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CHAPTER 1

Introduction

The study of shapes and their similarities is central in computer vision, in that

it allows to recognize and classify objects from their representation. One has the

interest of defining a distance function between shapes, which both expresses the

meaning of similarity between shapes for the application and task that one has in

mind, and at the same time is mathematically sound and treatable. In recent years

the use of differential-geometric techniques for the study of shape deformation has

rapidly spread to broad applied fields such as Pattern Analysis and Statistical Meth-

ods (e.g. for object recognition, target detection and tracking, classification of bio-

metric data, and automated medical diagnostics).

One of the main ideas in this area has been to use fluid flow notions [8, 9], which

lead to Riemannian metrics on many deformation related spaces (“shape spaces”) [22,

24, 36, 42, 43, 47]; the aforementioned distance function is, in these cases, precisely

the geodesic distance with respect to such metrics. However, the geometry of these

Riemannian manifolds has remained terra incognita until very recently, when certain

fundamental questions started being addressed [31, 32, 33, 48]: for example, the

curvature of such manifolds has remained completely unknown in most cases. This

thesis focuses on the computation of sectional curvature and its implications in one

of the simplest shape spaces, which is that of landmark points.

The knowledge of curvature on a Riemannian manifold is essential in that it

allows one to infer about the existence of conjugate points, the well-posedness of

the problem of computing the implicit mean (and higher statistical moments) of

samples on the manifold, and more. Such issues are of fundamental importance since

they allow to build templates, i.e. shape classes that represent typical situations in

certain applications like the emerging field of computational anatomy [10, 14, 15,
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18, 22, 34, 35, 46]. For example, templates can used for the identification of

structures in Magnetic Resonance Images (MRI) of brains. A template can represent

the prototypical structure of a healthy person’s brain, or the structure of the brain

of someone developing Alzheimer’s disease: such templates are matched to the MRI

scan of an individual patient, and the geodesic distances between the data and the

templates can then be used to formulate a diagnosis on the patient’s health. In

Medical Imaging statistical analysis is normally performed on the tangent space at the

implicit mean (or Karcher mean [38]), but the differential-geometric issues mentioned

above are too often ignored, which can lead to conspicuous inaccuracies. We will

briefly return on these motivating issues in the concluding chapter of this thesis, after

the geometric structure of the shape manifold of landmark points has been explored.

The thesis is organized as follows. Chapter 2 formally introduces the energy

functional that has to be minimized in order to compute the distance between between

two sets (landmarks configurations); most of the chapter is dedicated to proving that

such functional can be written as the energy of a path with respect to a Riemannian

metric tensor, so that the square root of the minimized energy is, in fact, a geodesic

distance. Once the Riemannian structure is established, the geodesic equations are

developed (in the Hamiltonian formalism) in Chapter 3, where conservation laws

deriving from the translation-invariance and the rotation-invariance of the metric

tensor are also explored.

It turns out that the cometric tensor (i.e. the inverse of the metric tensor) for the

Riemannian manifold of N landmarks in D dimensions can be written as a matrix

whose elements depend only on 2D of all the ND coordinates of the manifold, mak-

ing the matrix of partial derivatives of the cometric tensor very sparse. This suggests

finding a general formula for the Riemannian curvature tensor and for sectional cur-

vature in terms of the first and second partial derivatives of the cometric instead of

the metric; Chapter 4 is dedicated precisely to solving this highly nontrivial problem,

for a generic n-dimensional Riemannian manifold. In Chapter 5, which is central

in this thesis, we apply the formulas developed in the previous one precisely to the
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Riemannian metric for the manifold of landmarks; special attention is dedicated to

the simple but informative examples of one-dimensional landmarks. In Chapter 6

we study the qualitative dynamics of landmarks, i.e. the geodesic trajectories that

solve the equations developed in Chapter 3; in particular, we study the effect of cur-

vature on said dynamics by verifying, for example, the existence of conjugate points

in regions of the manifold of positive curvature. Finally, Chapter 7 summarizes our

results, discusses the their potential application to the statistical analysis of medical

images, and draws the future plans of our research.
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CHAPTER 2

