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_ Abstract—Transmit beamforming and receive combining are of interest recently [12]-{20]. Beamforming and combining
simple methods for exploiting the significant diversity that is jn MIMO systems are a generalization of the vector chan-
available in multiple-input and multiple-output (MIMO) wireless nel beamforming/combining methods found in single-input

systems. Unfortunately, optimal performance requires either . . . . .
complete channel knowledge or knowledge of the optimal beam- multiple-output (SIMO) combiners and multiple-input single-

forming vector which are not always realizable in practice. In output (MISO) beamformers which provide significantly more
this correspondence, a quantized maximum signal-to-noise ratio diversity. Compared with traditional space-time codes [3]-
(SNR) beamforming technique is proposed where the receiver [5] beamforming and combining systems provide the same
only sends the label of the best beamforming vector in a prede- yiersity order as well as significantly more array gain [21]
termined codebook to the transmitter. By using the distribution - - -

of the optimal beamforming vector in independent identically at the expense of requiring Chann_el state Infqrmatlon at the
distributed Rayleigh fading matrix channels, the codebook design transmitter in the form of the transmit beamforming vector (see
problem is solved and related to the problem of Grassmannian for example [14]-[20]). Unfortunately, in systems where the
line packing. The proposed design criterion is flexible enough to forward and reverse channels are not reciprocal, this requires
allow for side constraints on the codebook vectors. Bounds on coarsely quantizing the channel or beamforming vector to

the codebook size are derived to guarantee full diversity order. . .
Results on the density of Grassmannian line packings are derived accommodate the limited bandwidth of the feedback channel.

and used to develop bounds on the codebook size given a capacity In this correspondence, we consider Fhe problem Of_ quan-
or SNR loss. Monte Carlo simulations are presented that compare tized beamforming for independent and identically distributed

the probability of error for different quantization strategies. (i.i.d.) MIMO Rayleigh flat-fading channels when the transmit-
_ Index TermsDiversity methods, Grassmannian line packing, ter has access to a low bandwidth feedback channel from the
limited feedback, MIMO systems, Rayleigh channels. receiver and the receiver employs maximum ratio combining
(MRC). To support the limitations of the feedback channel, we
l. INTRODUCTION assume the use of a codeb_ook of possib!e beamforming vectqrs
known to both the transmitter and receiver. The codebook is
Multiple-input multiple-output (MIMO) wireless systemSyestricted to have fixed cardinalitV and is designed off-
make use of the spatial dimension of the channel to provifge. The receiver is assumed to convey the best beamforming
considerable capacity [1], [2], increased resilience to fadiRgctor from the codebook over an error-free, zero-delay feed-
[3]-[5], or combinations of the two [6]-[8]. While the spectralack channel. A primary contribution of this correspondence
efficiency improvement offered by MIMO communications to provide a constructive method for designing a quantized
is substantial, the reductions in fading obtained by tradingamforming codebook. We show, using the distribution of the
capacity for spatial diversity should not be overlooked [9hptimal unquantized beamforming vector, that the codebook
[10]. In narrowband Rayleigh fading matrix channels, MIMQyesign problem is equivalent to the problem of packing one
systems can provide a diversity in proportion to the produgfmensional subspaces known as Grassmannian line packing
of the number of transmit and receive antennas. Diversity ffhese codebooks are a function of the number of transmit
a MIMO system can be obtained through the use of spaggytennas and the size of the codebook but are independent
time codes (see e.g., [3]-[5]) or via intelligent use of chans the number of receive antennas. We show that a sufficient
nel state information at the transmitter (see e.g., [11]-{17Rondition for providing full diversity order is that the codebook
Transmit beamforming with receive combining is one of thgardinality is greater than or equal to the number of transmit
simplest approaches to achieving full diversity and has begftennas. We consider codebooks with additional constraints

, _ _ " _ imposed on the beamforming vectors such as constant modulus
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from [22]. The density expression verifies the asymptotic

subspace packing density presented in [23] and allows us to "
derive the Hamming bound and the Gilbert-Varshamov bounds-» codno& I'V
U
b
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on codebook size. We use these results to obtain approximate
bounds for choosing the codebook size based on a specific SWe'igm
allowable capacity or average signal-to-noise ratio (SNR) loss. ot e

Unquantized beamforming for MIMO systems was first ~  —~——— """ "777~
proposed in [13]-[15]. Prior work on quantized beamformingig. 1. Block diagram of a MIMO system.
proposed in [24] addressed the problem of quantizing the
maximum ratio transmission (MRT) [13]-[15] solution, which
we call quantized maximum ratio transmission (QMRT). Thidlustrate performance as a function of the amount of feedback
beamforming codebooks proposed therein were obtained asailable. The correspondence concludes in Section VII with
ing the Lloyd Algorithm and a specific codebook desiggome suggestions for future work.
methodology was not developed. Additionally the results were
specialized only to MISO systems though, as we show, they 1. SYSTEM OVERVIEW

are applicable to the MIMO case as well. The problem of o \; o system with transmit beamforming and receive
quantizing the equal gain transmission (EGT) solution Wagmining usingd/; transmit antennas and/, receive an-
proposed in [25]. The solution proposed therein uniformliy, s 'iq jilustrated in Fig. 1. Suppose that the bandwidth is
quantized the phas_es of th_e channel and does not mﬂlﬁﬁch smaller than the coherence time of the channel thus the
the.conne.cnon to line packmg. Different qodebooks Weliscrete-time equivalent channel can be modeled/as a M,
designed in [17], [20], extending the work in [25], but are,,iiy 5 Then the discrete-time input/output relationship at

still suboptimal since they were required to use COdeboobﬁseband, given a real or complex transmitted syrabdbr
containing a set of orthogonal vectors to satisfy the suppositigng system is given By

for the proof of diversity order. Variations of QMRT and
QEGT are part of the WCDMA closed-loop diversity mode z = z'Hws + z'n. Q)

[26]. The proposed solutions are specialized for two trans

. . rj]he vectorsw andz are called the beamforming and combin-
antennas and essentially quantize the channel from one of th . . > .
idng vectors, respectively. The noise vectohas i.i.d. entries

anter_mas. Transmit a_ntenna selecthn for MIMO systems i diStributed according t6A'(0, Ny). We model the channdi
special case of quantized beamforming and has been propogsetiavin ii.d. entries distributed according@d(0, 1). The
in [27], [28] for the MISO case and [11], [12] for the MIMO gl.d 1
case channel is assumed to be known perfectly at the receiver. The
. L 91
The relationship between quantized beamforming ar?éfmbOI energy 1s given by’ [|S| } =& .
. ) . . In a beamforming and combining system, the key question

