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Abstract— Transmit beamforming and receive combining are
simple methods for exploiting the significant diversity that is
available in multiple-input and multiple-output (MIMO) wireless
systems. Unfortunately, optimal performance requires either
complete channel knowledge or knowledge of the optimal beam-
forming vector which are not always realizable in practice. In
this correspondence, a quantized maximum signal-to-noise ratio
(SNR) beamforming technique is proposed where the receiver
only sends the label of the best beamforming vector in a prede-
termined codebook to the transmitter. By using the distribution
of the optimal beamforming vector in independent identically
distributed Rayleigh fading matrix channels, the codebook design
problem is solved and related to the problem of Grassmannian
line packing. The proposed design criterion is flexible enough to
allow for side constraints on the codebook vectors. Bounds on
the codebook size are derived to guarantee full diversity order.
Results on the density of Grassmannian line packings are derived
and used to develop bounds on the codebook size given a capacity
or SNR loss. Monte Carlo simulations are presented that compare
the probability of error for different quantization strategies.

Index Terms-Diversity methods, Grassmannian line packing,
limited feedback, MIMO systems, Rayleigh channels.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) wireless systems
make use of the spatial dimension of the channel to provide
considerable capacity [1], [2], increased resilience to fading
[3]–[5], or combinations of the two [6]–[8]. While the spectral
efficiency improvement offered by MIMO communication
is substantial, the reductions in fading obtained by trading
capacity for spatial diversity should not be overlooked [9],
[10]. In narrowband Rayleigh fading matrix channels, MIMO
systems can provide a diversity in proportion to the product
of the number of transmit and receive antennas. Diversity in
a MIMO system can be obtained through the use of space-
time codes (see e.g., [3]–[5]) or via intelligent use of chan-
nel state information at the transmitter (see e.g., [11]–[17]).
Transmit beamforming with receive combining is one of the
simplest approaches to achieving full diversity and has been
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of interest recently [12]–[20]. Beamforming and combining
in MIMO systems are a generalization of the vector chan-
nel beamforming/combining methods found in single-input
multiple-output (SIMO) combiners and multiple-input single-
output (MISO) beamformers which provide significantly more
diversity. Compared with traditional space-time codes [3]–
[5], beamforming and combining systems provide the same
diversity order as well as significantly more array gain [21]
at the expense of requiring channel state information at the
transmitter in the form of the transmit beamforming vector (see
for example [14]–[20]). Unfortunately, in systems where the
forward and reverse channels are not reciprocal, this requires
coarsely quantizing the channel or beamforming vector to
accommodate the limited bandwidth of the feedback channel.

In this correspondence, we consider the problem of quan-
tized beamforming for independent and identically distributed
(i.i.d.) MIMO Rayleigh flat-fading channels when the transmit-
ter has access to a low bandwidth feedback channel from the
receiver and the receiver employs maximum ratio combining
(MRC). To support the limitations of the feedback channel, we
assume the use of a codebook of possible beamforming vectors
known to both the transmitter and receiver. The codebook is
restricted to have fixed cardinalityN and is designed off-
line. The receiver is assumed to convey the best beamforming
vector from the codebook over an error-free, zero-delay feed-
back channel. A primary contribution of this correspondence
is to provide a constructive method for designing a quantized
beamforming codebook. We show, using the distribution of the
optimal unquantized beamforming vector, that the codebook
design problem is equivalent to the problem of packing one
dimensional subspaces known as Grassmannian line packing1.
These codebooks are a function of the number of transmit
antennas and the size of the codebook but are independent
of the number of receive antennas. We show that a sufficient
condition for providing full diversity order is that the codebook
cardinality is greater than or equal to the number of transmit
antennas. We consider codebooks with additional constraints
imposed on the beamforming vectors such as constant modulus
entries or generalized subset selection.

The connection between Grassmannian line packing and
quantized beamforming allows us to leverage results from the
subspace packing literature to find constructive methods for
deriving codebooks and also provides insight into codebook
quality. In order to understand how the amount of feedback
relates to system performance, we derive a new closed-form
expression for the density of line packings based on a result

1Recall that Grassmannian line packing is the problem of spacingN lines
that pass through the origin in order to maximize the sine of the minimum
angular separation between any two lines.
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from [22]. The density expression verifies the asymptotic
subspace packing density presented in [23] and allows us to
derive the Hamming bound and the Gilbert-Varshamov bound
on codebook size. We use these results to obtain approximate
bounds for choosing the codebook size based on a specific
allowable capacity or average signal-to-noise ratio (SNR) loss.

Unquantized beamforming for MIMO systems was first
proposed in [13]–[15]. Prior work on quantized beamforming
proposed in [24] addressed the problem of quantizing the
maximum ratio transmission (MRT) [13]–[15] solution, which
we call quantized maximum ratio transmission (QMRT). The
beamforming codebooks proposed therein were obtained us-
ing the Lloyd Algorithm and a specific codebook design
methodology was not developed. Additionally the results were
specialized only to MISO systems though, as we show, they
are applicable to the MIMO case as well. The problem of
quantizing the equal gain transmission (EGT) solution was
proposed in [25]. The solution proposed therein uniformly
quantized the phases of the channel and does not make
the connection to line packing. Different codebooks were
designed in [17], [20], extending the work in [25], but are
still suboptimal since they were required to use codebooks
containing a set of orthogonal vectors to satisfy the supposition
for the proof of diversity order. Variations of QMRT and
QEGT are part of the WCDMA closed-loop diversity mode
[26]. The proposed solutions are specialized for two transmit
antennas and essentially quantize the channel from one of the
antennas. Transmit antenna selection for MIMO systems is a
special case of quantized beamforming and has been proposed
in [27], [28] for the MISO case and [11], [12] for the MIMO
case.

The relationship between quantized beamforming and
Grassmannian line packing was observed in [22], [29]–[31]
in parallel and independently of our work in [32]–[35]. Their
analysis, however, is explicitly for the MISO scenario and
does not encompass MIMO beamforming and combining sys-
tems. Additionally, [22], [29]–[31] do not specifically address
the design of hardware constrained beamformers. Imposing
additional constraints on the beamforming vector codebook,
such as equal gain coefficients or selection columns, makes
limited feedback precoding more practical than with arbitrary
codebooks (e.g., see the closed-loop mode in the WCDMA
standard [26]). In addition, we propose new results in Grass-
mannian line packing that are of use in judging the optimality
of the designed quantized beamformers. Our analysis considers
the amount of feedback required given acceptable losses in
capacity or SNR.

