there are two nodes, namely the two endpoints of the interval, and they have
equal weights, namely half the length of the interval. Later we shall see the origin of this
rule (and explain its name).

0.1—Example 2. Simpson’s Rule: MS(f, a, b) := b−a
6 [f(a) + 4f(a+b

2 ) + f(b)].
So now the nodes are the two endpoints, as before, and in addition the midpoint of the
interval. And the weights are b−a

6 for the two endpoints and 2(b−a)
3 for the midpoint.

0.1.2 Remark. Notice that in both examples the weights add up to one. This is no
accident; any “reasonable” quadrature rule should have a zero error for a constant function,
and this easily implies that the weights must add to one.

0.1.3 Proposition. If f : [a, b] → V has two continuous derivatives, and ‖f ′′(t)‖ < C

for all t ∈ [a, b] then Err(MT , f, a, b) ≤ C (b−a)3

12 . Similarly, if f : [a, b] → V has four

continuous derivatives, and ‖f ′′′′(t)‖ < C for all t ∈ [a, b] then Err(MS , f, a, b) ≤ C (b−a)5

90

0.1.4 Remark. The proof of this proposition is not difficult—it depends only the Mean
Value Theorem—but it can be found in any numerical analysis text and will not be repeated
here.

0.1.5 Definition. If M is a quadrature rule then we define a sequence Mn of derived
quadrature rules by Mn(f, a, b) :=

∑n−1
i=0 M(f, a + ih, a + (i + 1)h) where h = b−a

n . We
say that the rule M is convergent for f on [a, b] if the sequence Mn(f, a, b) converges to∫ b

a
f(t) dt.

77



Math 32a Fall 2003 R. Palais

In other words, to estimate the integral
∫ b

a
f(t) dt using the n-th derived ruleMn, we simply

divide the interval [a, b] of integration into n equal sub-intervals, estimate the integral on
each sub-interval using M , and then add these estimates to get the estimate of the integral
on the whole interval.

0.1.6 Remark. We next note an interesting relation between the errors of M and of Mn.
Namely, with the notation just used in the above definition, we see that by the additivity
of the integral,

∫ b

a
f(t) dt =

∑n−1
i=0

∫ a+(i+1)h

a+ih
f(t) dt, hence from the definition of Mn and

the triangle inequality, we have Err(Mn, f, a, b) ≤
∑n−1

i=0 Err(M,f, a+ ih, a+(i+1)h). We
can now use this together with Proposition 7.4.3 to prove the following important result:

0.1.7 Theorem. If f : [a, b] → V has two continuous derivatives, and ‖f ′′(t)‖ < C for

all t ∈ [a, b] then Err(MT
n , f, a, b) ≤ C (b−a)2

12n2 . Similarly, if f : [a, b] → V has four continuous

derivatives, and ‖f ′′′′(t)‖ < C for all t ∈ [a, b] then Err(MS
n , f, a, b) ≤ C (b−a)4

90n4

0.1.8 Remark. This shows that both the Trapezoidal Rule and Simpson’s Rule are con-
vergent for any reasonably smooth function. But it also shows that Simpson’s Rule is far
superior to the Trapezoidal Rule. For just fifty per cent more “effort” (measured by the
number of evaluations of f) one gets a far more accurate result.

The second Matlab project is to develop Matlab code to implement the Trapezoidal Rule
and Simpson’s Rule, and then to do some experimentation with your software, checking
that the error estimates of theorem 7.4.7 are satisfied for some test cases where the function
f has a known anti-derivative and so can be evaluated exactly. In more detail:

1) Write a Matlab function M-file defining a function TrapezoidalRule(f,a,b,n). This should
return the value of MT

n (f, a, b). Here of course the parameters a and b represent real
numbers and the parameter n a positive integer. But what about the parameter f, i.e.,
what should it be legal to substitute for f when the TrapezoidalRule(f,a,b,n) is called?
Answer: f should represent a function of a real variable whose values are arrays (of
some fixed size) of real numbers. The function that you are permitted to substitute for
f should either be a built-in Matlab function (such as sin) or an inline function in the
Matlab Workspace, or a function that is defined in some other M-File.

2) Write a second Matlab function M-file defining a function SimpsonsRule(f,a,b,n) that
returns MS

n (f, a, b).

3) Recall that
∫ t

0
dx

1+x2 = arctan(t), so that in particular
∫ 1

0
4 dx
1+x2 = 4 arctan(1) = π. Using

the error estimates for the Trapezoidal Rule and Simpson’s Rule, calculate how large n
should be to calculate π correct to d decimal places from this formula using Trapezoidal
and Simpson. Set format long in Matlab and get the value of π to fifteen decimal places
by simply typing pi. Then use your Trapezoidal and Simpson functions from parts 1)
and 2) to see how large you actually have to choose n to calculate π to 5, 10, and 15
decimal places.

4) Be prepared to discuss your solutions in the Computer Lab.

78



Math 32a Fall 2003 R. Palais

.Project 3. Implement the Method of
Successive Approximations

0.2 Review of The Contraction Principle.
If X is any set and f : X → X a mapping of X to itself, then for each positive integer n we
define a mapping f

(n)
X → X by composing f with itself n times. That is, f

(1)
(x) = f(x),

f
(2)

(x) = f(f(x)), f
(3)

(x) = f(f(f(x))), etc. To be more formal, we define the sequence
f

(n)
inductively by: f

(1)
:= f and f

(n+1)
:= f ◦ f (n)

.

Elsewhere you have verified the following facts:

1) f
(n) ◦ f (k)

= f
(n+k)

.

2) If X is a metric space and that f satisfies a Lipschitz condition with constant K then
f

(n)
satisfies a Lipschitz condition with constant Kn.

3) Assuming again that X is a metric space and that f : X → X is a contraction mapping,
i.e., that f satisfies a Lipschitz condition with constant K < 1, we have the so-called
Fundamental Inequality For Contraction Mappings, namely, for all x1, x2 ∈ X,

ρ(x1, x2) ≤
1

1−K

(
ρ(x1, f(x1)) + ρ(x2, f(x2)

)
.

4) With the same assumptions, if x is any point of X then

ρ(f
(n)

(x), f
(m)

(x)) ≤

(
Kn +Km

1−K

)
ρ(x, f(x)),

5) If f : X → X is a contraction mapping and p is the unique fixed point of f , then for
any x in X, ρ(f

(n)
(x), p) ≤

(
Kn

1−K

)
ρ(x, f(x))

Remark. The sequence {f (n)
(x)} is usually referred to as the sequence of iterates of x

under f , and the process of locating the fixed point p of a contraction mapping f by
taking the limit of a sequence of iterates of f goes by the name “the method of successive
approximations”. To make this into a rigorous algorithm, we must have a “stopping
rule”. That is, since we cannot keep iterating f forever, we must know when to stop.
One rather rough approach is to keep on iterating until successive iterates are “close
enough”, but a better method is provided by the previous problem. Suppose we decide
to be satisfied with the approximation f

(n)
(x) if we can be sure that ρ(f

(n)
(x), p) ≤ ε

where ε is some “tolerance” given in advance. We first compute f(x), then ρ(f(x), x), and
then solve

(
Kn

1−K

)
ρ(x, f(x)) = ε for n and iterate n− 1 more times to get our acceptable

approximation f
(n)

(x) to p.

6) Solve
(

Kn

1−K

)
ρ(x, f(x)) = ε for n in terms of ε, K, and ρ(x, f(x)).

79



Math 32a Fall 2003 R. Palais

Third Matlab Project.

Write an Matlab M-file that implements the Successive Approximations algorithm. Name it
SuccessiveApprox.m, and use it to define a Matlab function SuccessiveApprox(f,K, x, eps).
Assume that f : Rn → Rn is known to be a contraction mapping with contraction constant
K, that x ∈ Rn, and you want to compute iterates of x until you are within eps of the
fixed point p of f . Use a subfunction to compute the number of times n you need to iterate
f starting from x to get within eps of p, and then use a loop and feval to iterate applying
f to x the appropriate number of times.

80



Math 32a Fall 2003 R. Palais

.Project 4. Implement Euler’s Method
and Runge-Kutta in Matlab

0.3 Review of Stepping Methods for Solving IVPs.
In what follows X is a C1 time-dependent vector field on V , and given t0 in R and
x0 in V we will denote by σ(X,x0, t0, t) the maximal solution, x(t), of the differential
equation dx

dt = X(x, t) satisfying the initial condition x(t0) = x0. The goal in the numerical
integration of ODE is to devise effective methods for approximating x(t) on an interval
I = [t0, T ]. The strategy that many methods use is to interpolate N equally spaced
gridpoints t1, . . . tN in the interval I, defined by tk := t0 + k∆t with ∆t = T−t0

N , and then
use some rule to define values x1, . . . , xN in V , in such a way that when N is large each
xk is close to the corresponding x(tk). The quantity max1≤k≤N

∥∥xk − x(tk)
∥∥ is called the

global error of the algorithm, and if it converges to zero as N tends to infinity (for every
choice of X, t0, x0, and T ), then we say that we have a convergent algorithm.

One common way to construct the algorithm that produces the values x1, . . . , xN uses a
recursion based on a so-called “stepping procedure”, namely a function, Σ(X,x0, t0,∆t),
having as inputs:

1) a time-dependent vector field X on V ,

2) an initial condition x0 in V ,

3) an initial time t0 in R, and

4) a “time-step” ∆t in R,

and with output a point of V that for small ∆t approximates σ(X,x0, t0, t0 + ∆t) well.
More precisely, the so-called “local truncation error”, defined by∥∥σ(X,x0, t0, t0 + ∆t)− Σ(X,x0, t0,∆t)

∥∥ ,
should approach zero at least quadratically in the time-step ∆t. Given such a step-
ping procedure, the approximations xk of the x(tk) are defined recursively by xk+1 =
Σ(X,xk, tk,∆t). Numerical integration methods that follow this general pattern are re-
ferred to as finite difference methods.

0.3.1 Remark. There are two sources that contribute to the global error,
∥∥xk − x(tk)

∥∥.
First, each stage of the recursion will give an additional local truncation error added to
what has already accumulated up to that point. But, in addition, after the first step,
there will be an error because the recursion uses Σ(X,xk, tk,∆t) rather than the unknown
Σ(X,x(tk), tk,∆t). (In practice there is a third source of error, namely machine round-off
error from using floating-point arithmetic. We will usually ignore this and pretend that our
computers do precise real number arithmetic, but there are situations where it is important
to take it into consideration.)

81



Math 32a Fall 2003 R. Palais

For Euler’s Method the stepping procedure is simple and natural. It is defined by:

Euler Step

ΣE(X,x0, t0,∆t) := x0 + ∆tX(x0, t0).

It is easy to see why this is a good choice. If as above we denote σ(X,x0, t0, t), by x(t),
then by Taylor’s Theorem,

x(t0 + ∆t) =x(t0) + ∆t x′(t0) +O(∆t2)

=x0 + ∆tX(x0, t0) +O(∆t2)

=ΣE(X,x0, t0,∆t) +O(∆t2),

so
∥∥σ(X,x0, t0, t0 + ∆t)− Σ(X,x0, t0,∆t)

∥∥, the local truncation error for Euler’s Method,
does go to zero quadratically in ∆t. When we partition [0, T ] into N equal parts, ∆t =
T−t0

N , each step in the recursion for computing xk will contribute a local truncation error
that is O(∆t2) = O( 1

N2 ). Since there are N steps in the recursion and at each step we
add O( 1

N2 ) to the error, this suggests that the global error will be O( 1
N ), and hence will

go to zero as N tends to infinity, and this can be proved rigorously, so Euler’s Method is
convergent.

One excellent general purpose finite difference method for solving IVPs, and it goes by
the name Runge-Kutta—or more properly the fourth order Runge-Kutta Method—since
there is a whole family of Runge-Kutta methods. The stepping procedure for fourth order
Runge-Kutta is:

Runge-Kutta Step

ΣRK4
(X,x0, t0,∆t) := x0 + 1

6 (k1 + 2k2 + 2k3 + k4), where:
k1 = ∆tX(x0, t0)
k2 = ∆tX(x0 + 1

2k1, t0 + ∆t
2 )

k3 = ∆tX(x0 + 1
2k2, t0 + ∆t

2 )
k4 = ∆tX(x0 + k3, t0 + ∆t)

Runge-Kutta is fourth order, meaning that the local truncation error goes to zero as the
fifth power of the step-size, and the global error as the fourth power. So if for a fixed step-
size we have attained an accuracy of 0.1, then with one-tenth the step-size (and so ten
times the number of steps and ten times the time) we can expect an accuracy of 0.00001,
whereas with the Euler method, ten times the time would only increase accuracy from 0.1
to 0.01.

Fourth Matlab Project.

Write a Matlab M-File function Euler(X,x0,T,n)that estimates x(T ), the solution at
time T of the initial value problem dx

dt = X(x), x(0) = x0 by applying the Euler step-
ping method to the interval [0, T ] with n time steps. Similarly write such a function
RungeKutta(X,x0,T,n) that uses the Runge-Kutta stepping method. Make some exper-
iments using the case V = R, dx

dt = x with x0 = 1 and T = 1, so that x(T ) = e. Check
how large n has to be to get various degrees of accuracy using the two methods.

82



Math 32a Fall 2003 R. Palais

.Project 5. Frobenius Theorem and Algorithm F

In this project you will develop a Matlab implementation of what we call Algorithm F.
First we recall the mathematics behind the algorithm. We start with two vector fields X1

and X2 on Rn that depend on two real parameters t1 and t2. That is, for i = 1, 2, Xi is
a map (assumed to be Ck with k ≥ 2) of Rn ×R2 → Rn,

(x1, . . . , xn, t1, t2) 7→ (Xi
1(x1, . . . , xn, t1, t2), . . . , Xi

n(x1, . . . , xn, t1, t2))

and our goal is to solve a certain initial value problem (∗) on a rectangle r in R2 given by
r := {(t1, t2) ∈ R2 | a1 ≤ ti ≤ bi, i = 1, 2}. This means that we are looking for a function
x(t1, t2) → Rn defined on r that has an assigned “initial value” x0 ∈ Rn at the “bottom
left corner” (a1, a2) of r and that satisfies the two first order partial differential equations
∂x
∂ti

= Xi(x, t1, t2), for i = 1, 2:

1) x(a1, a2) = x0,

(∗) 2)
∂x

∂t1
= X1(x, t1, t2),

3)
∂x

∂t2
= X2(x, t1, t2),

Algorithm F for Constructing Solutions of the System (∗).
We next describe the algorithm that we will refer to as Algorithm F for constructing the
solution x(t1, t2) to (∗) in r provided a solution exists. The algorithm will produce a map
(t1, t2) 7→ x(t1, t2), defined in r and for which the following five statements a) to e) are
valid:

a) x(t1, t2) satisfies the initial value condition 1) of (∗),
b) x(t1, t2) satisfies 2) of (∗), along the line t2 = a2 (i.e., the bottom edge of r) .

c) x(t1, t2) satisfies 3) of (∗) in all of r,

d) x : r → V is Ck,

e) The properties a), b), c) uniquely determine the function x(t1, t2) in r, hence it will be
the unique solution of (∗) in r if a solution exists.