The Riemannian Manifold of Landmarks

In this chapter we illustrate how the shape space of landmarks can be endowed

with the structure of a Riemannian manifold. The treatment is rigorous, however

we skip some technicalities in the mathematical preliminaries section regarding the

regularity of diffeomorphisms, limiting ourselves to citing and later using results that

the reader can find, for example, in [43, 47]. We formulate the distance between two

shapes in terms of the average kinetic energy of a velocity field that transports one

shape into the other; we then show that such energy can be expressed in the form

of the energy of a path with respect to a Riemannian metric tensor. At the end of

the chapter we briefly discuss ways of extending the approach to generic shapes, by

formulating it in terms of Lie groups of diffeomorphisms acting on shape manifolds.

1. General framework

Let I be the space of N landmark points in D dimensions, that is, the generic

element of I is given by I = (x1, x2, . . . , xN), xi ∈ RD, with xi 6= xj for i 6= j. Our

objective is to endow I with a distance function d : I ×I → R+ that will turn out to

be the geodesic distance [11, 23, 27] with respect to a Riemannian metric. The idea

is to find, among the diffeomorphisms of the plane that map a shape into another,

the one that is generated by the velocity field of minimal average “kinetic energy” (to

be defined): the distance between the two shapes will be given by the square root of

such average energy.

1.1. Mathematical preliminaries. We will start with some definitions and

preliminary notions. Let Q be the set of differentiable landmarks paths, that is:

Q ,
{{
qi : [0, 1] → RD

}N
i=1

∣∣∣ qi(·) is differentiable, for all i
}

;

4



we shall indicate the generic element of such set simply with q, so that q(t) =

{q1(t), . . . , qN(t)}, t ∈ [0, 1]. Let V be a set of functions RD → RD that has the struc-

ture of an admissible Hilbert space
(
V, 〈·, ·〉V

)
(see [17, 43, 47], or Appendix A for

an essential treatment of such spaces); the most salient property of admissible Hilbert

spaces is that V is embedded in C1
0(RD,RD) (the subscript 0 denotes functions that

vanish at infinity [16]), i.e. such that for some constant C we have ‖u‖1,∞ ≤ C‖u‖V ,

for all u ∈ V . For example, V can be chosen to be Sobolev space Hk(RD,RD) with

its norm [13]:

(2.1) ||u||2V ,
∫

RD

〈
Lu(x), u(x)

〉
RD dx;

in the above expression L = (id− a2∆)k is a self-adjoint spatial differential operator

(a ∈ R, k ∈ N and ∆ is the Laplacian) that is applied to each of the D components

of the vector field1 u. By the Sobolev Embedding Theorem [16] we have in fact that

if k > D
2

+ 1 then V is embedded in C1
0(RD,RD). Space L1([0, 1], V ) is defined as the

set of functions v : [0, 1] → V : t 7→ vt such that:

||v||L1([0,1],V ) ,
∫ 1

0

‖vt‖V dt <∞ ,

while space L2([0, 1], V ) is the set of functions v : [0, 1] → V : t 7→ vt such that:

||v||2L2([0,1],V ) ,
∫ 1

0

‖vt‖2
V dt <∞ .

1If we write u = (u1, u2, . . . , uD) the following holds when L = (id− a2∆)k:

∫

RD

〈
Lu(x), u(x)

〉
RD dx =

∫

RD

D∑

`=1

k∑
m=0

(
k

m

)
a2m

∑

|α|=m

∣∣Dαu`
∣∣2 dx,

where we have used the multi-index notation introduced in [13, 16]. In particular for k = 2 the

above expression becomes:

∫

RD

〈
Lu(x), u(x)

〉
RD dx =

∫

RD

D∑

`=1

{∣∣u`
∣∣2 + 2a2

∥∥∇u`
∥∥2

RD + a4
∥∥Hu`

∥∥2

RD×D

}
dx,

where ∇u` and Hu` are, respectively, the gradient and the Hessian matrix of scalar function u`.