This correspondence is organized as follows. Section II
reviews beamforming and combining in MIMO systems and
states the quantized beamforming problem. Grassmannian line
packing is reviewed in Section III, and some results on
the minimum distance and density are derived. Section IV
examines the distribution of the optimal beamforming vector,
proposes a distortion criterion, and then relates the problem
of quantizing this vector to the problem of Grassmannian
line packing. Different performance criteria are studied in
Section V to provide some insight on selecting the codebook
size. Section VI presents Monte Carlo simulation results that
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Fig. 1. Block diagram of a MIMO system.

illustrate performance as a function of the amount of feedback
available. The correspondence concludes in Section VII with
some suggestions for future work.

II. SYSTEM OVERVIEW

A MIMO system with transmit beamforming and receive
combining, usingMt transmit antennas andMr receive an-
tennas, is illustrated in Fig. 1. Suppose that the bandwidth is
much smaller than the coherence time of the channel thus the
discrete-time equivalent channel can be modeled as aMr×Mt

matrix H. Then the discrete-time input/output relationship at
baseband, given a real or complex transmitted symbols, for
this system is given by2

x = zHHws + zHn. (1)

The vectorsw andz are called the beamforming and combin-
ing vectors, respectively. The noise vectorn has i.i.d. entries
distributed according toCN (0, N0). We model the channelH
as having i.i.d. entries distributed according toCN (0, 1). The
channel is assumed to be known perfectly at the receiver. The
symbol energy is given byEs

[|s|2] = Et.
In a beamforming and combining system, the key question

is how to designw and z to maximize performance. It has
been shown [15], [16], [28] thatw and z should be chosen
to maximize the SNR in order to minimize the average prob-
ability of error and maximize the capacity. For the proposed
system, the SNR,γr, after combining at the receiver is

γr =
Et|zHHw|2
‖z‖22N0

=

(Et‖w‖22
) ∣∣∣ z
‖z‖2

HH w
‖w‖2

∣∣∣
2

N0
. (2)

Notice that in (2),‖z‖2 factors out, therefore we fix‖z‖2 = 1
without loss of generality. As well, the transmitter transmits
with total energyEt‖w‖22, therefore, we assume that‖w‖2 = 1
and thatEt is held constant for power constraint reasons. Using
these assumptions,

γr =
Er

N0
=
Et|zHHw|2

N0
=
EtΓr

N0
(3)

2We usewi to refer to theith entry of the vectorw, H[k,l] to refer to
the (k, l) entry of a matrixH, T to denote matrix transposition,H to denote
matrix conjugate transposition,| · | to denote absolute value,‖ · ‖2 to denote
the matrix two-norm,‖ · ‖1 to denote the matrix one-norm,j =

√−1, Cm

to denote them− dimensional complex vector space,Ωm to refer to the set
of unit vectors inCm, UN

m is the set ofm×N complex matrices with unit
vector columns, andEy [·] to denote expectation with respect to a random
variabley.
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whereΓr = |zHHw|2 is the effective channel gain.
In a MIMO system, unlike in a MISO system, both a trans-

mit beamforming vector and a receive combining vector need
to be chosen. A receiver wherez maximizes|zHHw| given
w is called a maximum ratio combining (MRC) receiver. The
form of this vector follows from the vector norm inequality

|zHHw|2 ≤ ‖z‖22‖Hw‖22. (4)

We already defined‖z‖22 = 1, thus the MRC vector must set

|zHHw|2 = ‖Hw‖22. (5)

This is easily seen to be the unit vectorz = Hw/‖Hw‖2.
We assume that the receiver always uses MRC.

The beamforming vectorsw and z can be designed to
maximize the SNR under different side constraints depending
on implementation issues. Since we assume optimal combining
at the receiver, we are primarily concerned with selectingw.
The four interesting cases are maximum ratio transmission,
equal gain transmission, selection diversity transmission, and
generalized subset selection. A transmitter wherew maxi-
mizes|zHHw| given z is called maximum ratio transmission
(MRT). A transmitter wherewk satisfies|wk| = 1√

Mt
for

1 ≤ k ≤ Mt is called equal gain transmission (EGT). Note
that this definition allowsw to be expressed asw = 1√

Mt
ejθ

where θ = [θ1 θ2 ... θMt ]
T and θk ∈ [0, 2π). Selection

diversity transmission (SDT) requires thatw be one of the
columns ofIMt , the Mt ×Mt identity matrix. A transmitter
wherew̃ is the sum of columns ofIMt andw = w̃/‖w̃‖2 is
called generalized subset selection (GSS). This corresponds to
vectors of the formw = 1√

K

∑K
k=1 (IMt)nk

where(IMt)nk
is

thenk
th column ofIMt andnk 6= nl for k 6= l. GSS is clearly

a generalization of SDT when more than one radio chain is
available. This method corresponds to transmitting on subsets
of antennas depending on channel conditions.

Given no design constraints on the form of the unit vectors
w or z and a fixedN0 the optimal solutions in an average
probability of symbol error sense are the beamforming and
combining vectors, respectively, that maximizeEr. For a
combining scheme that solves for the beamforming vectorw
using the feasible set3 W (W ⊆ ΩMt) with an MRC receiver,
w is given by

w = arg max
x∈W

‖Hx‖2 (6)

where arg max returns a global maximizer. Note that this
optimization returns onlyone out of possiblymany global
maximizers meaning that the global maximizer over mostW
is not unique. Notice that ifW = ΩMt , the case for an MRT
system, thenw is the dominant right singular vector ofH, the
right singular vector ofH corresponding to the largest singular
value ofH [14], [15].

In this correspondence, we consider a communication link
where channel state information is not available to the trans-
mitter, but there exists a low-rate, error-free, zero-delay feed-
back link for the purpose of conveyingw to the transmitter.
Sincew can be any unit vector in possibly a continuum of
feasible vectors(ΩMt for MRT) it is essential to introduce

3A feasible set is the set that a cost function is maximized over.

some method of quantization due to the limited reverse-link
feedback channel. A reasonable solution is to let the receiver
and transmitter both use a codebook ofN beamforming vec-
tors [24], [25]. The receiver then quantizes the beamforming
vector by selecting the best (according to (6)) beamforming
vector from the codebook and conveys the index of this vector
back to the transmitter. The main benefit of using a finite
codebook is that the number of feedback bits can be kept
to a manageable number given bydlog2 Ne. Unfortunately,
it is not obvious whichN vectors should be included in the
codebook.

To compare the performance of different quantized and
unquantized beamformers, we use the average probability of
symbol error defined asPe = EH[Pe] where the expected
value of the probability of symbol errorPe is taken over the
channelH. Two measures that are relevant when comparing
average probability of symbol error are array gain and diversity
order. A system is said to havearray gain A and diversity
order D if for SNR À 0 the average probability of symbol
error is inversely proportional toA(Et/N0)D [6].