Grassmannian line packing was observed in [22], [29]_[3%4 how to designw andz to maximize performance. It has
in parallel and independently of our work in [32]-[35]. Their g P :

analysis, however, is explicitly for the MISO scenario anaeen shown [15], [16], [28] that and z should be chosen

; o 0 maximize the SNR in order to minimize the average prob-
does not encompass MIMO beamforming and combining sys-. . "y :
" o ability of error and maximize the capacity. For the proposed
tems. Additionally, [22], [29]-[31] do not specifically address L S
. : system, the SNRy,., after combining at the receiver is
the design of hardware constrained beamformers. Imposi

additional constraints on the beamforming vector codebook, _ &lz"Hw|?

such as equal gain coefficients or selection columns, makes = ||z]|3 No

limited feedback precoding more practical than with arbitrary o | 2 Her w

codebooks (e.g., see the closed-loop mode in the WCDMA (5t|\w||2) Tzl P wlz 5
standard [26]). In addition, we propose new results in Grass- - N, . @

otice that in (2),/|z||» factors out, therefore we fifz||» = 1
[thout loss of generality. As well, the transmitter transmits
th total energyt; || w||3, therefore, we assume thiay ||, = 1

mannian line packing that are of use in judging the optimali
of the designed quantized beamformers. Our analysis consi
the amount of feedback required given acceptable Iossesv\}'
capagty or SNR. . . . d that, is held constant for power constraint reasons. Using
This correspondence is organized as follows. Section :
. . L these assumptions,
reviews beamforming and combining in MIMO systems and
states the quantized beamforming problem. Grassmannian line . & &l2"Hw &1,
packing is reviewed in Section Ill, and some results on "Ny Ny Ny
the minimum distance and density are derived. Section IV, "
examines the distribution of the optimal beamforming vector, Ve Usew to refer to thei® entry of the vectorw, Hi to refer to
distortion criterion. and then relates the roblt e (k,1) entry of a matrixH, 7 to denote matrix transpositiof! to denote
proposes a distor ' Probi&iBerix conjugate transpositioh; | to denote absolute valug, |- to denote
of quantizing this vector to the problem of Grassmanniane matrix two-norm/| - |1 to denote the matrix one-normi,= /=1, C™
line packing. Different performance criteria are studied iff denote then — dimensional complex vector spade,, to refer to the set
. . . . of unit vectors inC™, U}, is the set ofm x N complex matrices with unit
Section V to provide some insight on selecting the codebog

s . b ) tor columns, andz, [] to denote expectation with respect to a random
size. Section VI presents Monte Carlo simulation results thatiabley.

®)



whereT', = |zfHw|? is the effective channel gain. some method of quantization due to the limited reverse-link
In a MIMO system, unlike in a MISO system, both a transfeedback channel. A reasonable solution is to let the receiver

mit beamforming vector and a receive combining vector neethd transmitter both use a codebookMfbeamforming vec-
to be chosen. A receiver whesemaximizes|z? Hw| given tors [24], [25]. The receiver then quantizes the beamforming
w is called a maximum ratio combining (MRC) receiver. Theector by selecting the best (according to (6)) beamforming
form of this vector follows from the vector norm inequality vector from the codebook and conveys the index of this vector
back to the transmitter. The main benefit of using a finite
2" Hwl” < |lz/l3] Hwl. “) codebook is that the number of feedback bits ca?l be kept

We already definedz||3 = 1, thus the MRC vector must setto a manageable number given bipg, N|. Unfortunately,

I 5 9 it is not obvious which/N' vectors should be included in the
2" Hw|” = |[Hw]3. (5)

codebook.
This is easily seen to be the unit vector= Hw/||Hw/||>. To compare the performance of different quantized and
We assume that the receiver always uses MRC. unquantized beamformers, we use the average probability of

The beamforming vectorsv and z can be designed to Symbol error defined a®. = Eu[P.] where the expected
maximize the SNR under different side constraints dependisglue of the probability of symbol erraf, is taken over the
on implementation issues. Since we assume optimal combingftggnnelH. Two measures that are relevant when comparing
at the receiver, we are primarily concerned with selecting average probability of symbol error are array gain and diversity
The four interesting cases are maximum ratio transmissidifder. A system is said to hawaray gain A and diversity
equal gain transmission, selection diversity transmission, a@ler D if for SNR > 0 the average probability of symbol
generalized subset selection. A transmitter wheremaxi- error is inversely proportional tel(&;/No)” [6].
mizes |z Hw| givenz is called maximum ratio transmission
(MRT). A transmitter wherew, satisfies|wy| = # for
1 < k < M, is called equal gain transmission (EZ&_)_ Note
that this definition allowsv to be expressed as = -1_¢/® ~ Grassmannian line packing is the problem of optimally
where @ = [0; 65 ... 63;,]T and 6, € [0,2n). Seléction packing one dlmenspnal subspace_s [36]. It is s_lmllar to
diversity transmission (SDT) requires thet be one of the the problem of spherical code design with one important
columns ofL,,, the M, x M, identity matrix. A transmitter difference: s_phencal code_s aqneln_tson the qnlt sphere while
wherew is the sum of columns dfy;, andw = w/||w]|» is Gr.a'ssrnanman line packings ahaesf passing thrpugh the
called generalized subset selection (GSS). This correspond€4gin in a vector space. Grassmannian line packing forms the

vectors of the formw — —L ™% (1 where(I is Dasis for our quantized beamforming codebook design. In this
7z 2k=1 (Int)y,, (Lt ) section, we present a summary of key results on Grassmannian

th H
then,,™ column ofLy, andny, # n; for k 1. GSSis clearly |, packing and some new results. The terminology follows

a generalization of SDT when more than one radio chain i ; .
) . - rom the work of researchers in Grassmannian subspace pack-
available. This method corresponds to transmitting on subsets

of antennas depending on channel conditions. Ing (see for example Sloane’s webpage [37])