We can see that the Sobolev norm is a linear combination of the L2 norms of a function and of its

derivatives; parameter a is just a scaling factor.
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Set L2([0, 1], V ) is a subset of L1([0, 1], V ) and is in fact a Hilbert space with inner

product 〈u, v〉L2([0,1],V ) ,
∫ 1

0
〈u, v〉V dt; we will write the generic element of L1([0, 1], V )

or L2([0, 1], V ) explicitly as vt(x), t ∈ [0, 1], x ∈ RD.

It is well known from the theory of ordinary differential equations [7] that, given

a generic vector field v = vt(x), t ∈ [0, 1], x ∈ RD, under some regularity assumptions

on v the D-dimensional non-autonomous dynamical system

(2.2)





ż = vt(z)

z(t0) = x

has a unique solution of the type z(t) = ψ(t, t0, x). Let V be an admissible Hilbert

space; for any v ∈ L1
(
[0, 1], V

)
we shall define ϕvst(x) , ψ(t, s, x); fixing t = 1 and

s = 0 we get ϕv(x) , ϕv01(x), which is the diffeomorphism generated (or induced)

by v. Given an admissible Hilbert space V we will call the set

GV ,
{
ϕv : v ∈ L1

(
[0, 1], V

)}

the group of diffeomorphisms generated by V ; its name is justified by the result

that for any v ∈ L1
(
[0, 1], V

)
the map ϕv : RD → RD is indeed a diffeomorphism

and the set GV is a group with respect to the operation of composition between

functions [43, 47]. In the language of manifolds it turns out that GV is an infinite-

dimensional Lie group and V is its Lie algebra.

1.2. Definition of the distance function. For generic velocity v ∈ L2
(
[0, 1], V

)

and landmark trajectories q ∈ Q define the energy

(2.3) E[v, q] ,
∫ 1

0

∫

RD

〈
Lvt(x), vt(x)

〉
RD dx dt+ λ

∫ 1

0

N∑
i=1

∥∥∥dq
i

dt
(t)− vt

(
qi(t)

)∥∥∥
2

RD
dt.

We claim that a distance function d on I between two landmark sets (or shapes)

I = (x1, x2, . . . , xN) and I ′ = (y1, y2, . . . , yN) can be defined as

(2.4) d(I, I ′) , inf
v,q

{√
E[v, q] : v ∈ L2

(
[0, 1], V

)
, q ∈ Q with q(0) = I, q(1) = I ′

}
;

the main objective of this chapter is in fact to show that the above function is in fact

a geodesic distance with respect to a Riemannian metric.
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The above infimum is computed over all differentiable landmark paths q ∈ Q
that satisfy the boundary conditions, and vector fields v ∈ L2

(
[0, 1], V

)
. Such fields

more or less exactly “transport” (i.e. generate diffeomorphisms that map) the first

set of landmarks I into the second one I ′, depending on the value of smoothing

parameter λ ∈ (0,∞]. Such paramenter is a weight between the first term (the

aforementioned “kinetic energy”, averaged over a unit of time), that measures the

smoothness of the vector field that generates the diffeomorphism, and the second term,

which measures the exactness of the matching. When λ = ∞ we have exact matching,

i.e. the landmark trajectories exactly satisfy the ordinary differential equations q̇i =

vt(q
i), i = 1, . . . , N which are obtained by setting the integrands of the second term

in the right-hand side of (2.3) equal to zero. When λ < ∞ we have regularized (or

approximate) matching, i.e. the landmark trajectories “almost” satisfy such ODE, so

that the diffeomorphism generated by vt(x) does not transport I exactly into I ′; this

allows for the time varying vector field to be smoother, thus resulting in a smaller

distance between the two given landmark configurations. For this reason the second

term in (2.3) is often referred to as smoothing term; its function is to make distance d

tolerant of small diffeomorphisms, so that object variations due to noise in data are

neglected. For the rest of the chapter we shall consider generic values of smoothing

parameter λ.