The strategy behind Algorithm F comes from a change in point of view. Instead of re-
garding 2) and 3) of (∗) as a pair of coupled PDE for x(t1, t2) with independent variables
t1 and t2, we consider them as two independent ODEs, the first with t1 as independent
variable and t2 as parameter, and the second with these roles reversed.

In more detail, we first we solve the initial value problem dy
dt = X1(y, t, t02) and y(a1) = x0

on [a1, b1] and define x(t, a2) = y(t) for a1 ≤ t ≤ b1 . This makes statements a) and b)
true, and moreover, by the uniqueness of solutions of the IVP for ODEs, conversely if a)
and b) are to hold then we must define x(t, a2) this way for t in [a1, b1].

83



Math 32a Fall 2003 R. Palais

Then, for each t1 ∈ [a1, b1] we define x(t1, t) for a2 ≤ t ≤ b2 as follows. We note that x(t, a2)
has already been defined in the preceding step, so we solve the IVP dz

dt = X2(z, t1, t) and
z(a2) = x(t, a2) and define x(t1, t) = z(t) for t ∈ [a2, b2]. This extends the definition of
x(t1, t2) to the remainder or r, and it clearly is the unique definition that will make c)
valid.

[That completes the formal description of Algorithm F. We now restate it in less formal
and more intuitive language. First find x(t1, t2) along the line t2 = a2 by freezing the value
of t2 at a2 and regarding the partial differential equation ∂x

∂t1
= X1(x, t1, t2) as an ODE

in which t2 is just a parameter. Then, regard the PDE ∂x
∂t2

= X2(x, t1, t2) as an ODE in
which t1 is a parameter, and for each parameter value t1 in a1, b1] solve this ODE, taking
for initial value at t2 = a2 the value x(t1, a2), found in the first step.]

Remark As we saw in the lecture notes, the function x(t1, t2) produced by Algorithm
F does not necessarily satisfy 2) of (∗) except along the line t2 = a2 (where it does
by construction). On the other hand we saw that by exploiting the “equality of cross-
derivatives” principle we could develop a simple condition on the two vector fields X1

and X2 (that we called “compatiblity”) that turned out to be a necessary and sufficient
condition for Algorithm F to always produce a solution of (∗). Here is the definition:

0.3.2 Definition. Let X1 : Rn×R2 → Rn and X2 : Rn×R2 → Rn be C2 vector fields
on Rn depending on two real parameters t1 and t2. We will call X1 and X2 compatible if
the following n conditions hold identically:

∂X1
i

∂t2
+

n∑
j=1

∂X1
i

∂xj
X2

j =
∂X2

i

∂t1
+

n∑
j=1

∂X2
i

∂xj
X1

j , 1 ≤ i ≤ n.

The fact that compatibility is necessary and sufficient for the output of Algorithm F to be
a solution of the IVP (∗) for all choices of initial conditions is the content of the Frobenius
Theorem.

0.4 Fifth Matlab Project.

Your assignment for the fifth project is to implement Algorithm F in Matlab. This should
consist of an M-File, AlgorithmF.m, defining a Matlab function AlgorithmF(X1,X2,...),
together with various auxilliary M-Files that implement certain subroutines required by
the algorithm. (As usual, it is a matter of programming taste to what extent you use
subfunctions as opposed to functions defined in separate M-Files.)

Let’s consider in more detail just what the inputs and output to AlgorithmF should be.
First, the output, x, should represent the function x(t1, t2) that solves the IVP (∗). Since
we are going to get this solution by solving some ODEs numerically (using Runge-Kutta),
in Matlab x will be a two-dimensional array x(i,j) of vectors of length n,

function x = AlgorithmF(X1,X2,x0,a1,a2,b1,b2,...)

84



Math 32a Fall 2003 R. Palais

The size of the output array x will be given by two positive integers, T1Res and T2Res
that specify the number of subintervals into which we divide the intervals [a1,b1] and
[a2,b2]. Let’s define h1 := (b1 - a1)/T1Res and h2 := (b2 - a2)/T2Res. We take T1Res
+ 1 subdivision points in [a1,b1], a1 + i * h1, i = 0,1, ..., T1Res, and similarly we take
T2Res + 1 subdivision points [a2,b2], a2 + j * h2, j = 0,1, ..., T2Res, It will be convenient
to store these in arrays T1 and T2 of length T1Res + 1 and T2Res + 1 respectively. That
is, T1(i) = a1 + i * h1 and T2(i) = a2 + i * h2. Then the array x(i,j) will have size
T1Res + 1 by T2Res + 1. We will store at x(i,j) the approximate value of the solution
x(t1, t2) of (∗) at the point (T1(i),T2(j)), found by solving the ODEs we mentioned using
Runge-Kutta. So now the first line of our M-File has become:

function x = AlgorithmF(X1,X2,x0,a1,a2,b1,b2,T1Res,T2Res,...)

We need one more input parameter, namely a real number StepSize to control the accuracy
of the Runge-Kutta algorithm. StepSize is not the actual size of the steps used in the
Runge-Kutta integration, but rather an upper bound for it. When we propagate the
solution of an ODE y(t) from a value t = t0 where we already know it to a next value t =
t0 + h where we need it, we will divide h in a number N of equal steps to make h/N less
than StepSize and use that many steps in our Runge-Kutta method. (Since we will usually
settle for accuracy of about 10−8 and Runge-Kutta is fourth order, in practice we usually
take StepSize approximately 0.01). So finally the first line of our M-File has become:

function x = AlgorithmF(X1,X2,x0,a1,a2,b1,b2,T1Res,T2Res,StepSize)

The first two input parameters X1 and X2 represent the vector fields defining the system
of PDE we are dealing with. Each is a function of n + 2 variables, x1, x2,...,xn,t1,t2, In
practice the actual functions substituted for these parameters will be taken from functions
defined either in an M-File or an inline expression.

Writing and Testing the Algorithm F Code

Once you understand the above discussion well you should find it straightforward to ac-
tually write the code for AlgorithmF. Start by assigning to x(0,0) the value x0, Then, for
i = 0 to T1Res, inductively find x(i+1,0) from x(i,0) by using Runge-Kutta to solve the
ODE ∂x

∂t1 = X1(x, t1, a2) on the interval [T1(i),T1(i+1)] with initial value x(i,0) at time
t1 = T1(i). Then, in a similar manner, for each i from 0 to T1Res, and each j from 0 to
T2Res, inductively find x(i,j+1) from x(i,j) by applying Runge-Kutta to solve the ODE
∂x
∂t2 =X2(x,T1(i),t2) on the interval [T2(j),T2(j+1)] with initial value x(i,j) at time t2 =
T2(j).

After the solution array x is constructed, it should be displayed either in wireframe (using
meshgrid) or in patch mode (using surf).

Here is an “extra credit” addition to Project 5. Write an M-File defining a function to
checks whether the two vector fields X1 and X2 are compatible. I suggest that you do this
by checking numerically whether the two sides of the n compatibility conditions are equal
at the points (T1(i),T2(j)). Here, to allow for roundoff errors, “equal” should mean that
the absolute value of the difference is less than some tolerance. Use centered differences to
compute the partial derivatives. See if you can make your test of equality “scale invariant”.

85



Math 32a Fall 2003 R. Palais

This means that if it succeeds or fails for X1 and X2, it should do the same if you multiply
both X1 and X2 by the same scalar.

Algorithm F Test Case

As you probably realize by now, in order to have confidence in the correctness of computer
programs, it is important to test them carefully—and in order to test them, one needs
inputs for which the correct output is known. Since it may not be not entirely obvious
how to construct a good test case for Algorithm F, let me suggest one possibility.

Recall that the spherical polar coordinates of a point x in R3 with cartesian coordinates
(x1, x2, x3) are defined by r := ‖x‖, φ := tan−1(x2/x1) θ := cos−1(x3/r). In the other
direction, x1 = r sin(θ) cos(φ), x2 = r sin(θ) sin(φ), and z := r cos(θ).

Let’s use t1 to denote the colatitude θ and t2 to denote the longitude φ. Then we get a
parametrization of the sphere through a point x and centered at the origin, by (t1, t2) 7→
‖x‖ (sin(t1) cos(t2), sin(t1) sin(t2), cos(t1)), with 0 ≤ t1 ≤ π, and 0 ≤ t2 ≤ 2π.

If we now differentiate with respect to t1 and t2, we find that these parametrizations of
the family of spheres centered at the origin are solutions of the first order system of PDE:

∂x

∂t1
= X1(x, t1, t2),

∂x

∂t2
= X2(x, t1, t2),

where X1 and X2 are the maps R3 ×R2 → R3 given by:

X1(x, t1, t2) := ‖x‖ (cos(t1) cos(t2), cos(t1) sin(t2),− sin(t1)),

X2(x, t1, t2) := ‖x‖ (− sin(t1) sin(t2), sin(t1) cos(t2), 0).

When you have finished defining AlgorithmF and want to test it, try it with this choice of
X1 and X2, and use (0,0,r) as an initial condition at time t1 = t2 = 0. If you display the
solution x using meshgrid, you should see a sphere of radius r displayed with latitude and
longitude gridlines.

86



Math 32a Fall 2003 R. Palais

.Project 6. Fundamental Theorem of Plane Curves

This Matlab project is concerned in part with the visualization and animation of curves.
Before getting into the details of the project, I would like to make a few general remarks
on the subject of mathematical visualization that you should keep in mind while working
on this project—or for that matter when you have any programming task that involves
visualization and animation of mathematical objects.

1) How should you choose an error tolerance?

First, an important principle concerning the handling of errors in any computer graphics
context. Books on numerical analysis tell you how to estimate errors and how to keep
them below a certain tolerance, but they cannot tell you what that tolerance should be—
that must depend on how the numbers are going to be used. Beginners often assume they
should aim for the highest accuracy their programming system can provide—for example
fourteen decimal places for Matlab. But that will often be far more than is required for
the task at hand, and as you have already seen, certain algorithms may require a very long
time to attain that accuracy. The degree of one’s patience hardly seems to be the best
way to go about choosing an error tolerance.

In fact, there is often is a more rational way to choose appropriate error bounds. For
example, in financial calculations it makes no sense to compute values with an error less
than half the smallest denomination of the monetary unit involved. And when making
physical calculations, it is useless to calculate to an accuracy much greater than can be
measured with the most precise measuring instruments available. Similarly, in carpentry
there is little point to calculating the length of a board to a tolerance less than the width
of the blade that will make the cut.

This same principle governs in mathematical visualization. My approach is to choose a
tolerance that is “about half a pixel”, since any higher accuracy won’t be visible anyway.
It is usually fairly easy to estimate the size of a pixel. There are roughly 100 pixels per
inch, so for example if you are are graphing in a six inch square window, and the axes go
from minus one to one, then six hundred pixels equals two length units, so half a pixel
accuracy means a tolerance of 1

600 or roughly 0.002.

1) How should you represent a curve?

Mathematically a curve in Rn is given by a map of an interval [a, b] into Rn. We can only
represent the curve on a computer screen when n = 2 or n = 3. Let’s consider the case of
plane curves (n = 2) first. If α(t) = (x(t), y(t)) then for any N we can divide the interval
[a, b] into N equal subintervals of length h = b−a

N , namely [tk, tk+1], where tk = a + kh
and k = 0, . . . , N(−1. We associate to α and N an approximating “N -gon” αN (i.e., a
polygon with N sides) with vertices vk := (x(tk), y(tk)). It is some αN with N suitably
large) that actually gets drawn on the computer screen when we want to display α. This
reduces the actual drawing problem to that of drawing a straight line segment, and the
latter is of course built into every computer system at a very low level.

In Matlab the code for plotting the curve α, or rather the polygon α30 would be:

87



Math 32a Fall 2003 R. Palais

N = 30
h = (b-a)/N;
t = a:h:b ;
plot(x(t),y(t)), axis equal;

To plot a curve α(t) = (x(t), y(t), z(t)) in R3 is really no more difficult. In Matlab the
only change is that the last line gets replaced by:
plot3(x(t),y(t),z(t)), axis equal;

only now one has to be more careful about interpreting just what it is that one sees on the
screen in this case. The answer is that one again is seeing a certain polygon in the plane,
but now it is the projection of the polygon in R3 with vertices at vk := (x(tk), y(tk), z(tk)).
(The projection can be chosen to be either an orthographic projection in some direction
or else a perspective projection from some point.)

1) How do you create animations?

Viisualization can be a powerful tool for gaining insight into the nature of complex math-
ematical objects, and frequently those insights can be further enhanced by careful use of
animation. Remember that time is essentially another dimension, so animations allow us
to pack a lot more information onto a computer screen in a format that the human brain
can easily assimilate. The number of ways that animation can be used are far to numer-
ous to catalog here, but in addition to obvious ones, such as rotating a three dimensional
object, one should also mention ”morphing”. Mathematical objects frequently depend on
several parameters (e.g., think of the family of ellipses: x = a cos(θ), y = b sin(θ)). Mor-
phing refers to moving along a curve in the space of parameters and creating frames of an
animation as you go.

All animation techniques use the same basic technique—namely showing a succession of
“frames” on the screen in rapid succession. If the number of frames per second is fast
enough, and the change between frames is small enough, then the phenomenon of “persis-
tence of vision” creates the illusion that one is seeing a continuous process evolve. Com-
puter games have become very popular in recent years, and they depend so heavily on
high quality animation that the video hardware in personal computers has improved very
rapidly. Still, there are many different methods (and tricks) involved in creating good
animations, and rather than try to cover them here we will have some special lectures
on various animation techniques, with particular emphasis on how to implement these
techniques in Matlab.

Matlab Project # 6.

Your assignment for the sixth project is to implement the Fundamental Theorem of Plane
Curves using Matlab. That is, given a curvature function k : [0, L] → R, construct and
plot a plane curve x : [0, L] → R2 that has k as its curvature function. To make the
solution unique, take the initial point of x to be the origin and its initial tangent direction
to be the direction of the positive x-axis. You should also put in an option to plot the
evolute of the curve as well as the curve itself. Finally see if you can build an animation
that plots the osculating circle at a point that moves along the curve x. For uniformity,
name your M-File PlaneCurveFT, and let it start out:

88



Math 32a Fall 2003 R. Palais

function x = PlaneCurveFT(k,L,option)

If option is not given (i.e., nargin = 2) or if option = 0, then just plot the curve x. If
option = 1, then plot x and, after a pause, plot its evolute in red. Finally, if option =
2, then plot x and its evolute, and then animate the osculating circle (in blue) along the
curve, also drawing the radius from the center of curvature.