Given no design constraints on the form of the unit vectors Ctonsger It_h? spac;e f.Of umt-norm Itransmltl ?eam;o:mmg
w or z and a fixedN, the optimal solutions in an averagevec Orsiiy. LEL USe deline an equivalence relation between
0 unit vectorsw; € Q,,, andwsy € Q,, by w; = ws if for

probability of symbol error sense are the beamforming arli\g 9c0.2 ~ Thi val lati
combining vectors, respectively, that maximife. For a o€ € [0,27) w1 = e’"w2. This equivalence relation says

combining scheme that solves for the beamforming vestor Fhat two vectors are equivalent if they are on the same line

m i i 1 I
using the feasible s&¥V (W C Q,,,) with an MRC receiver, in <C. . The quotient space wnh respect to this equivalence
w is given by relation is the set of all one-dimensional subspace£th

[38]. The complexGrassmann manifold;(m, 1) is the set of
all one-dimensional subspaces of the sp&¢€e We define a

where arg max returns a global maximizer. Note that thidistance function oi(m, 1) by letting the distance between
optimization returns onlyone out of possiblymany global the two lines generated from unit vectoss and w, be the

maximizers meaning that the global maximizer over mast Sine of the angle, , between the two lines. This distance is
is not unique. Notice that iV = Q,,, the case for an MRT €xpressed as [23]

system, therw is the dominant right singular vector 8, the 5
right singular vector oH corresponding to the largest singular d(w1,wa) =sin(f12) = \/1 — |wilws|".
value of H [14], [15]. . . . .

In this correspondence, we consider a communication link 1 N€ Grassmannian line packing problems the problem
where channel state information is not available to the trarfd finding the set, or packing, oV lines in C™ that has
mitter, but there exists a low-rate, error-free, zero-delay fee@@ximum minimum distance between any pair of lines. Be-
back link for the purpose of conveying to the transmitter. C2Use Of the relation t€,,, the problem simplifies down to
Sincew can be any unit vector in possibly a continuum offranging N unit vectors S0 that the magnlt_ude correlation
feasible vectorg(2,;, for MRT) it is essential to introduce PEIWEEN any two vectors is as small as possible. We represent

a packing ofN lines inG(m,1) by anm x N matrix W =
3A feasible set is the set that a cost function is maximized over. [wy wa ... wy| wherew; is the vector inf2,,, whose column

[1l. GRASSMANNIAN LINE PACKING

— H 6
w arg)rg%ll x||2 (6)



space is the™ line in the packing. The packing problem is Proof: LetCyw,(y) ={v € Qp, : d(v,w;) <~v}. Using

only of interest in nontrivial cases whepé > m. our previous observation
The minimum distance of a packing is the sine of the A(C
. . . . - (Cw, ('V))
smallest angle between any pair of lines. This is written as p(Bw, (7)) = A (12)
(W)= min 4/1— |Wﬁwl‘2 = sin(fmin) (7) whereA(:) is a function that computes area. It was shown in
1<E<I<N [22]4 that

where 0,,,;, is the smallest angle between any pair of lines AlCw, (7)) = ~2(m=1) (13)

in the packing. The problem of finding algorithms to design A,

packings for arbitraryn and N has been studied by manyThe result then follows. ™

researchers in applied mathematics and information thedreorem 1 provides insight into the rate at which the density
(see [36], [39], [40], etc.). The Rankin bound (see for exampiftows as a function of the minimum distance. This result
(23], [36], [39]) gives an upper bound on the minimunspecifically verifies the asymptotic results in [23] for the one-
distance for line packings as a function of and N > m  dimensional subspace case.
and is given by [23], [36] The bound in Theorem 1 yields a new upper bound on the
minimum distance of Grassmannian line packings. The Ham-
(m — 1)N. 8) ming bound on the maximum minimum distance achievable by
m(N —1) a Grassmannian line packing of a fixed si¥és the maximum

Another useful proberty of a packing besides the minimurrr?dius of the metric balls before any two metric balls overlap.
property P g Theorem 2:For any N line packing inG(m, 1),

distance is the density. To define the density of a line packing,

S(W) <

consider a metric ball irg(m,1). Let P, denote the line 1\ Y/ @m=1)

generated by a vector € Q,, (i.e. the column-space of the (W) <2 N : (14)
vector v). The ball of radiusy in G(m,1) around the line Proof: This follows by using the Hamming bound on
generated byw; is defined as codesize [23],

Buw,(v) = {Py € G(m,1) : d(v,w;) <~}.  (9) Nu(B(5(W)/2)) < 1.

|
Note Bounds on the existence of line packings of arbitrary radius
Bw, (7) N Bw,(7) = ¢ (10) also follow from Theorem 1 using the Gilbert-Varshamov

bound on codebook size. The Gilbert-Varshamov bound is

btained by finding the maximum number of metric balls of a

esired minimum distance that can be packed without covering
(m, 1).

gl Theorem 3:Let N(m,d) be the maximum cardinality of a

line packing inG(m, 1) with minimum distancej. Then

for k # 1 wheny < §(W)/2 where¢ is the empty set. Metric
balls inG(m, 1) can be geometrically visualized as sphericaﬁ
caps orf2,,. Thus the ballBy, () is the set of lines generated
by all vectors on the unit sphere that are within a chord
distance ofy from any point in€2,, N Py, .

The normalized Haar measure 6x, introduces a normal-
ized invariant measurg on G(m, 1). This measure allows the 672m=1 < N(m,d) < (5/2)‘2(’”‘1) . (15)
computation of volumes of sets withfi(m, 1) [38], and thus Proof: The Gilbert-Varshamov bound applied to line
can be used to determine the percentag€ (@f,1) covered packing says that a packing of si2é = M + 1 exists when
by the metric balls of a line packing, called the density of a7.(B(5)) < 1 [23]. Using the fact thap(B(65)) = §2(m=1)

line packing. The density of a line packing is defined as  the Hamming bound, and solving fé¥ gives (15). ]
N Finding the global maximizer of the minimum distance
AW) = p (U B (6(W)/2)> for arbitrary m and N is not easy either analytically or
= numerically [36]. For this reason it is often most practical
N to resort to random computer searches; for example see the
— Z“ (Bw, (6(W)/2)) extensive tabulations on [37] that have been computed for the
=1 real case. In some cases closed-form solutions are available,
= Nu(B(6(W)/2)) e.g. whenN = 2m = p® + 1, where p is prime and

« is a positive integer, conference matrices allow explicit
where B(6(W)/2) is an arbitrarily centered metric ball ofconstructions of packings [39].

radius§(W)/2.