Note that the smaller λ is, the smoother will be the vector field and the less

exact will be the matching. In fact for λ ' 0 the minimizer (v, q) of energy (2.3)

(if it actually exists) has velocity v is close to zero, so that the diffeomorphism ϕv it

generates is close to the identity map. This makes the second integral in (2.3) large,

but its contribution to E[v, q] is small since λ is almost zero. The corresponding

minimizing trajectories q will be (almost) straight lines. We shall return to this

discussion further on the chapter, when the dependance on λ of the Riemannian

metric tensor of landmarks manifold I will be clear.
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2. Riemannian formulation

We remind the reader that our objective is to show that d defined in (2.4) is a

geodesic distance on I with respect to some Riemannian metric, which in fact will

depend on the chosen differential operator L and on smoothing parameter λ.

2.1. Minimizing velocity fields and momenta. The following result holds.

Proposition 2.1. For a fixed q̄ =
{
q̄i : [0, 1] → RD

}N
i=1

∈ Q there exists a

minimizer with respect to v ∈ L2([0, 1], V ) of E[v, q̄] and it belongs to the set of vector

fields of the general form:

(2.5) vt(x) =
N∑
i=1

αi(t)G
(
x, q̄i(t)

)
,

where G : RD × RD → R is the Green’s function (or fundamental solution) of op-

erator L in (2.3) and coefficients αi : [0, 1] → RD, i = 1, . . . , N are continuous

functions.

Note that typically G(x, y) = γ
(‖x−y‖RD

)
for some bell-shaped scalar function γ :

[0,∞) → R; function G is sometimes called the kernel of space V (in section 4

of this chapter we will briefly return on the topic of kernels). Therefore, for fixed

differentiable trajectories q̄i(·), i = 1, . . . , N , energy E[v, q̄] can be minimized with

respect to functions αi(·), i = 1, . . . , N . We shall indicate with pi(·), i = 1, . . . , N the

minimizing values of coefficients αi in expression (2.5) and with v∗ = v∗t (x), t ∈ [0, 1],

x ∈ RD the resulting minimizing velocity field; the coefficients pi are called momenta

(once the Riemannian formulation is proven, it will turn that such vectors will be the

actual momenta for landmark points, as defined in Hamiltonian mechanics).

Remark. We would like to argue that it makes sense, from a physical point of

view, that the minimum-energy velocity field that transports the landmarks along

trajectories q must be of the form (2.5). In fact what the formula expresses is that

the N landmarks are moved around space RD by “lumps” of velocity fields centered

around each one of the landmarks themselves; such lumps cannot be point-supported,
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since the global velocity field vt(x) must minimize a norm of the Sobolev type and

therefore be smooth to a certain degree.

Before proving the above proposition and computing the momenta in func-

tion of trajectories q̄ and their time derivatives, we shall introduce some nota-

tion that will allow us to express the results in terms of matrix and vector sum-

mations/multiplications. The scalar components of the N landmark trajectories

qi =
(
qi,1, . . . , qi,D

)
, i = 1, . . . , N can be ordered in an N ×D matrix:




q1,1 q1,2 · · · q1,D

q2,1 q2,2 · · · q2,D

q3,1 q3,2 · · · q3,D

...
...

. . .
...

qN,1 qN,2 · · · qN,D




,

where the coordinates of the first, second, . . . , N th landmarks lie on the first, first,

second, . . . , N th rows of the above matrix. In order to keep notation consistent, from

now on we shall consider trajectories qi(·), i = 1, . . . , N as 1×N row vectors. Instead

we will indicate with q(k) the N × 1 column vector of the kth components of the set

of labeled landmarks:

q(k) ,




q1,k

q2,k

...

qN,k



,

for k = 1, . . . , D, while with an abuse of notation we will indicate with q the super-

position of the above defined q(k)’s, i.e.:

(2.6) q ,




q(1)

q(2)

...

q(D)



,
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which is a DN × 1 column vector (the abuse of notation consists in the fact that we

are using the symbol q for both the above vector and the generic element of Q, but

the context in which such symbol is used should clarify its meaning).

As far as the scalar components momenta pi =
(
pi,1, . . . , pi,D

)
, i = 1, . . . , N are

concerned we can order them in a matrix in the same way that we ordered the qi,k’s:

(2.7)




p1,1 p1,2 · · · p1,D

p2,1 p2,2 · · · p2,D

p3,1 p3,2 · · · p3,D

...
...