III. G RASSMANNIAN L INE PACKING

Grassmannian line packing is the problem of optimally
packing one dimensional subspaces [36]. It is similar to
the problem of spherical code design with one important
difference: spherical codes arepointson the unit sphere while
Grassmannian line packings arelines passing through the
origin in a vector space. Grassmannian line packing forms the
basis for our quantized beamforming codebook design. In this
section, we present a summary of key results on Grassmannian
line packing and some new results. The terminology follows
from the work of researchers in Grassmannian subspace pack-
ing (see for example Sloane’s webpage [37])

Consider the space of unit-norm transmit beamforming
vectorsΩm. Let use define an equivalence relation between
two unit vectorsw1 ∈ Ωm andw2 ∈ Ωm by w1 ≡ w2 if for
someθ ∈ [0, 2π) w1 = ejθw2. This equivalence relation says
that two vectors are equivalent if they are on the same line
in Cm. The quotient space with respect to this equivalence
relation is the set of all one-dimensional subspaces inCm

[38]. The complexGrassmann manifoldG(m, 1) is the set of
all one-dimensional subspaces of the spaceCm. We define a
distance function onG(m, 1) by letting the distance between
the two lines generated from unit vectorsw1 andw2 be the
sine of the angleθ1,2 between the two lines. This distance is
expressed as [23]

d(w1,w2) = sin(θ1,2) =
√

1− ∣∣wH
1 w2

∣∣2.

The Grassmannian line packing problemis the problem
of finding the set, or packing, ofN lines in Cm that has
maximum minimum distance between any pair of lines. Be-
cause of the relation toΩm, the problem simplifies down to
arrangingN unit vectors so that the magnitude correlation
between any two vectors is as small as possible. We represent
a packing ofN lines in G(m, 1) by anm ×N matrix W =
[w1 w2 . . . wN ] wherewi is the vector inΩm whose column
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space is theith line in the packing. The packing problem is
only of interest in nontrivial cases whereN > m.

The minimum distance of a packing is the sine of the
smallest angle between any pair of lines. This is written as

δ(W) = min
1≤k<l≤N

√
1−

∣∣wH
k wl

∣∣2 = sin(θmin) (7)

where θmin is the smallest angle between any pair of lines
in the packing. The problem of finding algorithms to design
packings for arbitrarym and N has been studied by many
researchers in applied mathematics and information theory
(see [36], [39], [40], etc.). The Rankin bound (see for example
[23], [36], [39]) gives an upper bound on the minimum
distance for line packings as a function ofm and N ≥ m
and is given by [23], [36]

δ(W) ≤
√

(m− 1)N
m(N − 1)

. (8)

Another useful property of a packing besides the minimum
distance is the density. To define the density of a line packing,
consider a metric ball inG(m, 1). Let Pv denote the line
generated by a vectorv ∈ Ωm (i.e. the column-space of the
vector v). The ball of radiusγ in G(m, 1) around the line
generated bywi is defined as

Bwi(γ) = {Pv ∈ G(m, 1) : d(v,wi) < γ}. (9)

Note
Bwk

(γ) ∩ Bwl
(γ) = φ (10)

for k 6= l whenγ ≤ δ(W)/2 whereφ is the empty set. Metric
balls in G(m, 1) can be geometrically visualized as spherical
caps onΩm. Thus the ballBwi(γ) is the set of lines generated
by all vectors on the unit sphere that are within a chordal
distance ofγ from any point inΩm ∩ Pwi .

The normalized Haar measure onΩm introduces a normal-
ized invariant measureµ on G(m, 1). This measure allows the
computation of volumes of sets withinG(m, 1) [38], and thus
can be used to determine the percentage ofG(m, 1) covered
by the metric balls of a line packing, called the density of a
line packing. The density of a line packing is defined as

∆(W) = µ

(
N⋃

i=1

Bwi(δ(W)/2)

)

=
N∑

i=1

µ (Bwi(δ(W)/2))

= Nµ (B(δ(W)/2))

where B(δ(W)/2) is an arbitrarily centered metric ball of
radiusδ(W)/2.

Closed-form expressions for the density of Grassmannian
subspace packings are often difficult to obtain [23]. In the case
of line packings, though, we have found a way to calculate
the density exactly. The result is proved in Theorem 1.

Theorem 1:For any line packing inG(m, 1),

∆(W) = N (δ(W)/2)2(m−1)
. (11)

Proof: Let Cwi
(γ) = {v ∈ Ωm : d(v,wi) < γ}. Using

our previous observation

µ (Bwi
(γ)) =

A(Cwi
(γ))

A(Ωm)
(12)

whereA(·) is a function that computes area. It was shown in
[22]4 that

A(Cwi
(γ))

A(Ωm)
= γ2(m−1). (13)

The result then follows.
Theorem 1 provides insight into the rate at which the density
grows as a function of the minimum distance. This result
specifically verifies the asymptotic results in [23] for the one-
dimensional subspace case.

The bound in Theorem 1 yields a new upper bound on the
minimum distance of Grassmannian line packings. The Ham-
ming bound on the maximum minimum distance achievable by
a Grassmannian line packing of a fixed sizeN is the maximum
radius of the metric balls before any two metric balls overlap.

Theorem 2:For anyN line packing inG(m, 1),

δ(W) ≤ 2
(

1
N

)1/(2(m−1))

. (14)

Proof: This follows by using the Hamming bound on
codesize [23],

Nµ(B(δ(W)/2)) ≤ 1.

Bounds on the existence of line packings of arbitrary radius
also follow from Theorem 1 using the Gilbert-Varshamov
bound on codebook size. The Gilbert-Varshamov bound is
obtained by finding the maximum number of metric balls of a
desired minimum distance that can be packed without covering
G(m, 1).

Theorem 3:Let N(m, δ) be the maximum cardinality of a
line packing inG(m, 1) with minimum distanceδ. Then

δ−2(m−1) ≤ N(m, δ) ≤ (δ/2)−2(m−1)
. (15)

Proof: The Gilbert-Varshamov bound applied to line
packing says that a packing of sizeN = M + 1 exists when
Mµ(B(δ)) < 1 [23]. Using the fact thatµ(B(δ)) = δ2(m−1),
the Hamming bound, and solving forN gives (15).

Finding the global maximizer of the minimum distance
for arbitrary m and N is not easy either analytically or
numerically [36]. For this reason it is often most practical
to resort to random computer searches; for example see the
extensive tabulations on [37] that have been computed for the
real case. In some cases closed-form solutions are available,
e.g. whenN = 2m = pα + 1, where p is prime and
α is a positive integer, conference matrices allow explicit
constructions of packings [39].