[To find the curve x, you first integrate k to get −→t = x′, and then integrate −→t . The
curvature, k, will be given as a Matlab function, so you can use the version of Simpson’s
Rule previously discussed for the first integration. But −→t will not be in the form of a
Matlab function that you can substitute into that version of Simpson’s Rule, so you will
need to develop a slightly modified version of Simpson’s. where the input is a matrix that
gives the values of the integrand at the nodes rather than the integrand as a function.]

89



Math 32a Fall 2003 R. Palais

.Project 7. Fundamental Theorem of Space Curves

Your assignment for the seventh Matlab project is to implement the Fundamental Theorem
of Space Curves. That is, given a (positive) curvature function k : [0, L] → R, and a torsion
function τ : [0, L] → R, construct and plot a space curve x that has k as its curvature
function and τ as its torsion function. To make the solution unique, take the initial point of
x to be the origin and its initial tangent direction to be the direction of the positive x-axis.
You should also use plot3 to plot the curve. See if you can create an animation that moves
the Frenet Frame along the curve. For uniformity, name your M-File SpaceCurveFT, and
let it start out:
function x = SpaceCurveFT(k,tau,L)

Note that a problem analagous to the one mentioned in Project # 6 will appear again
hear. To get the Frenet frame along the curve you will solve the Frenet equations, and for
this you can use the Runge-Kutta algorithm that you developed earlier. Then, to obtain
the curve x you will need to integrate its tangent vector, i.e., the first element of the Frenet
frame that you just derived, and since the tangent vector is not in the form of a Matlab
function, you will need to use the version of Simpson’s Rule developed for Project # 6
where the input is a matrix that contains the values of the integrand at the nodes.

90



Math 32a Fall 2003 R. Palais

.Project 8. Fundamental Theorem of Surfacess

This final Matlab project asks you to implement the Fundamental Theorem of Surface
Theory as a Matlab function. It is a complicated problem and to manage the complexity
successfully you will have to organize your work carefully and work slowly and deliberately.
When you have completed this project, I think you will have adequate excuse to feel proud
of both your programming skill and your comprehension of the mathematics involved.

Review of Notation and Definitions

Before stating the project we need to recall some definitions and notational conventions
that will be used. O will be the rectangle [a1, b1] × [a2, b2] in R2. A point in O will be
denoted by p or (t1, t2) in a mathematical context or (t1,t2) in a Matlab context. We
have two 2 × 2 symmetric matrix-valued functions, g and ` defined in O: g = (gij) and
` = (`ij). The matrix g should be positive definite, so in particular it is invertible and we
denote its inverse by g−1 = (gij). By Cramer’s Rule:

g−1 =
1

det(g)

(
g22 −g12
−g12 g11

)
,

i.e., g11 = g22/det(g), g22 = g11/det(g), and g12 = g21 = −g12/det(g), where det(g) is
the determinant of g, given by det(g) := g11g22− g2

12. We also have corresponding positive
definite 3× 3 symmetric matrices G and G−1 defined in O by:

G =

 g11 g12 0
g12 g22 0
0 0 1


and hence

G−1 =

 g11 g12 0
g12 g22 0
0 0 1


We also have two 3× 3 matrix-valued functions A1 and A2 defined in O by:

A1 =

 1
2 (g11)t1

1
2 (g11)t2 −`11

(g12)t1 − 1
2 (g11)t2

1
2 (g22)t1 −`12

`11 `12 0



A2 =

 1
2 (g11)t2 (g12)t2 − 1

2 (g22)t1 −`12
1
2 (g22)t1

1
2 (g22)t2 −`22

`12 `22 0


and finally, there are two further 3× 3 matrix-valued functions in O, P k := G−1Ak.

91



Math 32a Fall 2003 R. Palais

The Gauss-Codazzi Equations

If gij and `ij are the coefficients of the First and Second Fundamental Forms of a surface
F : O → R3, then the matrix-valued functions P 1 and P 2 defined in O as above satisfy
the matrix identity

P 1
t2 − P 2

t1 = P 1P 2 − P 2P 1

called the Gauss-Codazzi Equations.

Statement of the Project

The primary Matlab M-File should be called SurfaceFT.m and should start out:

function F = SurfaceFT(g11,g12,g22,l11,l12,l22,a1,b1,a2,b2,T1Res,T2Res)

where I :=
∑

ij gij(t1,t2) dti dtj and II :=
∑

ij lij(t1,t2) dti dtj are quadratic
forms in O, and the function F : O → R3 returned is supposed to be the surface having I
and II as its First and Second Fundamental Forms. For this surface to exist, we know from
the Fundamental Theorem that it is necessary and sufficient that I be positive definite and
that the Gauss-Codazzi equations be satisfied.

Of course the heavy lifting of the SurfaceFT will be done by AlgorithmF (i.e., the solution
of the Frobenius Problem) which you will apply to integrate the frame equations in order
to get the frame field f—after which you must apply AlgorithmF a second time to get the
surface F from f1 and f2.

But to carry out the first application of AlgorithmF, you must first compute the matrices
P 1 = G−1A1 and P 2 = G−1A2 that define the right hand sides of the two frame equations.
Recall that G−1 is the inverse of the 3× 3 matrix

G =

 g11(t1,t2) g12(t1,t2) 0
g12(t1,t2) g22(t1,t2) 0

0 0 1


and so it can be easily computed from the gij(t1,t2) by using Cramer’s Rule, while the
two 3× 3 matrices A1 and A2 are given explicitly (see above) in terms of the g11(t1,t2)
and their partial derivatives with respect to the ti . (Of course, once you have both
G−1 and Ai, you get P i as their matrix product.)

In order to be able to compute the Ai, you will first need to define some auxilliary functions.
Most of them can probably be subfunctions defined in the same file, though some could
be separate M-Files. For example you will want to have a function called g(t1,t2) that

returns a 2 × 2 matrix
(
g11(t1,t2) g12(t1,t2)
g12(t1,t2) g22(t1,t2)

)
and another called l(t1,t2) that

returns a 2 × 2 matrix
(
l11(t1,t2) l12(t1,t2)
l12(t1,t2) l22(t1,t2)

)
. You will then want to create the

functions G(t1,t2) and invG(t2,t2) that return the 3× 3 matrices G and G−1.

There is another complication before you can define the Matlab functions A1 and A2 that
represent A1 and A2. You not only need the functions gij(t1,t2) but also their first
partial derivatives with respect to the variables t1 and t2. I recommend that along with

92



Math 32a Fall 2003 R. Palais

the function g(t1,t2) you also define two more functions g t1(t1,t2) and g t2(t1,t2)
that return 2×2 matrices whose entries are the partial derivatives of the gij(t1,t2) with
respect to t1 and t2 respectively. As usual you can compute these partial derivatives using
symmetric differencing—you don’t need to do it symbolically.

You should define a Matlab function GaussCodazziCheck that will check whether or not
the Gauss-Codazzi Equations are satisfied. Once you have defined the two 3 × 3 matrix-
valued functions P 1 and P 2, it will be easy to write GaussCodazziCheck, since the Gauss-
Codazzi equations are just P 1

t2 − P 2
t1 = P 1P 2 − P 2P 1. The idea is to check the identities

numerically, matrix element by matrix element, at a sufficiently dense set of points, again
using symmetric differencing to compute the derivatives.

Of course, when you are all done you will need some good test cases on which to try out
you algorithm. We will discuss this elsewhere.

GOOD LUCK, AND HAVE FUN!

93



Math 32a Fall 2003 R. Palais

Appendix II

Homework and Exams



Math 32a Fall 2003 R. Palais

First Assignment
. Problem 1. When I want to see an initial explanation of something, I have for some
time now used Google to do a search and then I read a few of the top-rated items that look
promising. What I have found surprising is that this seems to be quite successful even for
fairly abstract mathematical subjects.

In the second lecture I plan to explain something called Felix Klein’s Erlanger program.
Use Google to try to get some idea what this is about, and after I talk about it in class,
tell me if you think reading about it in advance this way helped you or not.

You should do the next few exercises before the third lecture. They are designed for me
to get some feedback from you on whether you find it easy to learn a topic by carrying
out a short series of exercises. Please try to work through the following definitions and
exercises and we will discuss in class whether you feel this is a good method for you to
learn something.

We start with a definition.

Definition Let X be a set. A real-valued function ρ on X × X is called a metric or
distance function for X if it satisfies the following three properties:

a) Symmetry: ρ(x, y) = ρ(y, x) for all x and y in X.

b) Positivity: ρ(x, y) ≥ 0, with equality if and only if x = y.

c) Triangle inequality ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z in X.

By a metric space we mean a set X together with some fixed metric for X. (We will usually
denote this metric by ρ

X
, but if in a certain context there is no danger of confusion, we

will often use just ρ.)

Example 1. Take X to be R, the real numbers, and define ρ(x, y) = |x− y|.

Example 2. More generally, take X to be Rn, and define ρ(x, y) = ‖x− y‖.

Example 3. Take X to be the sphere S2, and define ρ(x, y) to be the length of the
shorter of the segments of great circles joining x to y.

. Problem 2. Suppose {pn} is a sequence in the metric space X and p ∈ X. Give a
definition for what it means for the sequence {pn} to converge to p. (Hint: A seqence
{xn} of real numbers converges to a real number x if and only if limn→∞ |xn − x| = 0.)
We usually write either pn → p or limn→∞ pn = p to denote that {pn} converges to p.
Show that if pn → p and pn → q then p = q, i.e., limits of sequences are unique. (Hint
ρ(p, q) ≤ ρ(pn, p) + ρ(pn, q).)

Now suppose that X and Y are two metric spaces and that f : X → Y is a function
mapping X into Y . We say that f is a continuous function if whenever a sequence {xn}
in X converges to some limit x in X, it follows that the sequence {f(xn)} in Y converges
to f(x).

Definition Let X and Y be metric spaces and f : X → Y a function from X into Y . If
K is a positive real number, we say that f satisfies a Lipschitz condition with constant K

95



Math 32a Fall 2003 R. Palais

if ρ
Y
(f(x1), f(x2)) ≤ Kρ

X
(x1, x2) for all x1 and x2 in X, and we say that f is a Lipschitz

function if it satisfies a Lipschitz condition with some constant K.

. Problem 3. Show that every Lipschitz function is continuous.

Definition A contraction mapping of a metric space X is a function that maps X into
itself and that satisfies a Lipschitz condition with constant K < 1.

. Problem 4. Let X be a metric space and f : X → X a contraction mapping with
Lipschitz constant K < 1. Prove the “Fundamental Inequality for Contraction Mappings”:

ρ(x, y) ≤ 1
1−K

(
ρ(x, f(x)) + ρ(y, f(y))

)
holds for all x,y in X. (Hint: This is VERY easy if you apply the triangle inequality in
the right way. But where does K < 1 come in?)

96



Math 32a Fall 2003 R. Palais

Second Assignment Due Friday, Sept.12, 2003

Some exercises on linear transformations and matrices.

. Problem 1. Let v1, . . . , vn be a basis for a vector space V and let S and T be two
linear operators on V . If the matrices of S and T relative to this basis are respectively
Sij and Tij , then show that the matrix elements of the composed linear operator ST are
given by (ST )ij =

∑n
k=1 SikTkj , and that the matrix elements of the sum operator S + T

are given by (S + T )ij = Sij + Tij .

In what follows, Pn denotes the space of polynomials functions a0+a1x+a2x
2+ . . .+anx

n

of degree ≤ n. Clearly Pn is a vector space of dimension n + 1 and 1, x, x2, . . . , xn is a
basis for Pn (called the standard basis).

. Problem 2. Differentiation defines an operator D on Pn, and of course Dk denotes
the k-th derivative operator.

a) What is the matrix of D in the standard basis?

b) What is the kernel of Dk?

c) What is the image of Dk?

. Problem 3. Define an inner-product on Pn by 〈P1, P2〉 =
∫ 1

−1
P1(x)P2(x) dx, and note

that the standard basis is not orthonormal (or even orthogonal). Let us define orthonormal
polynomials Lk(x) by applying the Gram-Schmidt Algorithm to the standard basis. (The
Lk are usually called the normalized Legendre Polynomials.) Compute L0, L1, and L2.

97



Math 32a Fall 2003 R. Palais

Third Assignment Due Friday, Sept.26, 2003

Here are a few exercises concerning adjoints of linear maps. We recall that if V and W are
inner-product spaces and T : V →W is a linear map then there is a uniquely determined
map T ∗ : W → V , called the adjoint of T , satisfying 〈Tv,w〉 = 〈v, T ∗w〉 for all v ∈ V and
w ∈W .

. Problem 1. Show that (T ∗)∗ = T .

. Problem 2. Recall that if Tij is an m × n matrix (i.e., m rows and n columns) and
Sji an n×m matrix, then Sji is called the transpose of Tij if Tij = Sji for 1 ≤ i ≤ m,
1 ≤ j ≤ n. Show that if we choose orthonormal bases for V and W , then the matrix of T ∗

relative to these bases is the transpose of the matrix of T relative to the same bases.

. Problem 3. Show that ker(T ) and im(T ∗) are orthogonal complements in V , and
similarly, im(T ) and ker(T ∗) are each other’s orthogonal complements in W . (Note that
by Exercise 1, you only have to prove one of these.)

. Problem 4. Show that a linear operator T on V is in the orthogonal group O(V ) if
and only if TT ∗ = I (where I denotes the identity map of V ) or equivalently, if and only
if T ∗ = T−1.

If T : V → V is a linear operator on V , then T ∗ is also a linear operator on V , so it makes
sense to compare them and in particular ask if they are equal.

Definition. A linear operator on an inner-product space V is called self-adjoint if T ∗ = T ,
i.e., if 〈Tv1, v2〉 = 〈v1, T v2〉 for all v1, v2 ∈ V .

Note that by Exercise 3 above, self-adjoint operators are characterized by the fact that
their matrices with respect to an orthonormal basis are symmetric.

. Problem 5. Show that if W is a linear subspace of the inner-product space V , then
the orthogonal projection P of V on W is a self-adjoint operator on V .

Definition. If T is a linear operator on V , then a linear subspace U ⊆ V is called a
T -invariant subspace if T (U) ⊆ U , i.e., if u ∈ U implies Tu ∈ U .

Remark. Note that if U is a T -invariant subspace of V , then T can be regarded as a
linear operator on U by restriction, and clearly if T is self-adjoint, so is its restriction.

. Problem 6. Show that if T : V → V is a self-adjoint operator, and U ⊆ V is a
T -invariant subspace of V , the U⊥ is also a T -invariant subspace of V .

We next recall for convenience the definitions relating to eigenvalues and eigenvectors. We
assume that T is a linear operator on V .