. . .
...

pN,1 pN,2 · · · pN,D




;

similarly to what we did before, we will define:

p(k) ,




p1,k

p2,k

...

pN,k



, for k = 1, . . . , D and p ,




p(1)

p(2)

...

p(D)



,

which are column vectors of size N × 1 and DN × 1, respectively2. In fact, we will

also need to order in a matrix the generic coefficients that appear in (2.5) in the same

way that the momenta are ordered:




α1,1 α1,2 · · · α1,D

α2,1 α2,2 · · · α2,D

α3,1 α3,2 · · · α3,D

...
...

. . .
...

αN,1 αN,2 · · · αN,D




,

and vectors α(k), k = 1, . . . , D and α (which are column vectors of sizeN×1 andDN×
1, respectively) are defined in an analogous manner. Consistently with the above

2We chose superscript indices for landmark coordinates and subscript indices for momenta be-

cause it will turn out that the derivatives of landmark coordinates q̇ and momenta p live, repectively,

on tangent bundle TI and on cotangent bundle T ∗I of the Riemannian manifold [28].
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notation we shall consider velocity fields of the type (2.5) to be row vectors. Also, we

will define the following N ×N matrix:

(2.8) S(q) ,




G(q1, q1) G(q1, q2) · · · G(q1, qN)

G(q2, q1) G(q2, q2) · · · G(q2, qN)
...

...
. . .

...

G(qN , q1) G(qN , q2) · · · G(qN , qN)




where G is the kernel of V ; its generic element will be Sij , G(qi, qj), with i, j =

1, . . . , N . Matrix S(q) is definite positive, whence invertible, by Corollary A.5 in

Appendix A. Given the above machinery we can proceed to the following proof.

Proof of Proposition 2.1. We will use variational calculus techniques. Ne-

glecting the bar above the symbol q and some of the time arguments for notational

compactness, for two time-dependent vector fields v, w ∈ L2
(
[0, 1], V

)
and for an

arbitrary ε ∈ R we have

E[v + εw, q] =

∫ 1

0

〈
vt + εwt, vt + εwt

〉
V
dt+ λ

∫ 1

0

N∑
i=1

∥∥q̇i − (
vt + εwt

)
(qi)

∥∥2

RD dt,

that is:

E[v + εw, q] =

∫ 1

0

{〈
vt, vt

〉
V

+ 2ε
〈
vt, wt

〉
V

+ ε2
〈
wt, wt

〉
V

}
dt

+λ

∫ 1

0

N∑
i=1

{〈
q̇i − vt(q

i), q̇i − vt(q
i)
〉
RD − 2ε

〈
q̇i − vt(q

i), wt(q
i)
〉
RD

+
〈
wt(q

i), wt(q
i)
〉
RD

}
dt;

therefore the first variation of the functional is

δE , ∂

∂ε
E[v + εw, q]

∣∣∣
ε=0

= 2

∫ 1

0

{〈
vt, wt

〉
V
− λ

N∑
i=1

〈
q̇i − vt(q

i), wt(q
i)
〉
RD

}
dt.

By the reproducing property described in Corollary A.4 we have that

〈
q̇i − vt(q

i), wt
〉
RD =

〈
G(·, qi)[q̇i − vt(q

i)
]
, wt(q

i)
〉
V

11



for i = 1, . . . , N , so that

δE = 2

∫ 1

0

〈
vt − λ

N∑
i=1

G(·, qi)[q̇i − vt(q
i)
]
, wt

〉
V
dt.

Setting the δE = 0 for all w ∈ L2
(
[0, 1], V

)
yields:

vt(x) =
N∑
i=1

λ
[
q̇i(t)− vt

(
qi(t)

)]
G

(
x, qi(t)

)
, t ∈ [0, 1], x ∈ RD

which is precisely of the form (2.5), having set αi(t) = λ
[
q̇i(t)− vt

(
qi(t)

)]
. ¤

The momenta may be computed in the following manner.