Closed-form expressions for the density of Grassmannian
subspace packings are often difficult to obtain [23]. In the case . . .
of line packings, though, we have found a way to calcula}e In [14], [15] itis shown that an optlmal bee}mformmg vector
the density exactly. The result is proved in Theorem 1. or MRT systems s the dom_mant right singular vector of

Theorem 1:For any line packing irg(m, 1), H with H defined as in Section Il. Thereforey /gy that

IV. CODEBOOKANALYSIS AND DESIGN

4 . .
_ 2(m—1) Note that [22] evaluated the area ratio to derive the MISO outage
A(W) =N (5(W)/2) : (11) probability of quantized beamformers.



satisfies (6)(W = Q) is an optimal MRT solution. A MIMO systemsTherefore the MISO quantized beamforming

restatement of this is that the optimal vector solves analysis contained in [24], [25] is directly applicable to MIMO
HarH e 19 systems.
WMRT = atg T [ HY Hx|". (16) " A corollary to Lemma 2 follows from observing that the

optimal beamformer is actually defined by a line.

Recall thatarg max in this case (a}s mentioned in Sectio_n Corollary 1: The line generated by the optimal beamform-
“). returns only one (.JUt. of possibly many gIob_aI maX"ing vectors for a MIMO Rayleigh fading channel is an
mizers. Therefore, it is important to note that W, zr

L , o : isotropically oriented line ifC*: passing through the origin.
Jjo
satisfies (16), thene’®wapr also satisfies (16) SlnceTherefore, the problem of quantized transmit beamforming

|WJI;,IIRTHHHW]WRT‘2 = |€7j¢Wf4RTHHH€j¢WMRT|2. . . . ..
Thus the optimal beamforming vector obtained from (16) i a M!MO cor_nmunlcgnon S}V/[Stem reduces to quantizing an
not unique Isotropically oriented line irC*¢.

To find an optimal codebook we need to define an encoding
ction and a distortion measure. The optimal transmit beam-
ormer and receiver combiner maximize the receive SNR by

This property can be restated in terms of points on a
complex line. Because of the properties of the absolute val

function, if w = w (using the equivalence relation define S . )
in Section Ill) thenw and w are both global maximizers maximizing the equivalent channel gl in (3). Therefore

and thus provide the same performance. The authors in [ use an encoding function at the recei@y : C->*: —
recognized this point and used this result in designing th&'1> W2; - -, wy} that selects the element of the codebook
vector quantization algorithm for codebook design. that maximizes the equivalent channel gain. Thus,
Let H be defined as in Section Il with all entries indepen- 5
dent. The distribution oX = H”H is the complex Wishart Qw(H) = arg [haxs [ Hwi - @
distribution [41]. An important property of complex Wishart o
distributed random matrices that we need is summarized Notice that this encoding function is not solely a function of
Lemma 1. the maximum singular value direction in the matrix channel
Lemma 1:(James [41], Edelman [42]) IX is complex case. The explanation is that situations arise where it is better
Wishart distributed, therX is equivalent in distribution to to use the quantized vector that is close to some unit norm
UXUH whereU is Haar distributed on the group of, x M, linear combination of thel/, singular vectors. For example,
unitary matrices and& has distribution commonly found in certain channels where all of the singular values are equal
[42]. would fall into this case.
Thus a matrix of i.i.d. complex normal distributed entries is To measure the average distortion introduced by quantiza-
invariant in distribution to multiplication by unitary matricestion, we use the distortion function
From this it is easily proven that the complex Wishart distribu-
tion is invariant to transformation of the forivi” (-)V where G(W) = Ex [\ — |[HQw(H)|3]
V € Uy, whereldy,, is the group of\/, x M, unitary matrices.
This is a trivial property in the case of the single transmithere \; is the maximum eigenvalue cH”H and the
antenna distribution because of the commutativity of compleffective channel gain for an optimal MRT beamformer. An
numbers, but this property has highly non-trivial implicationgpper bound is
for M, > 1. A very important property of Haar distributed

matrices that will be exploited later is given in the following M, 5|
lemma. G(W) =En [\ — Y\ [uff Qu (H)|

Lemma 2:(Marzetta & Hochwald [43]) LefU be a Haar =1 .
distributedM; x M, unitary random matrix. Iv € Q,,, then < Ey [/\1 Y |u{{QW(H)|2}
Uv is uniformly distributed ort2,y, . o

One solution to (16) has a distribution equivalent to = Eu [M] En {1 — [uf’ Qw (H)| (18)
UHW]WRT = [1 oo --- O]T or rather WNMRT =
U1 00 --- 07 with U given in Lemma 1. SincdJ is where\; > Xy > ... > Ay, > 0 and uy,ug,...,up,

Haar distributed ord{,;, and[1 0 0 --- 0]7 is a unit vector, are the eigenvalues and corresponding eigenvectoEs oH.
Lemma 2 states that ;g = U[1 00 --- 0]7 is distributed The inequality in (18) follows from the independence of the
uniformly on,,, . It similarly follows that the columns oJ  eigenvalues and eigenvectors of complex Wishart matrices
and any unit norm linear combination of columns Gfare [38], [41].
uniformly distributed on€2,y, . The intuition behind the bound in (18) is that the first factor
This result, taken along with Lemma 1, reveals a fundameis-an indication of channel quality on average while the second
tal result about quantized beamforming systems that until thisctor is an indication of the beamforming codebook quality.
point, to the best of the authors’ knowledge, has never besing the interpretation oW as a line packing and that;
shown. The distribution of the optimal beamforming vectas uniformly distributed orf,,,, it follows that
is independent of the number of receive antennas. Thes
problem of finding quantized beamformers for MISO systems is
the same problem as that of finding quantized beamformers for

2
Pr (1 ~ o, (H)|" < 0 (ZV)> =AW). (19)



Thus by (19) and Theorem 1, Section V for determining rules-of-thumb on the selection of
(W N to meet specific performance requirements.
G(W) < Eg [M] ( ( )A(W) r(1- A(W))) (20) A QMRT codebook designed according to tBeassman-

4 nian beamforming criteriomises a codebook matr® given
S(W)\ 2l /52w by
=FEg[M] |1+ N ((2)) <(4) - 1) . W = arg max §(X). (22)
Xeuqy,
(21)