If λ is a real number, then we define the linear subspace Eλ(T ) of V to be the set of
v ∈ V such that Tv = λv. In other words, if I denotes the identity map of V , then
Eλ(T ) = ker(T − λI). Of course the zero vector is always in Eλ(T ) . If Eλ(T ) contains
a non-zero vector, then we say that λ is an eigenvalue of T and that Eλ(T ) is the λ-
eigenspace of T . A non-zero vector in Eλ(T ) is called an eigenvector of T belonging to the

98



Math 32a Fall 2003 R. Palais

eigenvector λ. The set of all eigenvalues of T is called the spectrum of T (the name comes
from quantum mechanics) and it is denoted by Spec(T ).

. Problem 7. Show that a linear operator T on V has a diagonal matrix in a particular
basis for V if and only if each element of the basis is an eienvector of T , and that then
Spec(T ) consists of the diagonal elements of the matrix.

. Problem 8. If T is a self-adjoint linear operator on an inner-product space V and
λ1, λ2 are distinct real numbers, show that Eλ1(T ) and Eλ2(T ) are orthogonal subspaces
of V . In other words, eigenvectors of T that belong to different eigenvalues are orthogonal.
(Hint: Let vi ∈ Eλi

(T ), i = 1, 2. You must show that 〈v1, v2〉 = 0. Start with the fact that
〈Tv1, v2〉 = 〈v1, T v2〉.)

99



Math 32a Fall 2003 R. Palais

Fourth Assignment Due Tuesday, Oct. 6, 2003

. Problem 1. Let X be a metric space. Recall that a subset of X is called open if
whenever it contains a point x it also contains all points “sufficiently close” to x, and that
a subset F of X is called closed if whenever a sequence in F converges to a point p of X
it follows that p ∈ F . Show that a set is open if and only if its complement is closed.

. Problem 2. Let X and Y be metric spaces, f : X → Y continuous, and A an open
(resp. closed) subset of Y . Show that f−1(A) is open (resp. closed) in X. Deduce from
this that the unit sphere, S(V ), in an inner-product space V is a closed and hence compact
subset of V .

. Problem 3. Recall that a subset K of a metric space X is called compact if every se-
quence in K has a subsequence that converges to some point of K (the Bolzano-Weierstrass
property), Show that if f : X → R is continuous real-valued function on X then f must
be bounded on any compact subset K of X and in fact there is a point p of K where f
assumes its maximum value. (Hint # 1: If it were not bounded above on K, then there
would be a sequence kn ∈ K such that f(kn) > n. Hint #2: Choose a sequence kn ∈ K
so that f(kn) converges to the least upper bound of the values of f on K.)

. Problem 4. Prove the so-called Chain Rule.

Chain Rule. Let U, V,W be inner-product spaces, Ω an open set of U and O and open
set of V . Suppose that G : Ω → V is differentiable at ω ∈ Ω and that F : O → W
is differentiable at p = G(ω) ∈ O. Then F ◦ G is differentiable at ω and D(F ◦ G)ω =
DFp ◦DGω.

. Problem 5. Let f : Rn → Rm be a function from Rn to Rm. We use the usual
conventions, so that if x = (x1, . . . , xn) ∈ Rn then its image point f(x) has the m compo-
nents (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)). Show that if f is differentiable at a point p of
Rn then the matrix of the differential, Dfp, with respect to the standard bases of Rn and
Rm, is just the so-called “Jacobian matrix” at p, namely the matrix of partial derivatives
∂fi

∂xj
(p).

. Problem 6. Let σ : (a, b) → V and γ : (a, b) → V be differentiable curves in an inner-
product space V . Show that d

dt 〈σ(t), γ(t)〉 = 〈σ′(t), γ(t)〉+ 〈σ(t), γ′(t)〉, and in particular
d
dt ‖σ(t)‖2 = 2 〈σ(t), σ′(t)〉. Deduce that if σ : (a, b) → V has its image in S(V ), i.e., if
‖σ(t)‖ is identically one, then σ(t) and σ′(t) are orthogonal for ll t.

100



Math 32a Fall 2003 R. Palais

Midterm Exam Due Friday, October 24, 2003

Part I: Successive Approximation
If X is any set and f : X → X a mapping of X to itself, then for each positive integer n we
define a mapping f

(n)
X → X by composing f with itself n times. That is, f

(1)
(x) = f(x),

f
(2)

(x) = f(f(x)), f
(3)

(x) = f(f(f(x))), etc. To be more formal, we define the sequence
f

(n)
inductively by: f

(1)
:= f and f

(n+1)
:= f ◦ f (n)

.

. Problem 1. Show that f
(n) ◦ f (k)

= f
(n+k)

.

. Problem 2. Let X be a metric space and suppose that f satisfies a Lipschitz condition
with constant K. (Recall this means that ρ(f(x1), f(x2)) ≤ Kρ(x1, x2) for all x1, x2 ∈ X.)
Show that f

(n)
satisfies a Lipschitz condition with constant Kn.

In what follows, we suppose that X is a metric space and that f : X → X is a contraction
mapping, i.e., we assume that f satisfies a Lipschitz condition with constant K < 1. (We
refer to K as a contraction constant for f .) We recall that in an earlier assignment you
proved the so-called Fundamental Inequality For Contraction Mappings, namely, for all
x1, x2 ∈ X,

ρ(x1, x2) ≤
1

1−K

(
ρ(x1, f(x1)) + ρ(x2, f(x2)

)
.

. Problem 3. Show that a contraction mapping f : X → X can have at most one fixed
point, i.e., there is at most one point x ∈ X such that f(x) = x.

. Problem 4. Show that if f : X → X is a contraction mapping with contraction
constant K and if x is any point of X then

ρ(f
(n)

(x), f
(m)

(x)) ≤

(
Kn +Km

1−K

)
ρ(x, f(x)),

and deduce that f
(n)

(x) is a Cauchy sequence.

. Problem 5. Now prove:

Banach Contraction Principle. If X is a complete metric space and f : X → X is a
contraction mapping, then f has a unique fixed point p and if x is any point of X then

the sequence {f (n)
(x)} converges to p.

Important Caveat! In applications, X is frequently a closed subset of a Banach space
V (hence complete) and f is some mapping from X into V for which one can prove that
f satisfies a Lipschitz condition with constant K < 1. But that is not enough! One
must also prove that f maps X into itself in order to apply the Contraction Principle.

. Problem 6. Show that if f : X → X is a contraction mapping and p is the unique
fixed point of f , then for any x in X, ρ(f

(n)
(x), p) ≤

(
Kn

1−K

)
ρ(x, f(x))

101



Math 32a Fall 2003 R. Palais

Remark. The sequence {f (n)
(x)} is usually referred to as the sequence of iterates of x

under f , and the process of locating the fixed point p of a contraction mapping f by
taking the limit of a sequence of iterates of f goes by the name “the method of successive
approximations”. To make this into a rigorous algorithm, we must have a “stopping
rule”. That is, since we cannot keep iterating f forever, we must know when to stop.
One rather rough approach is to keep on iterating until successive iterates are “close
enough”, but a better method is provided by the previous problem. Suppose we decide
to be satisfied with the approximation f

(n)
(x) if we can be sure that ρ(f

(n)
(x), p) ≤ ε

where ε is some “tolerance” given in advance. We first compute f(x), then ρ(f(x), x), and
then solve

(
Kn

1−K

)
ρ(x, f(x)) = ε for n and iterate n− 1 more times to get our acceptable

approximation f
(n)

(x) to p.

. Problem 7. Solve
(

Kn

1−K

)
ρ(x, f(x)) = ε for n in terms of ε, K, and ρ(x, f(x)).

. Problem 8. Carry out the following (third) Matlab Project. (Make a printout of your
version of the M-File and submit it with the exam, but also send an electronic version to
Izi and me as an email attachment.)

Third Matlab Project.

Write an Matlab M-file that implements the Successive Approximations algorithm. Name it
SuccessiveApprox.m, and use it to define a Matlab function SuccessiveApprox(f,K, x, eps).
Assume that f : Rn → Rn is known to be a contraction mapping with contraction constant
K, that x ∈ Rn, and you want to compute iterates of x until you are within eps of the
fixed point p of f . Use a subfunction to compute the number of times n you need to iterate
f starting from x to get within eps of p, and then use a loop and feval to iterate applying
f to x the appropriate number of times.

Part II: Inverse Function Theorems
I don’t think you will need any convincing that “solving equations” is an essential math-

ematical activity. For us, solving an equation will mean that we have normed spaces V and
W , a map f from a subset X of V into W , and given y ∈ W we would like to find (some
or all) x ∈ X such that f(x) = y. In practice, what frequently happens is that we start
with an x0 and y0 satisfying f(x0) = y0, and given y close to y0 we would like to find the
x close to x0 that satisfy f(x) = y. A so-called “inverse function theorem” is a theorem to
the effect that, under certain assumptions on f , for each y in some neighborhood U of y0,
there is a unique x = g(y) near x0 that solves f(x) = y. In this case g is called the local
inverse for f near x0. Perhaps the mother of all inverse function theorems is the Lipschitz
Inverse Function Theorem, which we state below after reviewing some standard notation.

Notation. In the following, I denotes the identity mapping of the space V , so F0 = I − f
means the mapping F0(x) = x− f(x) and more generally for any y in V , Fy := I − f + y
means the map Fy(x) := x − f(x) + y. Also we denote the closed ball of radius ε in V
centered at v0 by B̄ε(v0, V ) := {v ∈ V | ‖v − v0‖ ≤ ε}.

Lipschitz Inverse Function Theorem. Let V be a Banach space and f : O → V a

102



Math 32a Fall 2003 R. Palais

map of a neighborhood of the origin into V such that f(0) = 0, and suppose also that
F0 := I − f satisfies a Lipschitz condition with Lipschitz constant K < 1. Then:

1) f satisfies a Lipschitz condition with constant 1 +K.
2) For r > 0 small enough that, B̄r(0, V ) ⊆ O, the map Fy := I − f + y is a contraction

mapping of B̄r(0, V ), provided y in B̄(1−K)r(0, V ).
3) For each y in B̄(1−K)r(0, V ), there is a unique x = g(y) in B̄r(0, V ) such that f(x) = y.
4) This inverse map g : B̄(1−K)r(0, V ) → V satisfies a Lipschitz condition with Lipschitz

constant 1
1−K .

Some general hints for the following problems, The next problems will lead you
through the proof of the Lipschitz Inverse Function Theorem, and the following hints may
be of some help. But first try to do the problems without looking at the hints. (You quite
possibly will think of some or all of them on your own anyway.)

a) Note that (since the “y”s cancel) Fy(v1) − Fy(v2) = F0(v1) − F0(v2), so any Lipschitz
condition satisfied by one of the Fy is also satisfied by all the others.

b) If you write out what it means to say that F0 satisfies a Lipschitz condition with constant
K (and rearrange terms a bit) you will find ‖(f(v1)− f(v2)− (v1 − v2)‖ ≤ K ‖v1 − v2‖.

c) What does it mean for x to be a fixed point of Fy?
d) You are probably used to thinking of the triangle inequality in the form ‖x+ y‖ ≤

‖x‖+‖y‖, but if you replace x by x−y you end up with ‖x‖ ≤ ‖x− y‖+‖y‖, and quite
often it is this second form of the triangle inequality that is easier to apply.

. Problem 9. Prove conclusion 1) of the Lipschitz Inverse Function Theorem.

. Problem 10. Prove conclusion 2) of the Lipschitz Inverse Function Theorem. (Hint:
The only slightly tricky part is showing that Fy maps B̄r(0, V ) to itself provided ‖y‖ ≤
(1 − K)r, i.e., that for such y, if ‖x‖ ≤ r, then also ‖Fy(x)‖ ≤ r. See the “Important
Caveat!” immediately after the statement of the Banch Contraction Principle.)

. Problem 11. Prove conclusion 3) of the Lipschitz Inverse Function Theorem. (Hint:
You may want to look at general hint c) for this.)

. Problem 12. Prove conclusion 4) of the Lipschitz Inverse Function Theorem.

Remark. The principle application of the Lipschitz Inverse Function Theorem is as a
lemma to prove the (far more important) Differentiable Inverse Function Theorem. We
consider this next.

More Notation. If V and W are normed spaces, then we denote by L(V,W ) the space
of all continuous linear maps T : V → W . (If V and W finite dimensional, then every
linear map T : V → W is automatically continuous, so this is consistent with our earlier
use of L(V,W ).) We saw that there was a natural choice of norm for L(V,W ), namely
|||T ||| := sup‖v‖=1 ‖Tv‖, or equivalently, |||T ||| := sup‖v‖6=0

‖Tv‖
‖v‖ . We also saw that

|||T ||| was the smallest Lipschitz constant for T . If O is open in V and F : O → W
is differentiable at every point of O, then we have a map DF : O → L(V,W ) called the
differential of F , namely p 7→ DFp, and we say that F is C1 (or continuously differentiable)
in O if this mapping is continuous. We recall also that if O is convex and if |||DFp ||| ≤ K
for all p ∈ O then we showed that K was a Lipschitz constant for F .

103



Math 32a Fall 2003 R. Palais

. Problem 13. Assume that F : O →W is C1, p0 ∈ O and K > |||DFp0 |||. Show that
there is a neighborhood U of p0 such that K is a Lipschitz constant for f restricted to U .

Differentiable Inverse Function Theorem (1st Case). Let V be a Banach space
and f : O → V a C1 map of a neighborhood of the origin into V such that f(0) = 0 and
Df0 = I, the identity map of V . If ε > 0 is sufficiently small, then there is an r > 0 and a
unique “inverse” map g : Br(0, V ) → Bε(0, V ) such that f(g(v)) = v for all v in Br(0, V ).
Moreover g is differentiable at the origin and Dg0 = I.

. Problem 14. Prove the 1st case of the Differentiable Inverse Function Theorem.
Hint: First show that if ε is sufficiently small then I−f satisfies a Lipschitz condition with
constant 1

2 in Bε(0, V ) and apply the Lipschitz Inverse Function Theorem.

Remark. The only hard part of this problem is showing that Dg0 = I. But don’t worry
if you cannot prove that—it’s an “extra credit” problem.

Differentiable Inverse Function Theorem (2nd Case). Let V and W be Banach
spaces and F : O → W a C1 map of a neighborhood of the origin of V into W such that
f(0) = 0 and DF0 has a continuous linear inverse. If ε > 0 is sufficiently small, then there
is an r > 0 and a unique “inverse” map G : Br(0,W ) → Bε(0, V ) such that F (G(w)) = w
for all w in Br(0,W ). Moreover G is differentiable at the origin of W and DG0 = (DF0)−1.

. Problem 15. Prove the 2nd case of the Differentiable Inverse Function Theorem.
Hint: Prove this by reducing it to the 1st case of the Differentiable Inverse Function
Theorem. Namely, define f : O → V by f := (DF0)−1 ◦ F , and carry on from there.

And finally, the following general case of the Differentiable Inverse Function Theorem
follows from the “2nd Case” simply by replacing F (v) by F (v + v0)− F (v0) !