Proposition 2.2. For a fixed q̄ =
{
q̄i : [0, 1] → RD

}N
i=1

∈ Q the minimizer with

respect to v ∈ L2([0, 1], V ) of E[v, q̄] is

(2.9) v∗t (x) =
N∑
i=1

pi(t)G
(
x, q̄i(t)

)
,

where the components of momenta (2.7) are given by:

(2.10) p(k)(t) =
(
S
(
q̄(t)

)
+

id

λ

)−1

· d
dt
q̄(k)(t),

k = 1, . . . , D, where id is the N ×N identity matrix.

In order to prove the above result we will need two lemmas.

Lemma 2.3. When the velocity field has the form (2.5), its squared norm ‖vt‖2
V

at a given time t can be expressed as:

∫

RD

〈
Lvt(x), vt(x)

〉
RD dx =

D∑

k=1

αT(k)(t)S
(
q(t)

)
α(k)(t).

Proof. We are going to use some of the notation and terminology introduced in

Appendix A. When the velocity field in form (2.5), i.e. vt(x) =
∑N

i=1 αiG(x, qi) , we

12



have:

∫

RD

〈
Lvt(x), vt(x)

〉
RD dx =

〈
vt(x), vt(x)

〉
V

=
N∑

i,j=1

〈
G(·, qi)αi, G(·, qj)αj

〉
V

(∗)
=

N∑
i,j=1

〈
αi, G(qi, qj)αj

〉
RD

=
N∑

i,j=1

G(qi, qj)
〈
αi, αj

〉
RD =

D∑

k=1

N∑
i,j=1

G(qi, qj)αi,kαj,k =
D∑

k=1

αT(k) S(q)α(k),

where in step (∗) we have used Corollary A.4. ¤

Lemma 2.4. When the velocity field has the form (2.5) the integrand of the smooth-

ing term in energy (2.3) can be written as:

N∑
i=1

∥∥∥q̇i(t)− vt
(
qi(t)

)∥∥∥
2

RD
=

D∑

k=1

(
S
(
q(t)

)
α(k)(t)− q̇(k)(t)

)T(
S
(
q(t)

)
α(k)(t)− q̇(k)(t)

)
.

Proof. We will write the components of the velocity field as vt = (v1
t , . . . , v

D
t ).

Neglecting the time argument for notational compactness, we have that

vkt (x) =
N∑
j=1

αj,kG(x, qj), whence vkt (q
i) =

N∑
j=1

αj,kG(qi, qj) =
N∑
j=1

Sijαj,k,

so that we can write the N × 1 column vector q̇(k) − S(q)α(k) as

q̇(k) − S(q)α(k) =




q̇1,k −∑N
j=1 S

1jαj,k

q̇2,k −∑N
j=1 S

2jαj,k
...

q̇N,k −∑N
j=1 S

Njαj,k




=




q̇1,k − vkt (q
1)

q̇2,k − vkt (q
2)

...

q̇N,k − vkt (q
N)



.

Therefore the integrand of the smoothing term in (2.3) can be expressed as:

N∑
i=1

∥∥∥q̇i − vt
(
qi

)∥∥∥
2

RD
=

D∑

k=1

N∑
i=1

∣∣∣q̇i,k − vkt
(
qi

)∣∣∣
2

=
D∑

k=1

∥∥∥q̇(k) − S(q)α(k)

∥∥∥
2

RN

=
D∑

k=1

∥∥∥S(q)α(k) − q̇(k)
∥∥∥

2

RN
=

D∑

k=1

(
S(q)α(k) − q̇(k)

)T(
S(q)α(k) − q̇(k)

)
,

which precisely is what we wanted to prove. ¤
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Proof of Proposition 2.2. We will omit the bar above the symbol q and some

arguments for notational compactness. For a velocity field of the type (2.5) Lem-

mas 2.3 and 2.4 imply that, for a velocity field of the type (2.5), the energy (2.3) can

be written in the form:

E[v, q] =

∫ 1

0

D∑

k=1

{
αT(k)Sα(k) + λ

(
Sα(k) − q̇(k)

)T (
Sα(k) − q̇(k)

)}
dt.