IV. CODEBOOK ANALYSIS AND DESIGN

In [14], [15] it is shown that an optimal beamforming vector
for MRT systems is the dominant right singular vector of
H with H defined as in Section II. Therefore,wMRT that

4Note that [22] evaluated the area ratio to derive the MISO outage
probability of quantized beamformers.
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satisfies (6)(W = ΩMt) is an optimal MRT solution. A
restatement of this is that the optimal vector solves

wMRT = arg max
x∈ΩMt

|xHHHHx|2. (16)

Recall thatarg max in this case (as mentioned in Section
II) returns only one out of possibly many global maxi-
mizers. Therefore, it is important to note that ifwMRT

satisfies (16), thenejφwMRT also satisfies (16) since
|wH

MRT HHHwMRT |2 = |e−jφwH
MRT HHHejφwMRT |2.

Thus the optimal beamforming vector obtained from (16) is
not unique.

This property can be restated in terms of points on a
complex line. Because of the properties of the absolute value
function, if w ≡ w̃ (using the equivalence relation defined
in Section III) thenw and w̃ are both global maximizers
and thus provide the same performance. The authors in [24]
recognized this point and used this result in designing the
vector quantization algorithm for codebook design.

Let H be defined as in Section II with all entries indepen-
dent. The distribution ofX = HHH is the complex Wishart
distribution [41]. An important property of complex Wishart
distributed random matrices that we need is summarized in
Lemma 1.

Lemma 1: (James [41], Edelman [42]) IfX is complex
Wishart distributed, thenX is equivalent in distribution to
UΣUH whereU is Haar distributed on the group ofMt×Mt

unitary matrices andΣ has distribution commonly found in
[42].

Thus a matrix of i.i.d. complex normal distributed entries is
invariant in distribution to multiplication by unitary matrices.
From this it is easily proven that the complex Wishart distribu-
tion is invariant to transformation of the formVH(·)V where
V ∈ UMt whereUMt is the group ofMt×Mt unitary matrices.
This is a trivial property in the case of the single transmit
antenna distribution because of the commutativity of complex
numbers, but this property has highly non-trivial implications
for Mt > 1. A very important property of Haar distributed
matrices that will be exploited later is given in the following
lemma.

Lemma 2: (Marzetta & Hochwald [43]) LetU be a Haar
distributedMt ×Mt unitary random matrix. Ifv ∈ ΩMt then
Uv is uniformly distributed onΩMt .

One solution to (16) has a distribution equivalent to
UHwMRT = [1 0 0 · · · 0]T or rather wMRT =
U[1 0 0 · · · 0]T with U given in Lemma 1. SinceU is
Haar distributed onUMt and [1 0 0 · · · 0]T is a unit vector,
Lemma 2 states thatwMRT = U[1 0 0 · · · 0]T is distributed
uniformly onΩMt . It similarly follows that the columns ofU
and any unit norm linear combination of columns ofU are
uniformly distributed onΩMt .

This result, taken along with Lemma 1, reveals a fundamen-
tal result about quantized beamforming systems that until this
point, to the best of the authors’ knowledge, has never been
shown. The distribution of the optimal beamforming vector
is independent of the number of receive antennas. Thusthe
problem of finding quantized beamformers for MISO systems is
the same problem as that of finding quantized beamformers for

MIMO systems.Therefore the MISO quantized beamforming
analysis contained in [24], [25] is directly applicable to MIMO
systems.

A corollary to Lemma 2 follows from observing that the
optimal beamformer is actually defined by a line.

Corollary 1: The line generated by the optimal beamform-
ing vectors for a MIMO Rayleigh fading channel is an
isotropically oriented line inCMt passing through the origin.
Therefore, the problem of quantized transmit beamforming
in a MIMO communication system reduces to quantizing an
isotropically oriented line inCMt .

To find an optimal codebook we need to define an encoding
function and a distortion measure. The optimal transmit beam-
former and receiver combiner maximize the receive SNR by
maximizing the equivalent channel gainΓr in (3). Therefore
we use an encoding function at the receiverQw : CMr×Mt →
{w1,w2, . . . ,wN} that selects the element of the codebook
that maximizes the equivalent channel gain. Thus,

Qw(H) = arg max
1≤i≤N

‖Hwi‖22. (17)

Notice that this encoding function is not solely a function of
the maximum singular value direction in the matrix channel
case. The explanation is that situations arise where it is better
to use the quantized vector that is close to some unit norm
linear combination of theMt singular vectors. For example,
certain channels where all of the singular values are equal
would fall into this case.

To measure the average distortion introduced by quantiza-
tion, we use the distortion function

G(W) = EH

[
λ1 − ‖HQw(H)‖22

]

where λ1 is the maximum eigenvalue ofHHH and the
effective channel gain for an optimal MRT beamformer. An
upper bound is

G(W) = EH

[
λ1 −

Mt∑

i=1

λi

∣∣uH
i Qw(H)

∣∣2
]

≤ EH

[
λ1 − λ1

∣∣uH
1 Qw(H)

∣∣2
]

= EH [λ1]EH

[
1−

∣∣uH
1 Qw(H)

∣∣2
]

(18)

where λ1 ≥ λ2 ≥ . . . ≥ λMt ≥ 0 and u1,u2, . . . ,uMt

are the eigenvalues and corresponding eigenvectors ofHHH.
The inequality in (18) follows from the independence of the
eigenvalues and eigenvectors of complex Wishart matrices
[38], [41].

The intuition behind the bound in (18) is that the first factor
is an indication of channel quality on average while the second
factor is an indication of the beamforming codebook quality.
Using the interpretation ofW as a line packing and thatu1

is uniformly distributed onΩMt , it follows that

Pr

(
1− ∣∣uH

1 Qw(H)
∣∣2 <

δ2(W)
4

)
= ∆(W). (19)
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Thus by (19) and Theorem 1,

G(W) ≤ EH [λ1]
(

δ2(W)
4

∆(W) + (1−∆(W))
)

(20)

= EH [λ1]

(
1 + N

(
δ(W)

2

)2(Mt−1) (
δ2(W)

4
− 1

))
.