Differentiable Inverse Function Theorem. Let V and W be Banach spaces, v0 ∈ V ,
and F : O → W a C1 map of a neighborhood of v0 in V into W such that DFv0 has
a continuous linear inverse. If ε > 0 is sufficiently small, then there is an r > 0 and a
unique “inverse” map G : Br(F (v0),W ) → Bε(x0, V ) such that F (G(w)) = w for all w in
Bε(0,W ). Moreover G is also C1, and in fact, if v = G(w) then DGw = (DFv)−1.

104



Math 32a Fall 2003 R. Palais

Fifth Assignment Due Friday, Nov. 21, 2003

. Problem 1. Show that if α(t) = (x(t), y(t)) is a plane parameterized curve (not
necessarily parameterized by arclength) then its curvature at α(t) is given by the formula:

x′(t)y′′(t)− y′(t)x′′(t)(
x′(t)2 + y′(t)2

) 3
2

.

Consider the semicircle of radius r as the graph of y =
√
r2 − x2, i.e., parameterized by

x(t) = t, y(t) =
√
r2 − t2 with −r < t < r. Use the above formula to show that its

curvature is 1
r .

. Problem 2. Show that if the torsion function τ of a space curve is identically zero
then the curve lies in a plane.

. Problem 3. Compute the curvature and torsion of the Helix:

α(t) := (r cos(t), r sin(t), bt)

.

. Problem 4. Show that the “triple vector product” (u×v)×w is given by the formula

(u× v)× w = (u · w)v − (v · w)u.

Definition Let V be a real vector space. A real-valued function B : V × V → R is called
a bilinear form on V if it is linear in each variable separately (i.e., when the other variable
is held fixed). The bilinear form B is called symmetric ( respectively skew-symmetric) if
B(v1, v2) = B(v2, v1) (respectively B(v1, v2) = −B(v2, v1)) for all v1, v2 ∈ V .

. Problem 5. Show that every bilinear form on a vector space can be decomposed
uniquely into the sum of a symmetric and a skew-symmetric bilinear form.

Definition A real-valued function Q on a vector space V is called a quadratic form if it
can be written in the form Q(v) = B(v, v) for some symmetric bilinear form B on V . (We
say that Q is determined by B. )

. Problem 6. (Polarization Again.) Show that if Q is a quadratic form on V then the
bilinear form B on V such that Q(v) = B(v, v) is uniquely determined by the identity
B(v1, v2) = 1

2 (Q(v1 + v2)−Q(v1)−Q(v2)).

Remark. Suppose that V is an inner-product space. Then the inner product is of course
a bilinear form on V and the quadratic form it determines is just Q(v) = ‖v‖2. More
generally, if A : V → V is any linear operator on V , then BA(v1, v2) = 〈Av1, v2〉 is a
bilinear form on V and BA is symmetric (respectively, skew-symmetric) if and only if A is
self-adjoint (respectively, skew-adjoint).

105



Math 32a Fall 2003 R. Palais

. Problem 7. Show that any bilinear form on a finite dimensional inner-product space
is of the form BA for a unique choice of linear operator A on V . (Hint. Recall the
isomorphism of V with its dual space V ∗ given by the inner-product.)

106



Math 32a Fall 2003 R. Palais

Final Exam Due Friday, December 5, 2003

. Problem 1. Recall that if f : O → R is a real-valued function we get a parametric
surface F : O → R3, called the graph of f , by F(t1, t2) := (t1, t2, f(t1, t2)).

Show that the First Fundamental Form coefficients are:

g11 = 1 + f2
t1 , g12 = ft1ft2 , g22 = 1 + f2

t2 ,

and that the Second Fundamental Form coefficients are:

`11 =
ft1t1√

1 + f2
t1 + f2

t2

, `12 =
ft1t2√

1 + f2
t1 + f2

t2

, `22 =
ft2t2√

1 + f2
t1 + f2

t2

.

. Problem 2. Let t 7→ α(t) = (x(s), z(s)) be a curve parametrized by arclength lying
in the x, z-plane and not meeting the z-axis—i.e., x(s) > 0 for all s in the domain (a, b) of
α, and let O = (0, 2π)× (a, b). The surface of revolution defined by α is the parametrized
surface F : O → R3, defined by F(t1, t2) := (x(t2) cos(t1), x(t2) sin(t1), z(t2)). Show that
the First Fundamental Form coefficients are:

g11 = x(t2)2, g12 = 0, g22 = 1,

and that the Second Fundamental Form coefficients are:

`11 = −x(t2)z′(t2), `12 = 0, `22 = x′′(t2)z′(t2)− x′(t2)z′′(t2).

Show also that the principle curvatures are

x′′(t2)z′(t2)− x′(t2)z′′(t2) and − z′(t2)
x(t2)

,

(so the Gaussian curvature is K = − x′′(t2)z
′(t2)

2−x′(t2)z
′(t2)z

′′(t2)
x(t2)

= − x′′(t2)
x(t2)

).

. Problem 3. Let q : R2 → R be a C2 function and define symmetric 2 × 2 matrix
-valued functions g and ` on R2 by:

g11 = cos2(q), g12 = 0, g22 = sin2(q),

and:
`11 = −`22 = sin(q) cos(q), `12 = 0.

a) Derive explicit expressions in terms of q for the 3× 3 matrices P 1, P 2, and also for their
commutator [P 1, P 2] := P 1P 2 − P 2P 1 .

b) Prove that the Gauss-Codazzi equation

(P 1)t2 − (P 2)t1 = [P 1, P 2]

107



Math 32a Fall 2003 R. Palais

is satisfied if and only if q satisfies the so-called sine-Gordon equation (SGE)

qt1t1 − qt2t2 = sin q cos q.

(Hint: Check the the Gauss-Codazzi equation entry by entry. This gives 9 equations,
most of which are automatically satisfied just because g12 and `12 vanish, and the rest
reduce to SGE.

c) Now we know that if q satisfies the SGE, then, by the Fundamental Theorem of Sur-
faces, there exists a surface in R3, unique up to rigid motion with First and Second
Fundamental Forms respectively:

cos2 q dt21 + sin2 q dt22, and sin q cos q (dt21 − dt22).

Use the formula K = det(`ij)
det(gij)

to prove that the Gaussian curvature of this surface has
the constant value −1.

Note that if we find solutions q of the SGE, then gij , `ij given in Problem 3 satisfy the
Gauss-Codazzi equation, so your program can draw the corresponding K = −1 surfaces.
The next two Exercises give two family of examples of solutions of the SGE.

. Problem 4. Let a be a non-zero constant, and

q(t1, t2) = 2 arctan C(t1, t2),

where

C(t1, t2) = exp
(

1
2
(a+ a−1)t1 +

1
2
(a− a−1)t2

)
.

(i) Prove that cos q = 1−C2

1+C2 and sin q = 2C
1+C2 . (Hint: by definition of q, tan q

2 = C).

(ii) Prove that q satisfies the SGE.

(iii) Use your program to prove that for the case when a = 0.2, 0.4, 0.6, 0.8 and 1

g11 = cos2 q =
(

1− C2

1 + C2

)2

, g22 = sin2 q =
(

2C
1 + C2

)2

, g12 = 0,

and

`11 = −`22 = sin q cos q =
2C(1− C2)
(1 + C2)2

, `12 = 0

satisfy the Gauss-Codazzi equation, and draw the corresponding surfaces. (Note that all
these surfaces are of curvature −1, and when a = 1 you should get the pseudosphere and
for a 6= 1 you get a family of Dini surfaces),

108



Math 32a Fall 2003 R. Palais

. Problem 5. Let 0 < α < 1, and let

B(t1, t2) =
√

1− α2 sin(α t2)
α cosh(

√
1− α2 t1)

,

q(t1, t2) = 2 arctanB(t1, t2),

and

g11 = cos2 q =
(

1−B2

1 +B2

)2

, g22 = sin2 q =
(

2B
1 +B2

)2

, g12 = 0,

`11 = −`22 = sin q cos q =
2B(1−B2)
(1 +B2)2

, `12 = 0.

By direct calculation you can check that,

qt1t1 − qt2t2 =
2B(1−B2)
(1 +B2)2

= sin q cos q,

i.e., q satisfies the SGE. So gij and `ij should give a surface with K = −1 for each constant
0 < α < 1, and in this exercise, we ask you to use your program to check the Gauss-Codazzi
equation numerically and then draw the corresponding surfaces: Use your program to check
that the above gij , `ij satisfy the Gauss-Codazzi equation when the constant α = 0.4, 0.6
and 0.8, and draw the corresponding surface. (Note that B(t1, t2) is periodic in t2, so to get
beautiful picture you should draw your surface with domain t2 ∈ [0, 2π

α ] and t1 ∈ [−2, 2].
Also you can do some experiments to see what happen if you change α to other rational
numbers between 0 and 1).

109



Math 32a Fall 2003 R. Palais

Appendix III

Matlab Notes



Math 32a Fall 2003 R. Palais

% Math 32a Fall 2003 Richard Palais Brandeis Univ.

%

% First Steps---An Introduction to Matlab Programming.

% In the following I assume that you already know how

% to start up Matlab and that you know how to add

% directories (= folders) to the Matlab search path.

% The idea is to get a feeling for the Matlab syntax,

% and a feeling for how to create certain data

% structures and manipulate them. What I suggest is that

% you go through the topics one by one, first reading the

% notes, and then entering the commands in the Matlab

% Command Window and make sure you understand why you

% get the responses that you do.

% HELP and TUTORIALS

help % gives topics and functions for which help is available

help <topic> e.g., help plot

helpwin % opens a help browser window

helpdesk % A hypertext browser for Matlab documentation

lookfor <topic> e.g. lookfor cos

% which <function-name> % gives full path to function M-File.

demo % stsrts a Matlab demo

% CALCULATOR

2 + 2

2 + 2;

ans*ans

111



Math 32a Fall 2003 R. Palais

a=2;

b=3;

c=a+b

% COMPLEX NUMBERS

a = 1 + 2i

b = 3 - 1i

c = a + b

% VECTORS AND THE COLON AND LINSPACE NOTATION

a= [1 1 2 3.5 pi]

b = 1:5

c = a + b

1:0.1:2 % Creates a row vector with entries 1 1.1 1.2 ... 1.9 2

% ANOTHER WAY IS linspace(FIRST,LAST, NUMBER)

linspace(1,2,10) % Gives a row vector with 10 equi-spaces elements from
1 to 2.

% WHOOPS!

linspace(1,2,11) % Gives a row vector with 11 equi-spaces elements from
1 to 2.

% MATRICES

% Explicit manual entering. [a b c...;d e f...; ...]

% OR [a,b,c...;d,e,f...;...]

% each element entered should either be a constant or an initialized variable.

% entering a semi-colon starts a new row.

% elements in each row can be separated either by spaces or commas.

A = [1 2 3 4; 5 6 7 8; 9 10 11 12]

size(A) % returns (r,c) where r is # of rows of A and c = # of columns

size(A,1) % returns r

size(A,2) % returns c

112



Math 32a Fall 2003 R. Palais

% BRANCHING

% if <condition> <statement>, <statement>, ... end

% or (better formatting)

% if <condition>

% <statement>

% <statement>

% ...

% end

% Notice that if you enter several Matlab commands on a single line,

% then they should be separated by either commas or (to supress output)

% semi-colons.

if (j ~= 0)

k = 1/j

end

% the following defines the signum of x, i.e., +1, 0, or -1 depending on
whether

% x is positive, zero, or negative.

if (x > 0)

sgnum = 1

elseif (x == 0) % NOTE! == tests for equality. A single = is assignment.

signum = 0

else

signum = -1

end

% ITERATION USING FOR LOOPS

for i = 1:5 i*i, end

%

sum = 0;

113



Math 32a Fall 2003 R. Palais

for i = 1:5 sum = sum + i*i, end

%

sum = 0;

for i = 1:5 sum = sum + i*i; end

sum

%

t=0;

t=cos(t)

% The UP-ARROW KEY takes you back to the preceding command

% This would make it easy here to execute t = cos(t) many times.

% But even more convenient here is to use a "for loop"

t = 0;

for i = 1:5, t = cos(t), end

% Better still make this more general as follows:

t = 0;

N = 5;

for i = 1:N t = cos(t); end, t

% For more convenience still we could make this into a Script

% Create a file named IterateCosScript.m (in your Matlab path)

% with the following lines.

t = 0;

for i = 1:N

t = cos(t);

end

t

% Then---

N = 8;

IterateCosScript

% The next step is to make a function M-File of this!

% Create a file named IterateCos.m

function IterateCos(N)

t=0;

114



Math 32a Fall 2003 R. Palais

for i = 1:N

t = cos(t);

end;

t

%

% Now call IterateCos(5), IterateCos(10),

% use format long to see more precision

format long

IterateCos(30)

IterateCos(60)

IterateCos(80)

IterateCos(100)

% Matlab keeps track of all the variables that you have

% defined in the current session and their current values.

% The command

% whos

% gives list of variables in the workspace.

whos

% clear clears the current workspace

clear

whos

% MORE COLON NOTATION

horizontal=[1:6]

horizontal=[horizontal, 7, 8]

horizontal = (1/8)*horizontal

horizontal = horizontal(2:7)

vertical = horizontal’

% THE PLOT COMMAND

% We will look carefully at the plot command later,

% but here is how to plot a list of (x,y) values and

% join successive ones by straight lines.

115



Math 32a Fall 2003 R. Palais

N=10;

x = (1/N)*2*pi*[0:N]; y = sin(x); plot(x,y);

N=20;

x = (1/N)*2*pi*[0:N]; y = sin(x); plot(x,y);

N=20;

x = (1/N)*2*pi*[0:N];

plot(sin(x),cos(x));

% ??? why don’t we get a circle?

plot(sin(x),cos(x)); axis equal;

a=3; b= 2;

% Math 32a Fall 2003 Richard Palais Brandeis Univ.

% Second Steps---More on Matlab Programming.

%

% Topics for Today

%

% 1) Subscripting or Indexing

% 2) Vectorizing code

% 3) Functions

% 4) Relational Operators and Boolean Expressions

% 5) Flow Control

% a) if else

% b) for loops

% c) while loops

% d) switch statement

% 6) 2D and 3D Graphing: the plot, plot3, mesh, and surf commands

% 7) M-Files

% a) Script M-Files

% b) Function M-Files

116



Math 32a Fall 2003 R. Palais

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% To practice with Matlab on your own, choose

% a topic and enter the lines, one by one, into

% the Matlab Command Window, and make sure you

% understand all the output you get back before

% going on to the next topic.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Subscripting

%

a = [0.0: 0.1: 1]

a(1)

a(5)

a(end)

b = [0:5 ; 1:6; 2:7 ; 3:8 ; 4:9]

b(2:4, 4)

b(3, 2:end)

b(4,4) = 0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Stopwatch Functions

%

% If you execute the command tic, Matlab starts

% a computation time stopwatch. The next time you

% execute the command toc, Matlab reports how much

% computing time in seconds it has used.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Vectorizing Code

%

% A matlab command is said to be "vectorized" if it can act

117



Math 32a Fall 2003 R. Palais

% not only on scalars, but also on vectors and matrices

% (Often this just means it does to each element of an array

% what it would do to a scalar). But as the next two examples

% show that’s not always the case.