In fact, we will indicate the above functional with U [α, q] since it is now a function

of the α coefficients and the landmark trajectories. Once again, we will be using

variational principles. For arbitrary functions α(k), β(k) : [0, 1] → RN×1, k = 1, . . . , D

and any ε ∈ R we have

U [α+ εβ, q] =

∫ 1

0

D∑

k=1

{(
α(k) + εβ(k)

)T
S
(
α(k) + εβ(k)

)

+λ
[
S
(
α(k) + εβ(k)

)− q̇(k)
]T [

S
(
α(k) + εβ(k)

)− q̇(k)
]}

dt,

that is:

U [α + εβ, q] =

∫ 1

0

D∑

k=1

{
αT(k)Sα(k) + 2ε αT(k)Sβ(k) + ε2βT(k)Sβ(k)

+λ
[(
Sα(k) − q̇(k)

)T (
Sα(k) − q̇(k)

)
+ 2ε

(
Sα(k) − q̇(k)

)T
Sβ(k) + ε2βT(k)S

TSβ(k)

]}
dt.

Therefore the first variation of functional U with respect to α is given by:

δU , ∂

∂ε
U [α+ εβ, q]

∣∣∣
ε=0

= 2

∫ 1

0

D∑

k=1

{
αT(k)S + λ

(
Sα(k) − q̇(k)

)T
S
}
β(k) dt,

which is equal to zero for any choice of functions β(k), k = 1, . . . , D if and only if

αT(k)S + λ
(
Sα(k) − q̇(k)

)T
S = 0, k = 1, . . . , D.

Matrix S is positive definite, whence invertible, therefore the above equations are

equivalent to

α(k) + λ
(
Sα(k) − q̇(k)

)
= 0, k = 1, . . . , D

which immediately yield:

α(k) =
(
S +

id

λ

)−1

q̇(k) k = 1, . . . , D,
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that are precisely equations (2.10). ¤

2.2. Main result. It is convenient, at this point, to introduce the N×N matrix:

R(q) ,
(
S(q) +

id

λ

)−1

where S(q) was defined in (2.8) and also the DN ×DN , block-diagonal matrix

g(q) ,




R(q) 0 · · · 0

0 R(q) · · · 0
...

...
. . .

...

0 0 · · · R(q)




(2.11)

=




S(q) + id
λ

0 · · · 0

0 S(q) + id
λ

· · · 0
...

...
. . .

...

0 0 · · · S(q) + id
λ




−1

,

where the N × N block R(q) is repeated exactly D times (the zeroes above repre-

sent N×N blocks of zeroes); the choice of symbol g in the definition above is justified,

as we shall see in Theorem 2.7, by the fact that (2.11) is precisely the metric ten-

sor of Riemannian manifold I, and g is the classic symbol used for such tensor in

Differential Geometry. We will need the following technical result.

Lemma 2.5. Given two generic sets S and W, consider a function f : S×W → R

and assume that, for any fixed w̄ ∈ W, function f(s, w̄) has a unique minimizer with

respect to s ∈ S: we shall define h(w̄) , arg mins∈S f(s, w̄). Under these hypotheses,

inf
(s,w)∈S×W

f(s, w) = inf
w∈W

f(h(w), w).

Proof. Let ν1 , inf(s,w)∈S×W f(s, w) and ν2 , infw∈W f(h(w), w). It is obvious

that ν1 ≤ ν2: in fact we have that ν2 = inf(s,w)∈graph(h) f(s, w) ≥ ν1, since graph(h) ⊂
U × V . We now want to prove that ν1 ≥ ν2. But if ν1 < ν2 then by the definition

of ν1 (a number µ is the infumum of a set T ⊂ R if: (a) for all x ∈ T , we have

x ≥ ν; (b) for any choice of µ′ > µ, ∃ y ∈ T such that y < µ′) there would exist a
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pair (s∗, w∗) ∈ S ×W such that f(s∗, w∗) < ν2. By the definition of h we would have

f(h(w∗), w∗) ≤ f(s∗, w∗) < ν2, which is a contradiction of the definition of ν2. ¤

For a fixed pair of landmark sets I = {x1, . . . , xN} and I ′ = {y1, . . . , yN} we can

apply the above Lemma to sets

S = L2([0, 1], V ) and W = Q0 ,
{
q ∈ Q : q(0) = I, q(1) = I ′

}
,

and to function f = E[v, q]. Velocity v∗ provided by expression (2.9) in Proposi-

tion 2.2 minimizes E[v, q̄] for a fixed trajectory q̄, so that v∗ = h(q̄); in fact, with an

abuse of notation, we shall write v∗ = v∗(q̄). The following consequence holds.