(21)

The bound in (20) was obtained by observing that there
are two cases of the channel corresponding to if the line
generated byu1 is or is not a member of a metric ball of
one of the codebook lines. The line generated byu1 is in a
metric ball with probability∆(W). When the line is inside
of a metric ball we know that1 −

∣∣uH
1 Qw(H)

∣∣2 < δ2(W)
4 ,

but when the line is not in a metric ball we can only state the
trivial bound that1−

∣∣uH
1 Qw(H)

∣∣2 ≤ 1. These two cases and
Theorem 1 then give (21). In conclusion, minimizing (21)
corresponds to maximizing the minimum distance between
any pair of lines spanned by the codebook vectors. Thus
we propose the following criterion for designing quantized
beamforming codebooks.

Grassmannian Beamforming Criterion: Design
the set of codebook vectors{wi}N

i=1 such that
the corresponding codebook matrixW maximizes

δ(W) = min1≤k<l≤N

√
1−

∣∣wH
k wl

∣∣2.
This criterion captures the essential point about quantized

beamforming codebook design for Rayleigh fading MIMO
wireless systems:Grassmannian line packingsare the key to
codebook construction. Thus beamforming codebooks can be
designed without regard to the number of receive antennas
by thinking of the codebook as an optimal packing of lines
instead of a set of points on the complex unit sphere.

One benefit of making the connection between codebook
construction and Grassmannian line packing is that it provides
an approach for finding good codebooks, namely leveraging
work that has already been done on finding optimal line
packings. In the real case this problem has been thoroughly
studied and the best known packings are cataloged at [37]. For
the complex case, the single-antenna non-coherent codes in
[44] often have large minimum distances (see the discussion
in [22]). Other times it is possible to find codebooks using
analytical [39] or numerical [36], [40] methods. Some example
codebooks are given in Appendix A in Tables I to V. Notice
that whenN ≤ Mt maximally spaced packings are trivial:
simply take N columns of anyMt × Mt unitary matrix.
It follows that selection diversity represents a special form
of quantized beamformer designed using theGrassmannian
beamforming criterion.

Another advantage of the connection to Grassmannian line
packing is that the bounds in Theorems 2 and 3 and the Rankin
bound can be used to judge the quality of any given codebook.
For example, for a givenMt andN ≥ Mt, the Rankin bound
gives a firm upper bound onδ(W). Unfortunately in most
cases the Rankin bound is not attainable and in effect quite
loose [39]. The Hamming bound given in Theorem 2 can be
useful for largeN or Mt but is looser than the Rankin bound
for small N andMt. These bounds will be of further use in

Section V for determining rules-of-thumb on the selection of
N to meet specific performance requirements.

A QMRT codebook designed according to theGrassman-
nian beamforming criterionuses a codebook matrixW given
by

W = arg max
X∈UN

Mt

δ(X). (22)

Practical considerations such as hardware complexity often
motivate imposing additional constraints on the elements of
the codebook. TheGrassmannian beamforming criterionis
still applicable to the design of these constrained codebooks.
Solving for the optimum beamforming vector, however, re-
quires restricting the line packing matrixW to be an element
of a class of constrained beamforming vectorsVN

Mt
where

VN
Mt

⊂ UN
Mt

.
One popular constraint, as discussed in Section II, is to

impose the requirement that every coefficient ofW have the
same constant modulus. In these QEGT systems [17], [20],
VN

Mt
= {V ∈ UN

Mt
: ∀k, l, |V[k,l]| = 1√

Mt
}. A Grassmannian

beamforming QEGT codebook is then designed by solving

W = arg max
X∈VN

Mt

δ(X). (23)

Numerical optimization techniques (such as those in [40])
are often ineffective in designing QEGT codebooks. For this
reason random search based designs often yield codebooks
with the best minimum distance. Suboptimal methods for
designing QEGT codebooks were proposed in [17], [20]
but often perform worse than QEGT codebooks designed
using (23) (seeQEGT Experiment # 1in Section VI for
an example). Other QEGT codebooks are available from the
codebooks designed from the non-coherent codes in [44]. As
stated earlier, the codebooks in [44] are often optimal or near
optimal even for the unconstrained QMRT case. Therefore,
there is often no difference in performance between QMRT and
QEGT when using codebooks designed with the Grassmannian
beamforming criterion.

Another constraint of interest is to use only antenna combi-
nations that transmit on subsets of antennas. This corresponds
to using beamforming vectors that pick a number1 ≤ M ≤
Mt and then select the bestM antennas to transmit on. Thus
we choose one of the non-empty members of the power set of
{1, . . . ,Mt} and transmit on this antenna subset. Generalized
subset selection, as we call this transmission method, is a dis-
crete system that can be represented via anMt bit codebook.
If Mt is large, we might wish to use fewer thanMt bits for
our generalized subset selection system. In this case we would
pick the codebook matrixW that satisfies

W = arg max
X∈IN

Mt

δ(X). (24)

whereIN
Mt

is given by the set of matrices inUN
Mt

where each
column can be represented as the normalized sum of unique
column vectors ofIMt. SinceIN

Mt
has finite cardinality, the

global maximum to (24) can be obtained by performing a
brute force search over all matrices inIN

Mt
. GSS codebooks

provide better performance than selection diversity because
additional vectors are included to allow a better quantization
of the optimal beamforming vector.
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V. BOUNDS ON THECODEBOOK SIZE

The codebook size naturally has an impact on the per-
formance of a quantized beamforming system. To obtain a
good approximation of the optimal beamforming vector, it is
desirable to chooseN large. On the other hand, minimizing the
required feedback motivates choosingN small. In this section
we derive the minimum value ofN required to achieve full
diversity order with codebooks designed using theGrassman-
nian beamforming criterion.We also find approximate lower
bounds onN given an acceptable loss in capacity or SNR due
to quantization. These bounds function similarly to the Gilbert-
Varshamov bound in Theorem 3 using an approximation to the
Rankin bound as the minimum distance.

A. Diversity Order

Closed-form results on the average probability of symbol
error for quantized beamforming and combining systems are
difficult if not impossible to determine. Therefore we use
the diversity order performance metric defined in Section II
which is indicative of the high SNR performance of various
linear modulation schemes. The following theorem, proved
in Appendix B, determines a bound onN that guarantees a
diversity order ofMrMt for codebooks designed according
to the Grassmannian beamforming criterionin Section IV
assuming MRC at the receiver. The trick in proving the
theorem is to recognize that the codebook matrix resulting
from the Grassmannian beamforming criterionis guaranteed
to be full rank. This full rank assumption can be trivially
satisfied if a rank degenerate codebook with aK−dimensional
null space is designed forN ≥ Mt by replacing theK vectors
in the codebook that can be written as linear combinations of
the other(N −K) vectors with theK orthogonal vectors that
span the null space (see Lemma 3).

Theorem 4:If N ≥ Mt then theGrassmannian beamform-
ing criterion yields QMRT, QEGT, and GSS codebooks that
have full diversity order.