Practical considerations such as hardware complexity often

The bound in (20) was obtained by observing that thefaotivate imposing additional constraints on the elements of
are two cases of the channel corresponding to if the iige codebook. The&rassmannian beamforming criteriois
generated byu; is or is not a member of a metric ball ofStill applicable to the design of these constrained codebooks.
one of the codebook lines. The line generateduyis in a S°lving for the optimum beamforming vector, however, re-
metric ball with probability A(W). When the line is inside duires restricting the line packing matw to be an element

: 2 _ PWwW of a class of constrained beamforming vectors where
of a metric ball we know that — [uff Q. (H)|" < Z(¥, DN N 9 =
but when the line is not in a metric ball we can only state théM: M,

trivial bound thatl — |u{wi(H)]2 < 1. These two cases and. One popular (_:onstralnt, as dlscussec_i in Section I, is to
. . L mpose the requirement that every coefficientwf have the
Theorem 1 then give (21). In conclusion, minimizing (21

corresponds to maximizing the minimum distance betwe gme constant modulus. In these QEGT systems [17], [20],

. . . ={Veuy, : k1, [Viygl = -i=}. A Grassmannian
any pair of lines spapned t.’y j[he codebo'ok'vectors. .Thgégmforming QEGT codebook is tﬁe?designed by solving
we propose the following criterion for designing quantize

beamforming codebooks. W = arg max 0(X). (23)
Grassmannian Beamforming Criterion: Design XeVar,

the set of codebook vectors{w;}?, such that Numerical optimization techniques (such as those in [40])
the corresponding codebook matrixW maximizes are often ineffective in designing QEGT codebooks. For this
reason random search based designs often yield codebooks
éth the best minimum distance. Suboptimal methods for
esigning QEGT codebooks were proposed in [17], [20]

wireless systemgGrassmannian line packingsre the key to ut often perform worse than QEGT codebooks designed

codebook construction. Thus beamforming codebooks can Y5ing (23)| (S%et(ﬁEGTnglPefirgegt i Zin Secti_(lnnblwffor .
designed without regard to the number of receive antenr%&de)éaml? e()j. ther d? ﬁo €000 Eare ava:ja € rZT Ae
by thinking of the codebook as an optimal packing of line§PUEDOOKS designed from t € non-co erent co esin [44]. As
instead of a set of points on the complex unit sphere stated earlier, the codebooks in [44] are often optimal or near
One benefit of making the connection between cédeboofgtimal even for the unconstrained QMRT case. Therefore,
; g the col L : Ofhere is often no difference in performance between QMRT and
construction and Grassmannian line packing is that it provid ?EGT when using codebooks designed with the Grassmannian
an approach for finding good codebooks, namely leveragi

- . - beamforming criterion.
work that has already been done on finding optimal line . . . :
. . Another constraint of interest is to use only antenna combi-
packings. In the real case this problem has been thoroughl

studied and the best known packings are cataloged at [37]. E(%(}lons that transmit on subsets of antennas. This corresponds

X . usi i [ <
the complex case, the single-antenna non-coherent code%\(} ysing beamforming vectors that pick a numttex. M <

n ;

o . . M, and then select the besf antennas to transmit on. Thus
[44] often have large minimum distances (see the dlscusswé choose one of the non-empty members of the power set of
in [22]). Other times it is possible to find codebooks usin by P

analytical [39] or numerical [36], [40] methods. Some exampl Lo M} a'nd transmit on th.'s antenn'a ;ubset. Gengrahzgd
. . - . ."Subset selection, as we call this transmission method, is a dis-
codebooks are given in Appendix A in Tables | to V. Notice

that whenN < M, maximally spaced packings are trivial:crete system that can be represented vid/arbit codebook.

. ; . If M, is large, we might wish to use fewer thad, bits for

simply take N columns of anyM; x M; unitary matrix. . . .
: . ’ . our generalized subset selection system. In this case we would
It follows that selection diversity represents a special form . o
i : ; . pick the codebook matri¥V that satisfies

of quantized beamformer designed using Brmssmannian
beamforming criterion. W = arg Jnax 0(X). (24)

Another advantage of the connection to Grassmannian line s,
packing is that the bounds in Theorems 2 and 3 and the Rankjherelﬁt is given by the set of matrices mﬁt where each
bound can be used to judge the quality of any given codeboaklumn can be represented as the normalized sum of unique
For example, for a gived/, and N > M,, the Rankin bound column vectors ofl 5, Sincte\f\}t has finite cardinality, the
gives a firm upper bound of(W). Unfortunately in most global maximum to (24) can be obtained by performing a
cases the Rankin bound is not attainable and in effect quiteite force search over all matrices Irj; . GSS codebooks
loose [39]. The Hamming bound given in Theorem 2 can hgovide better performance than selection diversity because
useful for largeN or M; but is looser than the Rankin boundadditional vectors are included to allow a better quantization
for small N and M;. These bounds will be of further use inof the optimal beamforming vector.

(S(W) = minlSdeN \/ 1— }wal|2‘
This criterion captures the essential point about quantiz
beamforming codebook design for Rayleigh fading MIM



V. BOUNDS ON THECODEBOOK SIZE z are unit norm). With MRT, the ergodic capacity of this scalar

The codebook size naturally has an impact on the pdfding channelis given by
formance of a quantized beamforming system. To obtain a . A&
good approximation of the optimal beamforming vector, it is Cunguant = En [log2 (1 + No )} (25)
desirable to choos¥ large. On the other hand, minimizing theyhere ), is the maximum eigenvalue & while with quan-
required feedback motivates choosigsmall. In this section tjzation it is given by
we derive the minimum value oV required to achieve full [HO., (H)|26
diversity order with codebooks designed using @rassman- Cquant = En [log2 <1 + w”)] . (26)
nian beamforming criterionWe also find approximate lower No
bounds onV given an acceptable loss in capacity or SNR dudotice that we are computing the ergodic capacity of the
to quantization. These bounds function similarly to the Gilberequivalent fading channel and we are not attempting to fully
Varshamov bound in Theorem 3 using an approximation to tRgtimize over the input distribution given partial channel