%

% Calcuate Factorial 150 two ways, with a loop and using vectorized product.

tic, factorial = 1; for i = 2:150, factorial = i*factorial; end, toc

tic, factorial = prod(1:150); toc

%

% A similar pair of computations for summing an arithmetic progression.

tic, SUM = 0; for i = 1:10000, SUM = i + SUM; end, toc

tic, SUM = sum(1:10000); toc

% Notice that most built-in Matlab functions are vectorized.

X = [1:10]

sin(X)

X^2

% Why the error message?

% The problem here is that for a matrix, Matlab uses ^2 to mean

% matrix squaring, which only makes sense for sauare matrices.

% For example:

X = [1,2;3,4]

% Vectorized squaring (i.e., squaring each element of an array

% is denoted by .^2.

X.^2

% Similarly to multiply corresponding elements of two matrices

% with the same number of rows and columns, use .*

Y = [4,3;2,1]

X.*Y

% Similarly for vecorized division, use ./

X./Y

% X/Y (without the dot) means matrix product of X with Y inverse.

X/Y

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

118



Math 32a Fall 2003 R. Palais

% Inline Functions

%

% Suppose we want to create the polynomial function

% f(x) = 3*x^2 + 5*x + 2

% Create a string S that defines the polynomial and

% assign inline(S) to the name of the function:

f = inline(’3*x^2 + 5*x + 2’)

f(1)

f(2)

v = [0:5]

f(v)

% We got an error because we didn’t vectorize properly.

f = inline(’3*x.^2 + 5*x + 2’)

x = [-3: 0.1 : 1.5];

plot(x,f(x));

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Relational Operators and Boolean Expressions

%

% The basic relational operators are

% > , < , >= , <= with the obvious meanings, and

% == which means "equals" and ~= which means "not equal"

% If R is any one of these operators and x and y are

% constants or variables then xRy is a boolean

% expession, i.e., it eiher has the value 1 meaning

% xRy is true, or it has the value o meaning xRy is false.

% DON’T CONFUSE (A == B) with A = B !! The latter assigns the

% value of B to A, while (A == B) does not change the value

% of A and rather is an expression that has the value 1 if

% A is equal to B and otherwise has the value zero.

% You can build up more complex boolean expressions by

% combining basic one with & (which means AND) and | (which

% means OR) and ~ (which as we have already seen means NOT).

119



Math 32a Fall 2003 R. Palais

% First check that the relational operators are vectorized:

A = 0:8

B = 8-A

bool1 = A>4,

bool2 = (A==B)

bool3 = bool1 & bool2

bool3 = bool1 | bool2

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Flow Control

%

% if, else, and elseif

%

% The general form of an if statement is:

%

% if booleanexpression

% command 1

% command 2

% ...

% else

% COMMAND1

% COMMAND2

% ...

% end

%

% If booleanexpression evaluates to 1(true) the first

% group of commands is executed, otherwise the second

% set of commands is executed. For example here is a

% way to compute the maximum of a and b. To create a

% multi-path branch with more conditions, replace all

% but the final else by elseif.

max = 0;

120



Math 32a Fall 2003 R. Palais

a = 5;

b = 3;

if (a>b)

max = a;

else

max = b;

end

max

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% for loops

%

% We have already seen several examples.

% However ther is more than meets the eye.

% The genral form is:

%

% for x = Array

% command 1

% command 2

% ...

% end

%

% First x is set equal to the first column of

% Array and all the commands executed, then x is

% set equal to the second column of Array and

% the commands executed again and so on until

% the last column of Array is reached.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% while loops

%

% Here the general form is:

%

121



Math 32a Fall 2003 R. Palais

% while booleanexpression

% command 1

% command 2

% ...

% end

%

% First, booleanexpression is evaluated, and if

% it evaluates to 1 (true) the commands are

% executed, then booleanexpression is re-evaluated

% and if it is true then the commands are evaluated

% again, and so on until booleanexpression evaluates

% to 0 (false) at which point contol shifts to

% the first command after the end statement.

% Of course something better happen durring execution

% of the commands that will eventually make

% booleanexpression false or we wre in an infinite loop.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% switch statement

%

% The switch statement allows a program to switch

% its execution path to any one of a number of possible

% different branches depending on the value of an expression

% (the switch-expression).

% It has the general form:

%

% switch <switch-expression>

% case <case-expression> statement,statement,statement, ...;

% case <case-expression> statement,statement,statement, ...;

% ...

% otherwise statement,statement,statement, ...;

% end

%

122



Math 32a Fall 2003 R. Palais

% First <case-expression> is evaluated. It should evaluate to

% either a scalar or a string. Control then jumps to the

% statements following the first case-expression that

% matches the value of switch-expression, or if there is no

% match to the statements following otherwise (or if there is

% no otherwise statement, to the statement following end.

% Example:

%

CurveType = ’Cubic’;

switch CurveType

case ’Linear’

f = inline(’a + b*x’);

case ’Parabola’

f = inline(’a + b*x + c*x^2’);

case ’Cubic’

f = inline(’a + b*x + c*x^2 + d* x^3’);

end

f

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Graphing

% 2D curves

% A circle centerd at (a,b) with radius r is given parametrically by

% x = a + r*cos(t) y =b + r * sin(t) with t in [0, 2*pi]

a = 1;

b = 2;

r = 2;

t = [0: 0.1: 2*pi];

x = a + r* cos(t);

y = b + r* sin(t);

plot(x,y); axis equal

%%%%%%%%%%%%%%%

% 3D Curves

% Helix x = cos(t); y = sin(t); z = 0.2*t;

123



Math 32a Fall 2003 R. Palais

t = [0: 0.1: 6*pi];

x = cos(t);

y = sin(t);

z = 0.2*t;

plot3(x,y,z);

rotate3d; %This permits you to rotate the 3D object with the mouse.

%%%%%%%%%%%%%%%

% Parametric Surfaces

%

% In studying so-called polar spherical coordinates, you

% probably learned that the point on the unit sphere

% with longitude u and co-latitude v has the (x,y,z)

% coordinates x = cos(u), y = sin(v), and z = cos(v),

% Here is the way to render the sphere in Matlab.

% First, this is the command to create a two-dimensional grid of

% points (u,v) that will represent the longitude and co-latitude

% of points of the sphere. Let’s divide both intervals [0, 2*pi]

% and [0,pi] into 50 sub-intervals:

[u,v] = meshgrid([0 : 2*pi/50 : 2*pi],[0 : pi/50 : pi]);

% Then we create the arrays of values of the components of the

% 3D points (x,y,z) that have longitude u and co-latitude v:

x = cos(u).*sin(v);

y = sin(u).*sin(v);

z = cos(v);

% Finally, the command mesh(x,y,z) takes the 3D grid that we have

% created and maps it into 3-space using "wireframe rendering".

% This just means that each 2D gridlines is mapped to the

% 3D segment joining the images of its endpoints.

mesh(x,y,z), axis equal

% On the other hand, surf(x,y,z) renders the grid in "patch mode".

% This means that each rectangle of the grid is filled in with a

% color that is determined by an algorithm we will discuss later.

surf(x,y,z), axis equal

124



Math 32a Fall 2003 R. Palais

%

% Exercise: Render the ellipsoid with semi-major axes a,b, and c.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Script M-Files

%

% The first kind of M-File, called a Script File, is easy to

% explain. It is just a list of Matlab commands written

% just as you would write them into the Matlab command window.

% When you tyoe the name of the Script File (without the .m)

% into the command window, the effect is exactly the same as if

% you typed all the commands in the script File, one after another,

% into the command window at the place. End of story.

% (Well, almost. you do have to make sure that the script file is in

% a directorythat is in matlab’s search path in order for Matlab to

% be able to find it.)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function M-Files

%

% The second kind of M-file, called a function M-File is a lot more

% sophisticated and more flexible, and it is the real key to what it

% takes to write powerful Matlab programs. They are much like subroutines

% in other programming languages that you may be familiar with. We will

% probably have a lot more to say about them in the weeks to come.

% For an example, let’s use the above switch statement to create a

% function file called PlotCurve.m that will plot a line, parabola,

% or cubic, depending on a string parameter the user enters.

function PlotCurve(CurveType)

% This function plots either a line, a parabola or a cubic curve depending

% on whether it is called with parameter ’Linear’, ’Parabola’, or ’Cubic’.

125



Math 32a Fall 2003 R. Palais

t = [-1.5: 0.05: 1.5];

switch CurveType

case ’Linear’

plot(t, 1 + 2*t); axis equal

case ’Parabola’

plot(t, 1 - 0.5*t + 2*t.^2); axis equal

case ’Cubic’

plot(t, 1 - 1.5*t + 2*t.^2 + 2.5* t.^3); axis equal

end

126



Math 32a Fall 2003 R. Palais

% Math 32a Fall 2003 Richard Palais Brandeis Univ.

% Discussion of Project 1

% Here is how I would go about developing the solution

% to Project 1. I would not start with an M-File, but

% first try to develop commands to implement the various

% steps of the algorithm in a text file such as this,

% and test them out in the mMatlab Command Window, and

% then when the pieces of my code seemed to be working

% properly, I would put them in a function M-file and

% add error checking. (It might even pay to have an

% intermediate step consisting of a script M-File, but

% for a simple project such as Project 1, that is not

% necessary.

% Recall, the goal is to apply Gram-Schmidt algorithm to

% the rows of a matrix M.

% Here again is a statement of the algorithm:

% 1) First normalize the initial row.

% 2) Then, in order, project each row (the current_row)

% onto the (already orthonormalized) earlier rows.

% 3) Subtract this projection from the current row to

% get the projection normal to earlier rows, and then

% 4) normalize the result.

% OK, here goes:

% To normalize the initial row of M, namely M[1,:].

% Compute its norm

norm1 = sqrt(M(1,:) * M(1,:)’);

% We could also have written this as

% norm1 = sqrt( dot(M(1,:) , M(1,:)));

127



Math 32a Fall 2003 R. Palais

% or as:

% norm1 = norm(M(1,:));

% using Matlabs built-in functions dot and norm.

% Ignore possibility that norm1 might be zero for now

% and divide the first row by its norm

M(1,:) = M(1,:)/norm1;

% This completes step 1) above.

% Now start the loop that will orthonormalize later rows.

% Recall that the number of rows of M is size(M,1)

% so we want to iterate over the list of rows from

% row number 2 to row number size(M,1). In matlab-speak this is:

for row_num = 2:size(M,1)

current_row = M(row_num,:);

% project current_row of M onto each earlier row and add the projections

% to get the projection of current_row on span of earlier rows

proj = 0;

for j = 1:row_num - 1

proj = proj + dot(current_row,M(j,:)) * M(j,:);

end

% Now subtract proj from the current row to get the projection of the

% current row orthogonal to earlier rows.

u = current_row - proj;

norm1 = sqrt(u*u’);

M(row_num,:) = u/norm1;

end;

%

%

% Set up a test matrix.

tst = [1 2 3 4;2 3 4 1;3 4 1 2; 4 1 2 3]

% set M equal to tst

M = tst

128



Math 32a Fall 2003 R. Palais

% Then copy the above code and test it on M

%

%

% next we add the boilerplate necessary to make our early

% code into an M-File, and also add error checking.

%

% First, here is the Help Comment:

% The function GramSchmidt takes as its single input

% argument and m by n matrix M of real numbers and returns

% an error message if the rows of M are linearly dependent,

% but if they are independent then it returns a matrix

% with orthonormal rows having the same size as M and such

% that the first k rows of Q have the same span as th first

% k rows of M.

% Programmer: Richard S. Palais

function X = GramSchmidt(M)

norm1 = sqrt(M(1,:) * M(1,:)’); % norm of the first row;

if (norm1 <0.000000001)

Q = ’First row is zero. Cannot continue.’;

disp(Q);

return

else

M(1,:) = M(1,:)/norm1;

end % if

% Start loop to orthonormalize later rows.

for row_num = 2:size(M,1)

current_row = M(row_num,:);

% project current_row of M onto each earlier row and add the projections

129



Math 32a Fall 2003 R. Palais

% to get the projection of current_row on span of earlier rows

proj = 0;

for j = 1:row_num - 1

proj = proj + dot(current_row,M(j,:)) * M(j,:);

end % for j = 1:row_num - 1

% Now subtract proj from the current row to get the projection of the

% current row orthogonal to earlier rows.

u = current_row - proj;

norm1 = sqrt(u*u’);

if (norm1 <0.000000001)

Q = ’Rows are linearly dependent, cannot continue.’;

disp(Q);

return

else

M(row_num,:) = u/norm1;

end %if (norm1 <0.000000001)

end; % for row_num = 2:size(M,1)

X = M;

% END OF GramSchmidt

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Here is a somewhat selection of a few more solutions developed by

% various class members.

% First, David Diamondstone’s version

% Call as N = GramSchmidt(M).

% M should be a rectangular

% matrix with linearly independent rows,

130



Math 32a Fall 2003 R. Palais

% and then N will be a matrix of the same size with orthonormal rows

% and the linear spans of the first k rows of M and N are the same.

% Programmer: David Diamondstone

function N=GramSchmidt(M)

r=size(M,1); c=size(M,2);

for i=2:r,

for j=1:i-1,

M(i:r:r*c)=M(i:r:r*c)-(M(i:r:r*c)*M(j:r:r*c)’)/(M(j:r:r*c)*M(j:r:r*c)’)*M(j:r:r*c);

if M(i:r:r*c)*2==M(i:r:r*c), ’The input matrix was not linearly independant.’,

Failure_Row=i,

end;

end;

end;

for i=1:r,

M(i:r:r*c)=M(i:r:r*c)/sqrt(M(i:r:r*c)*M(i:r:r*c)’);

end;

N=M;

% Comments on David’s M-File.

% Note that David first orthogonalizes

% all the rows, and only then normalizes them.

% This has a number of advantages! Can you see them?

% Pros: It is VERY short and succinct.

% Cons: It is a little hard to understand.

% The error handling is less than prfect, and

% in particular, it fails to handle

% the case that the firt row is zero.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

131



Math 32a Fall 2003 R. Palais

% Here is Lacra Bintu’s M-File:

% GramSchmidt takes a matrix with linearly independent rows and returns another
matrix

% whose rows are orthonormal to each other.

%If the rows of the input matrix are not linearly independent, the GramSchmidt
will give

% an error message.