Equality in Theorem 4 is achieved whenN = Mt. In
this case, the codebook matrix is simply a unitary matrix
(i.e. WHW = IMt) and thus the codebook is any set of
orthonormal vectors. Unfortunately, it can be readily shown
(using the unitary invariance of the Gaussian distribution) that
this is equivalent to selection diversity. While such codebooks
provably obtain full diversity order, choosingN > Mt will
more closely approximate the optimal MRT solution and result
in a larger array gain.

B. Capacity

The capacity loss associated with using quantized beam-
forming is an important indicator of the quality of the quantiza-
tion method. To determine this loss, we compare the capacity
assuming perfect beamforming with the capacity assuming the
use of quantized beamforming. Using this difference we derive
a criterion for choosingN based on an acceptable capacity
loss.

Consider the system equation in (1) with the scalar effective
channel produced by beamformingzHHw (recall thatw and

z are unit norm). With MRT, the ergodic capacity of this scalar
fading channel is given by

Cunquant = EH

[
log2

(
1 +

λ1Et

N0

)]
(25)

whereλ1 is the maximum eigenvalue ofH while with quan-
tization it is given by

Cquant = EH

[
log2

(
1 +

‖HQw(H)‖22Et

N0

)]
. (26)

Notice that we are computing the ergodic capacity of the
equivalent fading channel and we are not attempting to fully
optimize over the input distribution given partial channel
information as in [24].

To compute a rule-of-thumb for choosingN based on
a desired capacity loss, we approximate the quantized and
unquantized capacity as

Cquant ≈ EH

[
log2

(‖HQw(H)‖22Et

N0

)]
(27)

and

Cunquant ≈ EH

[
log2

(
λ1Et

N0

)]
. (28)

The capacity loss due to quantization for high SNR (using the
techniques that bounded distortion) is given by

Closs = EH

[
log2

(
1 +

λ1Et

N0

)]

− EH

[
log2

(
1 +

‖HQw(H)‖22Et

N0

)]

≤ EH

[
log2

(
1 +

λ1Et

N0

)]

− EH

[
log2

(
1 +

λ1Et

N0
|u1Qw(H)|2

)]
(29)

≈ Cunquant

(
1−N

(
δ(W)

2

)2(Mt−1)
)

−N

(
δ(W)

2

)2(Mt−1)

log2

(
1−

(
δ(W)

2

)2
)

(30)

≈ Cunquant

(
1−N

(
δ(W)

2

)2(Mt−1)
)

. (31)

The result in (29) follows from zeroing the other channel
singular values, and (30) results from using the minimum
distance boundaries of the metric balls and the high SNR
approximation toCunquant. Therefore an approximate bound
on the normalized capacity loss,Closs = Closs/Cunquant, is

given by

(
1−N

(
δ(W)

2

)2(Mt−1)
)

.

Note that for the cases of largeN , the Rankin bound on

δ(W) in (8) in this case is approximately
√

Mt−1
Mt

. Substitut-
ing for δ(W), we obtain a selection criterion (rule-of-thumb)
on N based on capacity loss.
Capacity Loss Criterion: Given an acceptable normalized
capacity lossCloss, chooseN such that

N '
(
1− Closs

) (
4Mt

Mt − 1

)Mt−1

. (32)
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Equivalently, the corresponding number of bits of feedback
(b = log2 N ) should be chosen to be

b ' log2

(
1− Closs

)
+2(Mt−1)+(Mt−1) log2

(
Mt

Mt − 1

)
.

The last term corresponds to at mostMt − 1 thus at most
3(Mt − 1) bits of feedback or less are needed depending on
the tolerable loss.

This bound is once again approximate, but it gives insight
into the feedback amount required. Fig. 2 provides further
intuition by showing a plot of the capacities for a4×2 systems
using unquantized beamforming and three different types of
Grassmannian beamforming systems: QMRT withN = 64,
QMRT with N = 16, and selection diversity. QMRT withN =
64 provides approximately a 1.5dB gain compared to selection
diversity and a 0.5dB gain compared to QMRT withN = 16.
This plot clearly shows the capacity benefit of increasingN.
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Fig. 2. Capacity comparison of unquantized beamforming with three
Grassmannian beamforming schemes for a4× 2 system.

C. Signal-to-Noise Ratio

Consider the expression for the normalized SNR loss,
G(W), obtained from (21)

G(W) =
G(W)
EH [λ1]

≤
(

1 + N

(
δ(W)

2

)2(Mt−1) (
δ2(W)

4
− 1

))
.

(33)

Just as an approximate bound forN is derived in Section V-B
given an acceptable capacity loss due to quantization, a crite-
rion for choosingN, based on an acceptable normalized SNR
loss G, follows from (33). Substituting in the approximate

Rankin bound ofδ(W) /
√

Mt−1
Mt

, we obtain the following
approximate criterion.
SNR Criterion: Given an acceptable normalized SNR lossG,
chooseN such that

N ' 1−G(
Mt−1
4Mt

)Mt−1 (
1− Mt−1

4Mt

) (34)

Once again, this bound is only approximate because it uses
the Rankin bound approximation but yields intuition into the
choice ofN.

Following the analysis in Section V-B, the corresponding
approximate number of bits of feedback (b = log2 N ) should
be chosen to be

b ' log2

(
1−G

)
+ 2(Mt − 1) + (Mt − 1) log2

(
Mt

Mt − 1

)

− log2

(
1− Mt − 1

4Mt

)
. (35)

In (35) at most3(Mt−1)− log2

(
1− Mt−1

4Mt

)
bits of feedback

or less are needed depending on the tolerable loss.
As an aside, we should point out thatEH [λ1] can be

expressed in a closed-form integral expression using tech-
niques from [15], [18], [45]. This is of particular interest if
bounds onN were desired that were a function of an SNR
loss that was not normalized. In [18], [45] the probability
density function of the largest singular value of a central,
complex Wishart distribution is derived, while the cumulative
distribution function is derived in [15]. These results can
also be used to derive integral expressions for the outage
probability as a generalization of results in [22].

VI. SIMULATIONS

We simulate three different quantized beamforming
schemes: quantized maximum ratio transmission, quantized
equal gain transmission, and generalized subset selection. All
simulations used binary phase shift keying (BPSK) modulation
and i.i.d. Rayleigh fading (whereH[k,l] is distributed according
to CN (0, 1)). The average probability of symbol error is
estimated using at least 1.5 million iterations per SNR point.
Codebooks for the QEGT and QMRT systems were designed
based on the proposedGrassmannian beamforming criterion.
The codebooks were found using the optimal constructions
available in [39], [44]. GSS codebooks are globally optimal
since searching over all possible codebooks is feasible. All of
the simulations assume an MRC receiver.