Rankin bound as the minimum distance. information as in [24].
To compute a rule-of-thumb for choosingy based on

a desired capacity loss, we approximate the quantized and

unquantized capacity as
Closed-form results on the average probability of symbol

error for quantized beamforming and combining systems are Cquant = En |:10g2 (

difficult if not impossible to determine. Therefore we use

the diversity order performance metric defined in Section #" MNE

which is indicative of the high SNR performance of various Cunquant = En {Ing < N t)] . (28)

linear modulation schemes. The following theorem, proved ) ooyl .

in Appendix B, determines a bound o that guarantees a 1he capacity loss due to quantization for high SNR (using the

diversity order ofM, M, for codebooks designed according€chniques that bounded distortion) is given by

A. Diversity Order

HQw (H)[3&
No : )] (@7)

to the Grassmannian beamforming criterioim Section 1V C . —F _10 14 ST
assuming MRC at the receiver. The trick in proving the ‘% al B2 No /|
theorem is to recognize that the codebook matrix resulting i [HOQyw (H)||2&,
from the Grassmannian beamforming criteriaa guaranteed — En |log, (1 + Noﬂ
to be full rank. This full rank assumption can be trivially - AENT
satisfied if a rank degenerate codebook withl a dimensional < Ey |logy (1 + Jif t)
null space is designed fa¥ > M, by replacing thei vectors L 0
in the codebook that can be written as linear combinations of — Ey |log, (1 + Mé luy QW(H)E)} (29)
the other(V — K) vectors with theK orthogonal vectors that L No
span the null space (see Lemma 3). S(W)\ 2= D)
Theorem 4:I1f N > M, then theGrassmannian beamform- ~ Cunguant | 1 =N (2
ing criterion yields QMRT, QEGT, and GSS codebooks that
have full diversity order. _N (5(W)>2(Mt1) oo (1 <5(VV)>2
Equality in Theorem 4 is achieved wheN = M;. In 2 82 2
this case, the codebook matrix is simply a unitary matrix (30)
(i,e. WHW = I,,) and thus the codebook is any set of 2(M,—1)
orthonormal vectors. Unfortunately, it can be readily shown ~ Cunquant <1 _N (‘S(VV)> ) ) (31)
(using the unitary invariance of the Gaussian distribution) that 2

this is equivalent to selection diversity. While such codebookse result in (29) follows from zeroing the other channel
provably obtain full diversity order, choosiny > M; will  singular values, and (30) results from using the minimum
more closely approximate the optimal MRT solution and resifistance boundaries of the metric balls and the high SNR

in a larger array gain. approximation toC.,,,quan:- Therefore an approximate bound
on the normalized capacity 108,55 = Cioss/Cunquant, IS
B. Capacity given by 1— N (@)2(Mt_l)

The capacity loss associated with using quantized beamote that for the cases of larg¥, the Rankin bound on

forming is an important indicator of the quality of the quantiza{; W) in (8) in this case is approximatel [M—1 gypstitut-
tion method. To determine this loss, we compare the capacit M,

assuming perfect beamforming with the capacity assuming ]{/9 rbd(V\;), we Obta'.? al selection criterion (rule-of-thumb)

use of quantized beamforming. Using this difference we deri ased on capacl y' OSS. .

a criterion for choosingV based on an acceptable capacit apacity Loss Criterion: Given an acceptable normalized

loss apacity losC},ss, chooseN such that
Consider the system equation in (1) with the scalar effective 4 M, Me—1

channel produced by beamformia§ Hw (recall thatw and M, —1 :

Nz (1_@053)( (32)



Equivalently, the corresponding number of bits of feedbad®nce again, this bound is only approximate because it uses
(b = log, N) should be chosen to be the Rankin bound approximation but yields intuition into the
L M choice of N.
b 2 logy (1 — Closs)+2(M;—1)+(M;—1) log, < t 1> Following the analysis in Section V-B, the corresponding

M; = approximate number of bits of feedbadk= log, N) should
The last term corresponds to at mae, — 1 thus at most pe chosen to be

3(M; — 1) bits of feedback or less are needed depending on

the tolerable loss. b2 log, (1= ) +2(M; — 1) + (M; — 1) log, ( M, )

This bound is once again approximate, but it gives insight My —1
into the feedback amount required. Fig. 2 provides further g (1 M- 1) (35)
intuition by showing a plot of the capacities forla 2 systems 2 aM, )

using unquantized beamforming and three different types of

Grassmannian beamforming systems: QMRT wih= 64, In (35) at mosB(M;—1)—log, (1 - J\f}w_tl? bits of feedback

QMRT with N = 16, and selection diversity. QMRT withh = or less are needed depending on the tolerable loss.

64 provides approximately a 1.5dB gain compared to selectionAs an aside, we should point out thaty [\;] can be

diversity and a 0.5dB gain compared to QMRT with= 16. expressed in a closed-form integral expression using tech-

This plot clearly shows the capacity benefit of increasMg niques from [15], [18], [45]. This is of particular interest if
bounds onN were desired that were a function of an SNR

e ] 0 ] loss that was not normalized. In [18], [45] the probability
18]~ Unguanized density function of the largest singular value of a central,

complex Wishart distribution is derived, while the cumulative
distribution function is derived in [15]. These results can
also be used to derive integral expressions for the outage
] probability as a generalization of results in [22].

Capacity (bps/Hz)

1 VI. SIMULATIONS

7 We simulate three different quantized beamforming
i schemes: quantized maximum ratio transmission, quantized
equal gain transmission, and generalized subset selection. All
simulations used binary phase shift keying (BPSK) modulation
o s 10 15 z‘os‘/ND s 3 w0 4 5 and i.i.d. Rayleigh fading (wherd, ; is distributed according
to CN(0,1)). The average probability of symbol error is
Fig. 2.  Capacity comparison of unquantized beamforming with thregstimated using at least 1.5 million iterations per SNR point.
Grassmannian beamforming schemes fdr;a 2 system. Codebooks for the QEGT and QMRT systems were designed
based on the proposd&grassmannian beamforming criterion.
The codebooks were found using the optimal constructions

C. Signal-to-Noise Ratio available in [39], [44]. GSS codebooks are globally optimal
Consider the expression for the normalized SNR lossince searching over all possible codebooks is feasible. All of
G(W), obtained from (21) the simulations assume an MRC receiver.
o G(W) QMRT Experiment # 1in the first experiment, ad/, =