% Programmer: Lacramioara Bintu

function F=GramSchmidt(M)

n=size(M,1); m=size(M,2); %matrix dimensions

if M(1,:)*M(1,:)’==0

F=’The rows of your matrix are not linearly independent! Orthonormalization
is impossible!’;

else

F(1,:)=M(1,:)/((M(1,:)*M(1,:)’)^(1/2)); %normalize the first row

for i=2:n

vi=0;

for k=1:i-1

vi=vi+(M(i,:)*F(k,:)’)*F(k,:); %project the k’th row onto the space of the
first k-1 orthonormalized vectors

end

ui=M(i,:)-vi; %subtract the projection from the original i’th row vector

u=(ui*ui’)^(1/2); %find the norm of the difference

if (u<10^(-10)*mean(mean(abs(M))))

% if the norm is zero give error message

F=’The rows of your matrix are not linearly independent! Orthonormalization
is impossible!’;

break %stop going through the loop

else

F(i,:)=ui/u; %normalize the difference obtained above

end

end

132



Math 32a Fall 2003 R. Palais

end

% Comments on Lacra’s M-File

% Pros: Quite short, but well-commented and so reasonably easy to understand.

% Appears to work correctly for matrices with linearly independent rows,

% and error handling is good.

% The scaling in the line if (u<10^(-10)*mean(mean(abs(M))))

% is a very nice touch, since it correctly makes the test depend

% on the relative round_off error rather than absolute round-off error.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Chandni Rajan Valiathan’s M-File

%This function takes as input, a rectangular matrix M of size m x n whose

%rows are linearly independant. It transforms the matrix to one whose rows

%are orthonormal and whose first K rows span the same subspace as that

%spanned by the first K rows of M. If it gets, as input, a matrix that has

%linearly dependant rows, it gives an error and no matrix. You can call the

%function as follows >> GramSchmidt (A) (where A is the matrix whose rows

%you want to be orthonormalized.)

%Programmer: Chandni Rajan

%Valiathan

%Math 32a Fall 2003

%Project 1

function F= GramSchmidt(M)

m= size (M, 1); %no. of rows

v= M(1,:);

normv= sqrt(v*v’);

if (normv == 0) %if the first row is the zero vector, then the matrix is

133



Math 32a Fall 2003 R. Palais

%linearly dependant so display an error and return to the
prompt

F= ’Input matrix has linearly dependant rows, so impossible to orthonormalize’;

return;

else

F(1,:)= (1/normv)*v; %otherwise normalize it and replace the first row
of M with

%the new orthonormalized vector.

end;

for i=2:m,

w=0; %reset w which stores the orthogonal projection

vi= M(i, :); %vi= ith row of vectors

for j=1:(i-1),

w= w + (vi*(F(j, :))’)*F(j, :);

end; %orthogonal projection of v onto the subspace W of V

u= vi - w;

normu= sqrt(u*u’); %n=norm of u

if (normu < 1e-5)

F= ’Input matrix has linearly dependant rows, so impossible to orthonormalize’;

return;

%vectors not linearly dependant so error displayed

else

F(i,:)= (1/normu)* u;

end;

end;

% Comments: Clear and well-documented. Works correctly and has good error
handling.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Anny Jones M-File is very carefully commentes and

134



Math 32a Fall 2003 R. Palais

% works correctly with both "good" and "bad" matrices

% GramSchmidt

% This program takes as input a rectangular matrix (M) of arbitrary size m
x n,

% and assuming that m rows are linearly independent, transforms (M) into another

% m x n matrix (Q) whose rows are orthonormal, vis-a-vis the Gram-Schmidt

% Algorithm. The subspace spanned by the first k rows of (Q) is equal

% to the subspace spanned by the first k rows of (M).

% Programmer: M. Anny Jones

% M = input(’matrix M = ’);

function GramSchmidt(M)

% First I will determine the size of input matrix (M):

m = size(M,1); n = size(M,2);

% I will duplicate matrix (M) and overlay each row as it is calculated

Q = M;

% Next, I will define Q1, the first element of output matrix (Q):

w = M( 1, 1:n );

% Since we know that the norm of vector w is the square root of the inner
product

% <w,w>, which can be written w*w’ when w is a row vector:

normw = (w*w’)^0.5;

if normw == 0

disp(’The first vector of (M) is zero. Please correct.’)

return

end

Q( 1, 1:n ) = w./normw;

% Here I have overlaid my first vector (Q1, if you will) over (M)

% Once m rows have been replaced, matrix Q will be the solution.

135



Math 32a Fall 2003 R. Palais

% Now, using Q1, we can iterate the process to find the final elements Qi:

for i = 2:m,

w = M( i, 1:n );

s = 0;

for j = 1:i-1,

v = (w*Q( j, 1:n)’)*Q( j, 1:n);

s = s + v;

end

% Here, s is the projection of Mi onto Wi-1, ie. the projection of the

% ith row of M onto the subspace spanned by the first (i-1) rows of M
(or Q).

% I have used a second ’for’ to represent the summation over j=1 to j=i-1

u = w - s;

if (u*u’ < 0.000001)

disp(’Program cannot be completed! Please check that the’)

disp(’rows of the entered matrix are linearly independent.’)

return

else

normu = (u*u’)^0.5;

Q( i, 1:n ) = u./normu;

end

end

% Now I have found each subsequent row of Q and the result is displayed.

Q

% Math 32a Fall 2003 Richard Palais Brandeis Univ.

% Discussion of Project 2

% Let’s first write the code for the trapezoidal approximation

% to the integral of a function f over [a,b] without subdivision.

trapezoid = 0.5*(b-a)*(feval(f,a) + feval(f,b));

136



Math 32a Fall 2003 R. Palais

% We recall that a bound for the error is given by

ErrT = C1*(b-a)^3/12;

% where C1 is the maximum of the absolute value of f’’ on [a,b] .

% Similarly, the Simpson’s Rule approximation to the integral

% of f over the same interval, without subdividing, is

Simpson = ((b-a)/6)*(feval(f,a) + 4 * feval(f,(a+b)/2) + feval(f,b));

% and in this case, a bound for the error is given by

ErrS = C2*(b-a)^5/90;

% where C1 is the maximum of the absolute value of f’’’’ on [a,b] .

% Lets try this out on a simple function, say sin:

f = ’sin’;

% on the interval [0,pi/2]

a = 0;

b = pi/2;

% Since -cos is an antiderivative for sin, the exact value

% of the integral is

integral = (-cos(pi/2) - ( - cos(0)))

% Also, clearly C1 and C2 = 1;

137



Math 32a Fall 2003 R. Palais

C1 = 1;

C2 = 1;

% Now lets design the M-Files.

% First TrapezoidalRule1.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function ApproxInt = TrapezoidalRule1(f,a,b,n)

% This computes the approximation to the integral

% of the function f from a to b by dividing the

% interval into n equal parts and applying the

% Trapezoidal Rule approximation to each part and

% then summing.

% Richard Palais

h = (b-a)/n;

ApproxInt = 0;

for k = [0:n-1]

a1 = a + k*h;

b1 = a1 + h;

ApproxInt = ApproxInt + trapezoid(f,a1,b1);

end;

%%%%%%% Auxiliary Function %%%%%%%

function term = trapezoid(f,a,b)

term = 0.5*(b-a)*(feval(f,a) + feval(f,b));

138



Math 32a Fall 2003 R. Palais

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Next SimpsonsRule1.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function ApproxInt = SimpsonsRule1(f,a,b,n)

% This computes the approximation to the integral

% of the function f from a to b by dividing the

% interval into n equal parts and applying the

% Simpson’s Rule approximation to each part and

% then summing.

% Richard Palais

h = (b-a)/n;

ApproxInt = 0;

for k = [0:n-1]

a1 = a + k*h;

b1 = a1 + h;

term = Simpson(f,a1,b1);

ApproxInt = ApproxInt + term;

end;

%%%%%%% Auxiliary Function %%%%%%%

function term = Simpson(f,a,b)

term = ((b-a)/6)*(feval(f,a) + 4 * feval(f,(a+b)/2) + feval(f,b));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The second versions below avoid he auxiliary

% function calls, AND more importantly, they

139



Math 32a Fall 2003 R. Palais

% avoid re-evaluating the integrand twice for

% each interior endpoint of an interval

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% TrapezoidalRule2.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function ApproxInt = TrapezoidalRule2(f,a,b,n)

% This computes the approximation to the integral

% of the function f from a to b by dividing the

% interval into n equal parts and applying the

% Trapezoidal Rule approximation to each part and

% then summing.

% Richard Palais

h = (b-a)/n;

sum = (feval(f,a) + feval(f,b))/2 ;

x = a;

for k = [1:n-1]

x = x + h;

sum = sum + feval(f,x);

end;

ApproxInt = h * sum;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SimpsonsRule2.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function ApproxInt = SimpsonsRule2(f,a,b,n)

140



Math 32a Fall 2003 R. Palais

% This computes the approximation to the integral

% of the function f from a to b by dividing the

% interval into n equal parts and applying the

% Simpson’s Rule approximation to each part and

% then summing. It gains efficiency by grouping

% terms so that the function is not evaluated

% more than once at the same argument.

% Richard Palais

h = (b-a)/n;

x = a;

z = a + h/2;

sum = (feval(f,a) + feval(f,b)) + 4 * feval(f,z);

for k = [1:n-1]

x = x + h;

z = z + h;

sum = sum + 2 * feval(f,x) + 4 * feval(f,z);

end;

ApproxInt = (h/6) * sum;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The third versions below avoid the loop by

% vectorizing the sum, and they also avoid

% evaluating the integrand more than once for

% a given value of the argument. The code is by

% Nick Dufresne. (slightly modified).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% TrapezoidalRule3.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

141



Math 32a Fall 2003 R. Palais

%nick dufresne

%

%usage:

% result = TrapezoidalRule3(f,a,b,n)

%

% f is an inline function that maps a real input to a vector

% a is the starting point

% b is the ending point

% n is the number of sub-intervals into which [a,b] is divided

% result is the estimated value of the integral

%

function thesum = TrapezoidalRule (f,a,b,n)

delta = (b-a)/n;

arguments = [a:delta:b];

%calculate all the values of the function

%in summing all n parts of the trapezoidal method we count internal points

%twice so we will multiply by 2

values = 2*feval(f,arguments);

%since we have calculated the value of the endpoints twice we need to

%subtract the values and we need to multiply by 0.5*delta = 1/2*(b-a)/n

thesum = 0.5*delta*(sum(values)-feval(f,a)-feval(f,b));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SimpsonsRule3.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%nick dufresne

%

142



Math 32a Fall 2003 R. Palais

%usage:

% result = SimpsonsRule3(f,a,b,n)

%

% f is an inline function that maps a real input to a vector

% a is the starting point

% b is the ending point

% n is the number of sub-intervals into which [a,b] is divided

% result is the estimated value of the integral

%

function thesum = SimpsonsRule (f,a,b,n)

delta = (b-a)/n;

arguments = [a:delta:b];

midpointArgs = [a+delta/2:delta:b-delta/2];

%calculate all the values of the function.

%in summing all n parts of the trapezoidal method,

%we need to count internal pointstwice so we multiply by 2.

values = 2*feval(f,arguments);

%in the formula all midpoint values are multiplied by 4

midpointValues = 4*feval(f,midpointArgs);

%since we have calculated the value of the endpoints twice we need to

%subtract the values and we need to multiply by (1/6)*delta = 1/6*(b-a)/n

thesum = (1/6)*delta*(sum(midpointValues)+sum(values)-feval(f,a)-feval(f,b));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

format long

f = inline(’4./(1+ x.^2)’,’x’); % must be vectorized for third versions!

143



Math 32a Fall 2003 R. Palais

a = 0;

b = 1;

C1 = 12;

C2 = 96;

%%%%%%%%

n=10000;

tic, A = TrapezoidalRule1(f,a,b,n); toc %elapsed_time = 9.210232

tic, A = TrapezoidalRule2(f,0,1,n); toc %elapsed_time = 4.533945

tic, A = TrapezoidalRule3(f,0,1,n); toc %elapsed_time = 0.009738 !!!!!

A

ErrT = C1*(b-a)^2/(12 * n^2)

Error = abs(A-pi)

tic, A = SimpsonsRule1(f,a,b,n); toc

tic, A = SimpsonsRule2(f,a,b,n); toc

tic, A = SimpsonsRule3(f,a,b,n); toc

A

144



Math 32a Fall 2003 R. Palais

ErrT = C1*(b-a)^2/(12 * n^2)

Error = abs(A-pi)

%%%%%

n = 3;

tic, A = SimpsonsRule1(f,a,b,n); toc %elapsed_time = 0.005829

tic, A = SimpsonsRule2(f,a,b,n); toc %elapsed_time = 0.004387

tic, A = SimpsonsRule3(f,a,b,n); toc %elapsed_time = 0.002445n

A

ErrS = C2*(b-a)^4/(90 * n^4)

Error = abs(A-pi)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

%%% Let’s check how the errors vary as a function

%%% of the number n of subdivisions.

%%% First Trapezoidal:

%

n = 5;

A = TrapezoidalRule1(f,a,b,n);

Error5 = abs(A-pi) % 0.00666653977880

n=10;

A = TrapezoidalRule1(f,a,b,n);

145



Math 32a Fall 2003 R. Palais

Error10 = abs(A-pi) % 0.00166666468263

%

% Since Trapezoidal is a quadratic method, the ratio

% of Error5 to Error 10 should be about (10/5)^2 = 4

%

ratio = Error5/Error10 % 3.99992862887449

%

%%%% Now Simpson’s

%

n = 5;

A = SimpsonsRule1(f,a,b,n);

Error5 = abs(A-pi) % 3.965057793209326e-08

n=10;

A = SimpsonsRule1(f,a,b,n);

Error10 = abs(A-pi) % 6.200080449048073e-10

%

% Since SimpsonsRule1 is a fourth order method, the ratio

% of Error5 to Error 10 should be about (10/5)^4 = 16

% BUT,IN FACT:

ratio = Error5/Error10 % 63.95171523650308 ~ (10/5)^6

%

n = 20;

A = SimpsonsRule1(f,a,b,n);

Error20 = abs(A-pi) % 9.687362023669266e-12

%

ratio = Error10/Error20 % 64.00174200055011 ~ (20/10)^6

% So, the conclusion seems nearly inescapable that for

% the present function, Simpson’s is behaving as a

% sixth order method !!!!

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Shootout: Comparison of Nick Dufresne’s vectorized Trapezoidal and

146



Math 32a Fall 2003 R. Palais

% Simpson’s with non-vectorized versions.

f = inline(’4./(1+ x.^2)’,’x’); % must be vectorized for third versions!

a = 0;

b = 1;

n=100000;

tic, A = TrapezoidalRule3(f,a,b,n); toc % elapsed_time = 0.07617

Error = abs(A-pi) % 1.664046678229170e-11

n=14;

tic, A = SimpsonsRule3(f,a,b,n); toc % elapsed_time = 0.002523

Error = abs(A-pi) % 8.234657400407741e-11

n = 100000;

tic, A = TrapezoidalRule2(f,a,b,n); toc % elapsed_time = 49.330224

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Math 32a Fall 2003 Richard Palais Brandeis Univ.