QMRT Experiment # 1:In the first experiment, anMr =
Mt = 3 system with QMRT is simulated with two different
quantizations and the results shown in Fig. 3. The vectors
in the 2 bit codebook are shown in Table IV in Appendix
A. The 6 bit codebook has a maximum absolute correlation
of 0.9399. The simulated error rate curve of an optimal
unquantized beamformer and the actual error rate curve for
a selection diversity system are shown for comparison. Notice
that QMRT provides a 0.2dB gain over selection diversity for
the same amount of feedback. Using 6 bits instead of 2 bits of
feedback provides around a 0.9dB gain. The system using 6
bits performs within0.6dB of the optimal unquantized MRT
system.

QMRT Experiment # 2:In [24], vector quantization tech-
niques were used to design QMRT codebooks. In this experi-
ment, we compare a system using Grassmannian beamforming
(i.e. quantized beamforming using a codebook designed with
theGrassmannian beamforming criterion) with a system using
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Fig. 3. Probability of symbol error for 3 transmit and 3 receive antenna
systems using QMRT/MRC, SDT/MRC, and MRT/MRC.
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Fig. 4. Probability of symbol error for 2 transmit and 2 receive antenna
systems using QMRT codebooks designed with the proposed criterion and
with vector quantization.

a codebook designed by the Lloyd algorithm. The Grass-
mannian beamforming codebook is shown in Table III in
Appendix A. Codebooks containing 8 vectors were designed
for an Mr = Mt = 2 system. The results are shown in
Fig. 4. This simulation provides additional evidence of the
validity of the proposed design criterion. Thus we are able to
design codebooks that perform just as well as the codebooks
performed using computationally complex vector quantization
algorithms.

QEGT Experiment:In this experiment, two different meth-
ods of QEGT codebook design are compared on a 3 transmit
and 3 receive antenna system. The results are shown in Fig.
5. The new method refers to codebooks constructed using
the Grassmannian beamforming criterion.The 3 bit new
codebook has maximum absolute correlation of 0.5774 and
the 5 bit new codebook has maximum absolute correlation of
0.8836. The old method refers to the codebook design method
outlined previously in [17], [20].

A 3 bit new design method QEGT codebook performs
approximately the same as a 5 bit old design method QEGT

codebook. Thus we can use two fewer bits of feedback and
actually maintain the average symbol error rate performance
by using Grassmannian beamforming. Performance improves
by 0.5dB when changing from 3 bit new QEGT to 5 bit
new QEGT. Thus we can either gain 0.5dB and use the same
amount of feedback or keep the same performance and save
2 bits of feedback by using theGrassmannian beamforming
criterion.
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Fig. 5. Comparison of probability of symbol error for 3 transmit and 3
receive antenna systems using QEGT/MRC with the old and new codebook
designs.

Comparison Experiment:The final experiment, shown in
Fig. 6, compares GSS and QMRT codebooks for a 4 transmit
and 2 receive antenna system. The 4 bit codebook has a
maximum absolute correlation of 0.5817, while the 6 bit
codebook has a maximum absolute correlation of 0.7973. A
4 bit QMRT system outperforms a 4 bit GSS system by
approximately 0.5dB. This illustrates that even a substantial
restriction on the nature of the codebook does not severely
impact performance when designed using theGrassmannian
beamforming criterion. A 6 bit QMRT system has an array
gain of approximately around 0.5dB compared to a 4 bit
QMRT system. This illustrates the benefits of increasing the
amount of quantization even when a significant amount of
quantization is already used.

VII. C ONCLUSION AND FUTURE WORK

In this correspondence we derived a codebook design cri-
terion for quantizing the transmit beamforming vectors in a
MIMO wireless communication system. By bounding the SNR
degradation for a given codebook size, we showed that the
problem of designing beamformer codebooks is equivalent to
Grassmannian line packing, which is the problem of maxi-
mally spacing lines in the Grassmann manifold. To approxi-
mate the feedback requirements, we used the Rankin bound
along with several newly derived results for line packings
such as a closed-form density expression, the Hamming upper
bound on the minimum distance and codebook size, and the
Gilbert-Varshamov lower bound on the codebook size.

A point that we did not address in detail pertains to
implementation. Grassmannian beamforming will likely be
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Fig. 6. Comparison of probability of symbol error for 4 transmit and 2
receive antenna systems using QMRT/MRC and GSS/MRC.

implemented in a look-up table format. When the channel is
slowly varying, it may be possible to reduce the necessary
number of bits sent back by using some successive refinement
techniques based on channel correlation. One solution is to
have a series of codebooks for different values ofN that
support successive refinement along the lines of [46].

Another important point in a practical implementation is the
effect of feedback error and delay in the feedback link. We
did not address this issue in our work because we modeled the
feedback link as error and delay free. An extensive simulation
and/or analytical study of beamformer quantization such as
that in [47] is needed. These effects will play an important role
in performance in deployed MIMO systems using quantized
beamforming.

Finally, one limitation of the work proposed herein is that
we considered only the transmission of a single data stream. It
is well known, however, that MIMO channels can increase ca-
pacity by supporting the transmission of multiple data streams
simultaneously ([1], [2], etc.). In the general case with full
channel knowledge at the transmitter, it is possible to transmit
on multiple right singular vectors with the number of vectors
and the power on each vector being determined by the desired
optimization criterion. For example, the capacity achieving
solution is determined by waterpouring on the channel’s non-
zero singular values. A natural extension of our approach
would be to derive codebooks for quantizing each of the singu-
lar vectors. While our Grassmannian codebooks could be used,
they do not retain the orthogonality between the quantized
singular vectors. Constructing codebooks for simultaneously
quantizing multiple singular vectors is an interesting topic for
future work.

APPENDIX

A. Tables of Line Packings

Examples of the packings found for variousMt are given in
Tables I-V. The codebooks were found using random searches
or through some of the constructions presented [39] depending
on the choice of parameters.

1 0
0 1

Absolute Max Correlation = 0
Absolute Theoretical Max Correlation = 0

TABLE I

TRIVIAL CODEBOOK GENERATED FORMt = 2 AND N = 2 (ONE BIT).

-0.1612 - 0.7348j -0.0787 - 0.3192j -0.2399 + 0.5985j -0.9541
-0.5135 - 0.4128j -0.2506 + 0.9106j -0.7641 - 0.0212j 0.2996

Absolute Max Correlation =0.57735

Absolute Theoretical Max Correlation =
p

1/3

TABLE II

CODEBOOK GENERATED FORMt = 2 AND N = 4 (TWO BITS).