(W) = M; = 3 system with QMRT is simulated with two different
B [M] guantizations and the results shown in Fig. 3. The vectors
< (1 LN (5(W)>2(M'_1) (62(W) 3 1)) in the 2 bit codebook are shown in Table IV in Appendix
- 2 4 ' A. The 6 bit codebook has a maximum absolute correlation
(33) of 0.9399. The simulated error rate curve of an optimal
_ . . . _ unquantized beamformer and the actual error rate curve for
Just as an approximate bound furis derived in Section V-B. 5 gejection diversity system are shown for comparison. Notice
given an acceptable capacity loss due to quantization, a Crifes; QMRT provides a 0.2dB gain over selection diversity for
rion for choosinglV, based on an acceptable normalized SN o same amount of feedback. Using 6 bits instead of 2 bits of
loss G, follows from (33). Substituting in the approximateigednack provides around a 0.9dB gain. The system using 6
Rankin bound of§(W) 5 |/ #4=*, we obtain the following pits performs within0.6dB of the optimal unquantized MRT

approximate criterion. system.

SNR Criterion: Given an acceptable normalized SNR I6ss ~ QMRT Experiment # 2in [24], vector quantization tech-

chooseN such that nigues were used to design QMRT codebooks. In this experi-
N> 1-G ment, we compare a system using Grassmannian beamforming

M —1 . . . . . .
aM, ; the Grassmannian beamforming criteripwith a system using

(Mt_1>Mt71 (1 ) (34) (i.e. quantized beamforming using a codebook designed with
T TAM,



10 ‘ ‘ ‘ s codebook. Thus we can use two fewer bits of feedback and
= Sommme e actually maintain the average symbol error rate performance

—— MRT/MRC

by using Grassmannian beamforming. Performance improves
by 0.5dB when changing from 3 bit new QEGT to 5 bit
new QEGT. Thus we can either gain 0.5dB and use the same
amount of feedback or keep the same performance and save
2 bits of feedback by using th&rassmannian beamforming
criterion.

H
o,
T

Average probability of symbol error

H
S,
T

—&— 3 bit New
—— 5 bit New
—6- 5hitOld

Fig. 3. Probability of symbol error for 3 transmit and 3 receive antenna
systems using QMRT/MRC, SDT/MRC, and MRT/MRC.

Average probability of symbol error

- 3 bit Design Criteria
-6— 3 bit VQ Approach

107 4

Fig. 5. Comparison of probability of symbol error for 3 transmit and 3
receive antenna systems using QEGT/MRC with the old and new codebook
designs.

Average probability of symbol error

107F

Comparison ExperimentThe final experiment, shown in
Fig. 6, compares GSS and QMRT codebooks for a 4 transmit
and 2 receive antenna system. The 4 bit codebook has a
maximum absolute correlation of 0.5817, while the 6 bit
codebook has a maximum absolute correlation of 0.7973. A
] 3 ) ) 4 bit QMRT system outperforms a 4 bit GSS system by
Fig. 4. Probability of symbol error for 2 transmit and 2 receive anten

n . .. .
systems using QMRT codebooks designed with the proposed criterion a%aprpx_lmately 0.5dB. This illustrates that even a substantial
with vector quantization. restriction on the nature of the codebook does not severely

impact performance when designed using Grassmannian
beamforming criterion A 6 bit QMRT system has an array

a codebook designed by the Lloyd algorithm. The Grasgain of approximqtel.y around 0.5dB cqmpargd to a 4 bit
mannian beamforming codebook is shown in Table Il i®MRT system. This illustrates the benefits of increasing the
Appendix A. Codebooks containing 8 vectors were designéhount of quantization even when a significant amount of
for an M, = M, = 2 system. The results are shown iffluantization is already used.
Fig. 4. This simulation provides additional evidence of the
validity of the proposed design criterion. Thus we are able to VIlI. CONCLUSION AND FUTURE WORK
design codebooks that perform just as well as the codebooksn this correspondence we derived a codebook design cri-
performed using computationally complex vector quantizatiqgrion for quantizing the transmit beamforming vectors in a
algorithms. MIMO wireless communication system. By bounding the SNR
QEGT Experimentin this experiment, two different meth- degradation for a given codebook size, we showed that the
ods of QEGT codebook design are compared on a 3 transpidblem of designing beamformer codebooks is equivalent to
and 3 receive antenna system. The results are shown in Kigassmannian line packing, which is the problem of maxi-
5. The new method refers to codebooks constructed usimglly spacing lines in the Grassmann manifold. To approxi-
the Grassmannian beamforming criteriothe 3 bit new mate the feedback requirements, we used the Rankin bound
codebook has maximum absolute correlation of 0.5774 aawng with several newly derived results for line packings
the 5 bit new codebook has maximum absolute correlation €iich as a closed-form density expression, the Hamming upper
0.8836. The old method refers to the codebook design methgslind on the minimum distance and codebook size, and the
outlined previously in [17], [20]. Gilbert-Varshamov lower bound on the codebook size.
A 3 bit new design method QEGT codebook performs A point that we did not address in detail pertains to
approximately the same as a 5 bit old design method QE@mMplementation. Grassmannian beamforming will likely be
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—&- 4 bit GSS/MRC 1 0
—— 4 bit QMRT/MRC 0 1

—7— 6 bit QMRT/MRC .
Absolute Max Correlation = 0
107 1 Absolute Theoretical Max Correlation =

TABLE |
TRIVIAL CODEBOOK GENERATED FORM; = 2 AND N = 2 (ONE BIT).

-0.1612 - 0.7348j| -0.0787 - 0.3192j| -0.2399 + 0.5985j| -0.9541
-0.5135 - 0.4128j| -0.2506 + 0.9106j| -0.7641 - 0.0212j| 0.2996

Absolute Max Correlation $.57735
Absolute Theoretical Max Correlation = 1/3

TABLE I
CODEBOOK GENERATED FORM; = 2 AND N = 4 (TWO BITS).