% Topic for Today: Programming with M-Files.

%

% 1) Review of Script M-Files

% 2) Review of Function M-Files

% 3) More Advanced Features of Function M-Files

147



Math 32a Fall 2003 R. Palais

% Variable number of input and output parameters (nargin and nargout)

% Global Variables---Workspaces and their Relation to each other

% Sub-functions

% Functions as parameters (using feval)

% Introduction to De-bugging

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%- Script M-Files (review)

% -They are just a shorthand way to enter commands

% - should be a list of commands (and comments)

% - Variables introduced in a script file continue

% to live in the Matlab basic Workspace after the

% script finishes executing

%

% - Example of a script M-file (IterateCosScript.m )

%

t=0;

for i = 1:N

t = cos(t);

end

t

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% - Function M-Files (review)

% - must begin with the keyword function,

% - followed by the list of output variables and an = (if there are any output
variables)

% - followed by the name of the function (which must be the same as the name

% of the M-file without the .m),

% - followed by list of input arguments (in parentheses),

% - followed by the list of commands to be executed.

% - So here is the general schema for a function M-File with the name FcnName.m,

% output variable x, y,..., and input variables a,b,...

%

148



Math 32a Fall 2003 R. Palais

% function [x,y,...] = FcnName(a,b,...)

% <command>

% <command>

% ...

%

% EXAMPLE: filename PolarToRect.m

function [x,y] = PolarToRect(r,theta)

% This function takes two real input parameters, r and theta, that

% represent the polar coordinates of a point on the plane, and

% returns two real output parameters, x and y, representing the

% cartesian coordinates of the same point.

x = r*cos(theta);

y = r*sin(theta);

%

%

% - Variables introduced in function M-files are "local" to the function---that
is

% they are not part of the basic Workspace, but rather they belong to a
special

% Workspace belonging to the M-File, and they disappear after the script
finishes

% executing. Workspaces, and their inter-relations are discussed in more
detail

% below.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

%- More Advanced Features of Function M-Files

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Variable number of input and output parameters (nargin and nargout)

%

%- The variable nargin: It is possible to define a Matlab functions that

% take a variable number of input arguments. When the user calls the function

149



Math 32a Fall 2003 R. Palais

% with a particular mumber of arguments, say n, then a standard Matlab variable

% called nargin (for "number of arguments in" gets the value n which then
can

% be used in the program code to do different things depending on n. Here
is the

% way it works in a rather artificial example. Suppose we want to be able
to add

% a variable number of arguments, say up to four. We create a file MyAdd.m
containing

% the following:

%

function theSum = MyAdd(x,y,z,w)

if nargin == 0

theSum = 0;

elseif nargin == 1

theSum = x ;

elseif nargin == 2;

theSum = x + y

elseif nargin == 3 ;

theSum = x + y + z ;

elseif nargin == 4;

theSum = x + y + z + w ;

end

theSum

% - There is a similar variable nargout that gives the number of output variables
actually

% used in a given call of a function with several output parameters.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% - Global Variables---Workspaces and their Relation to each other

%

% A Matlab program that does something reasonably complex will often use

% many different functions that are either built in Matlab functions or

% else user defined functions defined in some M-File. It is important to

150



Math 32a Fall 2003 R. Palais

% be able to communicate information (e.g., the current values of variables)

% between these functions. Now remember that each M-File has its own private

% Workspace which is different from the base Workspaceof the command window.

% Suppose you declare a variable named X in the command window and also declare

% variables named X in two different function M-Files. If you now call these

% functions in the command window, or if you call one of these functions
from

% the other, then the different variables named X are unrelated, and changing

% the value of one of them does not effect the others. So how can you communicate

% information back and forth between M-Files and the command window. You
can

% probably guess the answer---the best way to do this is to use the input
and

% output variables of the functions as we have been doing. However, this
is

% sometime inconvenient and Matlab does have anothr mechanism (which should

% be used sparingly) and this is the so-called global Workspace. You can
declare

% a variable, say Z to be global as follows:

global Z

% and then it belongs to the global Workspace. If you declare a variable
to

% be global in the command window and again in several M-Files, then they

% are all the same variable, and if you change the value in any of these
places

% it will change it in the others.

% NOTE: It is conventional to use all capital letters for global variables!

%

% Example: Create an M-file called TestGlobal.m containing the following:

function outVar = TestGlobal(inVar)

% This function demonstrates passing values with parameters and

% using global variables

outVar = inVar;

inVar = 2;

151



Math 32a Fall 2003 R. Palais

X = 0;

global Y

Y = 0;

% Now in the command window, suppose we enter the following:

%

a = 1;

b = 0;

X = 1;

global Y

Y = 1;

a = TestGlobal(b)

b

X

Y

%

% Can you guess what the output will be?

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% - Sub-functions

%

% It is a good idea in programming to break up a complicated

% algorithm into a sequence of smaller sub-algorithms. In Matlab,

% this means that we will often create a function M-File by calling a

% lot of other functions, either built in or defined in M-Files.

% However, if you are ONLY going to use some simple function as a

% sub-routine in defining some other "main" function, then Matlab

% permits you to define the simple function in the same M-File

% as the main function. These so-called sub-functions are defined

% just as if they were a normal function, except they are placed at

% the end of the M-File in which they will be used (and cannot be used

% outside that file).

%

152



Math 32a Fall 2003 R. Palais

% Example Create an M-file called TestSubFunction.m containing the following:

function y = TestSubFunction(x)

y = Double(Square(x)); % so y = 2 * x * x

%%%%%%%%%%%%%% Sub Functions %%%%%%%%%%%%%%%%%%%%%

function y = Double(x)

y = 2*x;

function y = Square(x)

y = x * x;

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% - Functions as Parameters (using feval)

% Very frequently we want to create functions whose arguments are

% other functions---integration is a typical example, as are its

% approximating quadrature rules. Usually we will want to substitute

% for such a function argument a function that is either defined in an

% M-File or is a "built-in" function like sin. Matlab has a function

% called feval to make this possible. If MyFcn is the name of a function

% of n variables, then feval(’MyFcn’,a1,a2,...,an) is the same as

% MyFcn(a1,a2,...,an). Here is an example of how this gets used.

% Suppose we want to define a Matlab function called Trapezoidal with

% parameters a function f, and two real numbers a, and b, that we want

% to return the trapezoidal estimate of the integral of f from a to b,

% namely 0.5*(f(a) + f(b)). In Matlab version 5 and earlier it is NOT

% possible to have a function as the parameter of a Matlab function

% BUT it is possible to have a string as a parameter, so we define

% Trapezoidal in a Matlab M-file called Trapezoidal.m as follows:

%

153



Math 32a Fall 2003 R. Palais

function A = Trapezoidal(f,a,b)

A = 0.5*(b-a)*(feval(f,a) + feval(f,b));

%

% Notice that this assumes that the parameter f is a string that will

% hold the NAME of some function.

% Now suppose that in an M-File afcn.m we define a function afcn

% as follows:

%

function z = afcn(x)

z = x^2 + 2*x + 4;

% Then to estimate the integral of afcn from 0 to 1 and put the result

% in a variable z, we would use the function call:

%

z = Trapezoidal(’afcn’,0,1);

%

% Note carefully the quotes around afcn.

% The same thing works for a built-in function like sin

%

z = Trapezoidal(’sin’,0,1);

%

% We can also use Trapezoidal on a function F defined using inline.

% For example if we define the same unction as above using inline

% and call it afcni:

%

afcni = inline(’x^2 + 2*x + 4’, ’x’)

%

% then the Trapezoidal approximation to the integral is given by

%

z = Trapezoidal(afcni,0,1);

%

% THAT’S RIGHT---without the quotes! That is because the inline

% function actually returns a string. In fact we can do the above

% evaluation more simply in one step, without defining MyFcnI as follows:

154



Math 32a Fall 2003 R. Palais

%

z = Trapezoidal(inline(’x^2 + 2*x + 4’, ’x’),0,1);

%

% Of course this is NOT very elegant---it is both inconsistent and

% non-intuitive and so leads to lots of programming errors. In the

% most recent version of Matlab (version 6) this problem has been

% fixed. It now IS possible to have as a parameter of a Matlab

% function another Matlab function (rather than the string that is

% its name, so in Matlab version 6 we could define the Trapezoidal

% function by

%

function A = Trapezoidal(f,a,b)

A = 0.5*(b-a)*(f(a) + f(b));

%

% avoiding the use of feval. Then we would call it consistently

% as

%

z = Trapezoidal(afcn,0,1);

% or

%

z = Trapezoidal(sin,0,1);

%

% or

%

z = Trapezoidal(inline(’x^2 + 2*x + 4’, ’x’),0,1);

%

% However for this course, I would pefer for you to

% stick with the Matlab version 5 conventions.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% - Introduction to De-bugging

%

155



Math 32a Fall 2003 R. Palais

% No matter how experience you become or how careful

% you are, you will always make errors, i.e., bugs

% are a fact of programming life, and you will have

% to learn to live with that fact. That does not mean

% that you have to live with the bugs---it means that

% you must learn how to test for them and how to

% eliminate them when you find them. This is a very

% big topic and we can only scratch the surface here.

%

% There is one basic, time-tested strategy for debugging,

% which is to stop the program at various points (so-called)

% breakpoints) and then test the values of variables to

% see if they have the values you expect them to. In Matlab

% if you put the word "keyboard" into an M-File, then any

% time the programm reaches that point, the program stops

% running and you can type various commands to check the

% values of variables (or change them). To restart the execution

% of the M-File, type the six letters "RETURN" and then

% the return key

%

156



Math 32a Fall 2003 R. Palais

% A Short Introduction to Movie Making in Matlab

% Lacra Bintu

% Matlab stores movies as information in matrices.

% The information for each frame is stored as to one column in the movie matrix.

% Somewhere near the beginning of your file you must initialize your movie
matrix.

% Suppose you want to name your movie MyFilm, and you want it to have N frames.

N=100; % say how many frames you want

MyFilm=moviein(N); % initialize the movie matrix;

for i=1:N

x=cos(2*pi*i/N); y=sin(2*pi*i/N); % The simplest example I could
think of:

% a point moving in a circle

figure(1)

plot(x,y, ’o’)

axis([-1.5 1.5 -1.5 1.5]) % fixing the axis, so that they
will

% be the same for all frames

% axis([XMIN XMAX YMIN YMAX])

MyFilm(:,i)=getframe; % takes the information from the
current picture

% and puts it in the ith column
of the movie matrix

% (this will be the ith frame of MyFilm)

end % It’s a wrap! That’s all there
is to it.

movie(MyFilm) % Plays Myfilm

% Say you want to save the movie

% in a file called MyBest (you don’t need
to):

157



Math 32a Fall 2003 R. Palais

Save MyFilm MyBest

% To play the saved movie:

load MyBest % This loads the information stored
in the movie file

Movie(MyFilm) % This plays the movie that had
been stored in

% MyBest (meaning the movie MyFilm)

% So to recapitulate:

% <Moviename> = moviein(<number of frames>); % moviein initializes the
movie matrix

% <Moviename>(:,i) % saves contents of current
figure in

% i-th column of the movie
matrix.

% Save <Moviename> <Filename> % Saves movie matrix in a
data file

% load <Filename> % Reads movie data stored
in <Filename>

% Movie <Moviename> % Plays <Moviename> as an
animation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Sometimes, when you are drawing more than one object

% in each frame you might want to use hold on and hold off.

% If you put hold on after plotting the first object,

% when you plot another object (in the same frame)

% the first object does not disappear from view.

% If you put hold off after the second plot, the next

% plot after that will cover everything already in your figure.

% Below is a quick example, using the same code as before,

% but now making use of hold on and hold off.

% (If you didn’t understand what I just said above about hold

158



Math 32a Fall 2003 R. Palais

% on and hold off, just try experimenting

% with the code below, by deleting first

% hold off and then hold on and see what happens.

% That should make it it clear.)

N=100; MyFilm=moviein(N);

for i=1:N

x=cos(2*pi*i/N); y=sin(2*pi*i/N);

figure(1)

plot(x,y, ’o’)

hold on

x1=[0 x]; y1=[0 y];

plot(x1,y1) %draws the radius of the circle

hold off

axis([-1.5 1.5 -1.5 1.5])

MyFilm(:,i)=getframe;

end

movie(MyFilm)

% If you use an earlier version of Matlab,

% you can turn your movie into an avi file

% using movie2avi.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Here is a more sophisticated and interesting example.

% It is the contents of a script M-File called ellipse.m

% This file creates and plays a movie showing the osculating circles to an
ellipse

% Lacra Bintu

clear all

159



Math 32a Fall 2003 R. Palais

close all

n=100; % the number of frames

Mellipse=moviein(n); % initializing the matrix that will contain the information
for the movie

a=1.6; % the value of the big axis of the ellipse

b=0.9; % the value of the big axis of the ellipse

t=[0:2*pi/n:2*pi]; % setting the values of t where we want to see the circles

x=a*cos(t); % finding the x coordinate from the parametric equation
of an ellipse

y=b*sin(t); % finding the y coordinate from the parametric equation
of an ellipse

k=a*b./(a^2.*sin(t).^2+b^2*cos(t).^2).^(3/2); % the curvature of the ellipse
at the chosen t values

r=1./k; % the radii of the osculating circles at each chosen
value of t

xo=x-b*r.*cos(t)./((b^2)*cos(t).^2+a^2*sin(t).^2).^(1/2); % the x cordinate
of the centers of the circles

yo=y-a*r.*sin(t)./((b^2)*cos(t).^2+a^2*sin(t).^2).^(1/2); % the y cordinate
of the centers of the circles

m=2*max(r)-min([a,b]); % calculating about how big we want the axes of our
figures to be

for i=1:n+1

xc=xo(i)+r(i)*cos(t); % finding all the x coordinates necessary to draw the
osculating

% circle at the point i*2pi/n

yc=yo(i)+r(i)*sin(t); % finding all the x coordinates necessary to draw the
osculating

% circle at the point i*2pi/n

figure(1)

plot(x,y, ’k’) % draw the ellipse

160



Math 32a Fall 2003 R. Palais

hold on % keep the figure from being erased

plot(xc,yc,’r’) % draw the osculating circle at at the point i*2pi/n

plot(xo(1:i),yo(1:i)) % draw all the centers of the circles up to that
point

plot([xo(i),x(i)], [yo(i),y(i)], ’r--’) % draw the normal to the ellipse

hold off % allow the figure to be erased

axis([-m m -m m]) % set the axis to some appropriate value

Mellipse(:,i)=getframe; % put the information from the resulting figure

% as a column in the movie matrix

end

movie(Mellipse) % play the movie

161