B. Proof of Theorem 4

Before proving Theorem 4, we need to prove the following
lemma that establishes thatW is full rank for codes designed
according to theGrassmannian beamforming criterion.

Lemma 3: If N ≥ Mt thenW is full rank when designed
using theGrassmannian beamforming criterionfor QMRT,
QEGT, or GSS.

Proof: Suppose thatN ≥ Mt and all optimal maximum
minimum distance packings are not full rank. LetW be an
optimal codebook matrix with aK − dimensional null space.
Let wi1 ,wi2 , . . . ,wi(N−K) be columns that form a basis for
the column space ofW. Because the columns ofW do not
spanCMt there exists an orthonormal basisv1,v2, . . . ,vK

for the null space. Then we can construct a new, full rank
codebook matrixX with δ(W) ≤ δ(X) by settingxl = vl

for l ≤ K and xl = wi(l−K) for K < l ≤ N. This is a
contradiction. We can therefore trivially construct a full rank
codebook.

Now we prove Theorem 4. This proof holds for any quan-
tized beamforming technique (not just Grassmannian beam-
forming) that uses a codebook with at leastMt vectors and
has a full rank codebook matrix.

Proof: First consider the receive SNR,EtΓr/N0. Since
Et andN0 are assumed fixed, we only need to considerΓr =
|zHHw|2. It has been shown for a fixed realization ofH
that the vectorsw andz that maximize|zHHw| are the left
and right singular vectors ofH corresponding to the largest
singular value ofH [14], [15]. This solution has been shown
to achieve a diversity order ofMrMt [13], [15]. Quantized
beamforming can perform only as good as the unquantized
case therefore the achievable diversity order with quantized
beamforming is upper bounded byMrMt. To prove equality,
we will now show thatMrMt is also the lower bound on the
achievable diversity order.

For anN vector beamforming codebook system with MRC
at the receiver, the effective channel gain is given by

Γr = max
1≤i≤N

‖Hwi‖22. (36)

Because the columns of the codebook matrixW spanCMt ,
W can be factored via a singular value decomposition (SVD)
into the formW = U1[D 0]U2 whereU1 is an Mt × Mt

unitary matrix,0 is anMt × (N −Mt) matrix of zeros,U2
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0.8393 - 0.2939j -0.3427 + 0.9161j -0.2065 + 0.3371j
-0.1677 + 0.4256j 0.0498 + 0.2019j 0.9166 + 0.0600j

0.3478 - 0.3351j 0.1049 + 0.6820j 0.0347 - 0.2716j
0.2584 + 0.8366j 0.6537 +0.3106j 0.0935 - 0.9572j

-0.7457 + 0.1181j -0.7983 + 0.3232j
-0.4553 - 0.4719j 0.5000 + 0.0906j

Absolute Max Correlation = 0.84152
Absolute Theoretical Max Correlation =

p
3/7

TABLE III

CODEBOOK GENERATED FORMt = 2 AND N = 8 (THREE BITS).

1/
√

3 j/
√

3 −1/
√

3 −j/
√

3

1/
√

3 −1/
√

3 1/
√

3 −1/
√

3

1/
√

3 −j/
√

3 −1/
√

3 j/
√

3
Absolute Max Correlation =1/3

Absolute Theoretical Max Correlation =1/3

TABLE IV

CODEBOOK GENERATED FORMt = 3 AND N = 4 (TWO BITS).

is anN ×N unitary matrix, andD is a real diagonal matrix
with D[1,1] ≥ D[2,2] ≥ . . . ≥ D[Mt,Mt] > 0. By the invariance
of complex normal random matrices [41],HUH

1 is equivalent
in distribution toH. Therefore,

Γr
d= Γ̃r = max

1≤i≤N
‖HUH

1 wi‖22. (37)

Now using matrix norm inequalities taken from [48], stated for
the real case but easily seen to extend to the complex case,
we find that

Γ̃r = max
1≤i≤N

‖HUH
1 wi‖22 (38)

≥ 1
Mr

‖HUH
1 W‖21. (39)

Using the SVD, (39) can be rewritten as

Γ̃r ≥ 1
Mr

‖HUH
1 U1[D 0]U2‖21. (40)

=
1

Mr

∥∥∥
[
HD 0̃

]
U2

∥∥∥
2

1

where0̃ is anMr × (N −Mt) matrix of zeros.
By the matrix submultiplicative property [48],

∥∥∥
[
HD 0̃

]
U2

∥∥∥
1
‖UH

2 ‖1 ≥
∥∥∥
[
HD 0̃

]
U2UH

2

∥∥∥
1

= ‖HD‖1

Then using an inequality property of the matrix one- and two-
norm

‖HD‖1 ≤
∥∥∥
[
HD 0̃

]
U2

∥∥∥
1

√
N‖UH

2 ‖2 (41)

=
√

N
∥∥∥
[
HD 0̃

]
U2

∥∥∥
1

or rather ∥∥∥
[
HD 0̃

]
U2

∥∥∥
2

1
≥ 1

N
‖HD‖21. (42)

1√
2

1√
2

0 1√
2
e2πj/3

1√
2

0 1√
2

1√
2
e4πj/3

0 1√
2

1√
2

0
1√
2
e2πj/3 1√

2
e4πj/3 1√

2
e4πj/3 0

0 0 1√
2
e2πj/3 1√

2
e4πj/3

1√
2
e4πj/3 1√

2
e2πj/3 0 1√

2
e2πj/3

Absolute Max Correlation = 0.5
Absolute Theoretical Max Correlation =

p
5/21

TABLE V

CODEBOOK GENERATED FORMt = 3 AND N = 8 (THREE BITS).

Applying this bound we find that

Γ̃r ≥ 1
NMr

‖HD‖21

≥
D2

[Mt,Mt]

NMr
‖H‖21

≥
D2

[Mt,Mt]

NMr
max

i,j
|H[i,j]|2. (43)

The lower bound oñΓr is the effective channel gain of a sys-
tem which selects the largest gain channel from amongMrMt

i.i.d. complex Gaussian random variables withD[Mt,Mt] > 0.
Diversity systems of this form have been shown to achieve an

MrMt diversity order [28], [49]. The scale factor of
D2

[Mt,Mt]

NMr

can simply be interpreted as a loss of array gain but not
affecting the asymptotic diversity slope.

Combining the lower and upper bounds on diversity order,
we have shown that at high SNR, quantized beamforming
obtains a diversity order ofMrMt. The guarantee of diversity
order is an important performance indicator for the quantized
beamforming system. Note that this proof also verifies the
diversity results in [12], [13], [17].
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