Average probability of symbol error

Fig. 6. Comparison of probability of symbol error for 4 transmit and
receive antenna systems using QMRT/MRC and GSS/MRC. % Proof of Theorem 4

Before proving Theorem 4, we need to prove the following
lemma that establishes th® is full rank for codes designed
implemented in a look-up table format. When the channel &cording to theGrassmannian beamforming criterion.
slowly varying, it may be possible to reduce the necessaryLemma 3:1f N > M, then W is full rank when designed
number of bits sent back by using some successive refinemesing the Grassmannian beamforming criteriocior QMRT,
technigues based on channel correlation. One solution isQ&GT, or GSS.
have a series of codebooks for different valuesNofthat Proof: Suppose thatv > M; and all optimal maximum
support successive refinement along the lines of [46]. minimum distance packings are not full rank. ' be an
Another important point in a practical implementation is theptimal codebook matrix with & — dimensional null space.
effect of feedback error and delay in the feedback link. Weet w;,, w;,, ..., w; . be columns that form a basis for
did not address this issue in our work because we modeled the column space oW. Because the columns &V do not
feedback link as error and delay free. An extensive simulatispanC*+ there exists an orthonormal basis, vo, ..., vk
and/or analytical study of beamformer quantization such & the null space. Then we can construct a new, full rank
that in [47] is needed. These effects will play an important roodebook matrixX with §(W) < §(X) by settingx; = v;
in performance in deployed MIMO systems using quantizdar | < K andx; = w;,_,, for K <1 < N. This is a
beamforming. contradiction. We can therefore trivially construct a full rank
Finally, one limitation of the work proposed herein is thagodebook. ]
we considered only the transmission of a single data stream. [[Now we prove Theorem 4. This proof holds for any quan-
is well known, however, that MIMO channels can increase ctized beamforming technique (not just Grassmannian beam-
pacity by supporting the transmission of multiple data strearff@@ming) that uses a codebook with at leddt vectors and
simultaneously ([1], [2], etc.). In the general case with fuffas a full rank codebook matrix.
channel knowledge at the transmitter, it is possible to transmit Proof: First consider the receive SN&;T"./N,. Since
on multiple right singular vectors with the number of vector§: and N, are assumed fixed, we only need to consiigr=
and the power on each vector being determined by the desitefHw|>. It has been shown for a fixed realization Bf
optimization criterion. For example, the capacity achievingat the vectorsy andz that maximize|z” Hw| are the left
solution is determined by waterpouring on the channel’s noAnd right singular vectors df corresponding to the largest
zero singular values. A natural extension of our approaéigular value offf [14], [15]. This solution has been shown
would be to derive codebooks for quantizing each of the singi@ achieve a diversity order ai/,. M; [13], [15]. Quantized
lar vectors. While our Grassmannian codebooks could be usegamforming can perform only as good as the unquantized
they do not retain the orthogonality between the quantizéase therefore the achievable diversity order with quantized
singular vectors. Constructing codebooks for simultaneoudigamforming is upper bounded By, ;. To prove equality,
quantizing multiple singular vectors is an interesting topic fo¥e will now show thati/,. M, is also the lower bound on the
future work. achievable diversity order.
For anN vector beamforming codebook system with MRC

at the receiver, the effective channel gain is given by
APPENDIX

T, = Hw,|[3. 36
A. Tables of Line Packings 12‘%\1” willz (36)
Examples of the packings found for variod$; are given in Because the columns of the codebook maWk spanCM:,
Tables I-V. The codebooks were found using random search@5 can be factored via a singular value decomposition (SVD)
or through some of the constructions presented [39] dependintp the formW = U, [D 0]U, whereU; is an M; x M,
on the choice of parameters. unitary matrix,0 is an M; x (N — M,) matrix of zeros,U,
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0.8393 - 0.2939j] -0.3427 + 0.9161j] -0.2065 + 0.3371] I 0] Le2mi/3
-0.1677 + 0.4256j| 0.0498 + 0.2019j| 0.9166 + 0.0600j f ‘/% 1 ie47rj/3
0.3478 - 0.3351) 0.1049 + 0.6820]| 0.0347 - 0.2716] V2ol T 2| V2
0.2584 + 0.8366j| 0.6537 +0.3106j| 0.0935 - 0.9572] v R v 0
-0.7457 + 0.1181j] -0.7983 + 0.3232] L e2mi/3 | Ledni/3 T L edmi/3 0
-0.4553 - 0.4719j| 0.5000 + 0.0906j V2 0 V2 0 ‘( e273/3 | L Amj/3
Absolute Max Correlation = 1.84152 L amisa |1 omi vz© 2,
. . P—= L_edmi/ _¢2mi/3 0| Le2mi/s
Absolute Theoretical Max Correlation = 3/7 2 2 2
Absolute Max Correlation = 0.5

TABLE Il
CODEBOOK GENERATED FORM; = 2 AND N = 8 (THREE BITS).

Absolute Theoretical Max Correlation = 5/21

TABLE V
CODEBOOK GENERATED FORM; = 3 AND N = 8 (THREE BITS).

1/V3 J/V3 | =1/V3 | —j/V3
1/V3 | =1/V3 1/V3 | =1/V3
1/V3 | —j/v3 | -1/V3 i/V3

Absolute Max Correlation =/3 Applying this bound we find that

Absolute Theoretical Max Correlation /3

TABLE IV r, > 7||HD||1
CODEBOOK GENERATED FORM; = 3 AND N = 4 (TWO BITS).

D[M YA

> — e

= NM,
D2

[M,,Mf]
is an N x N unitary matrix, andD is a real diagonal matrix = NM, m3X|H[” | : (43)

with Dy 1) > D29 > ... > Dyag, i, > 0. By the invariance
of complex normal random matrices [4F U is equivalent
in distribution toH. Therefore,

The lower bound ofr,. is the effective channel gain of a sys-
tem which selects the largest gain channel from ambhd/;
i.i.d. complex Gaussian random variables wiby,, a7, > 0.
Diversity systems of this form have been shown to achleve an

M, M, diversity order [28], [49]. The scale factor GM

Now using matrix norm inequalities taken from [48], stated fg¥an simply be interpreted as a loss of array gam 'but not

the real case but easily seen to extend to the complex cadgcting the asymptotic diversity slope. o
we find that Combining the lower and upper bounds on diversity order,

we have shown that at high SNR, quantized beamforming

I = 1r<nzaéx ||HUHW1||2

4

T, (37)

I, = max ||HU1 Wsz (38) obtains a diversity order af/,. M;. The guarantee of diversity
1sisN order is an important performance indicator for the quantized
> —||HU{1’W||% (39) beamforming system. Note that this proof also verifies the
M, diversity results in [12], [13], [17]. n
Using the SVD, (39) can be rewritten as
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