Corollary 2.6. Fix landmark sets I = (x1, . . . , xN) and I ′ = (y1, . . . , yN). For

an arbitrary q̄ ∈ Q0 let velocity v∗ = v∗(q̄) be the minimizer of E[v, q̄] provided by

Proposition 2.2. Then the function d defined in (2.4) is such that

d(I, I ′)2 , inf
(v,q̄)∈L2([0,1],V )×Q0

E
[
v, q̄

]
= inf

q̄∈Q0

E
[
v∗(q̄), q̄

]
.

If there exists a unique q∗ ∈ Q0 such that q∗ = arg minq̄∈Q0 E
[
v∗(q̄), q̄

]
then

arg min
(v,q̄)∈L2([0,1],V )×Q0

E
[
v, q̄

]
=

(
v∗(q∗), q∗

)
,

where v∗(q∗) is the minimizer with respect to v of energy E[v, q∗], again provided by

Proposition 2.2; under these conditions, d(I, I ′) =
√
E

[
v∗(q∗), q∗

]
.

Proof. First note that the square root and the “inf” can be exchanged since

the square root is a monotone increasing function. The first part of the corollary

follows directly from Lemma 2.5. If q∗ = arg minq̄∈Q0 E[v(q̄), q̄] is well defined then

inf q̄∈Q0 E
[
v∗(q̄), q̄

]
= E

[
v∗(q∗), q∗

]
, so that

(
v∗(q∗), q∗

)
= arg inf

(v,q̄)∈L2([0,1],V )×Q0

E
[
v, q̄

]

and d(I, I ′) =
√
E

[
v∗(q∗), q∗

]
. Note that the above infimum is actually achieved by

a pair in L2([0, 1], V )×Q0, and therefore is a minimum. ¤
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Inserting v∗(q̄) into E[v, q̄] yields a new energy expression that only depends on q̄,

which we shall indicate with Ẽ[q̄]. In fact, given the arbitrariness of the choice of

trajectory q̄ from now on we will drop the bar above symbol q so that we can write:

Ẽ[q] , E
[
v∗(q), q

]
, q ∈ Q

where v∗(q) is the minimizer of E[v, q] with respect to v, given by Proposition 2.2.

By the above corollary, d(I, I ′) = infq∈Q0

√
Ẽ[q]. We are not ready to prove the main

result of this chapter; a discussion will follow.

Theorem 2.7. For an arbitrary landmark trajectory q ∈ Q it turns out that Ẽ[q]

has the form:

(2.12) Ẽ[q] =

∫ 1

0

q̇(t)Tg
(
q(t)

)
q̇(t) dt,

where q̇ is the derivative of the DN × 1 column vector q defined by (2.6) and g is

the DN ×DN matrix defined by (2.11).

Proof. Let q ∈ Q be an arbitrary set of landmark trajectories, and v∗(q) be

the minimizer with respect to v of E[v, q], provided by Proposition 2.2. Applying

Lemmas 2.3 and 2.4 to formula (2.9) rather than to formula (2.5) allows one to write:

Ẽ[q] = E[v∗(q), q]

=

∫ 1

0

∫

RD

〈
Lv∗t (x), v

∗
t (x)

〉
RD dx dt+ λ

∫ 1

0

N∑
i=1

∥∥∥dq
i

dt
(t)− v∗t (q

i(t))
∥∥∥

2

RD
dt

=

∫ 1

0

D∑

k=1

pT(k) S(q) p(k) dt+ λ

∫ 1

0

D∑

k=1

(
S(q) p(k) − q̇(k)

)T(
S(q) p(k) − q̇(k)

)
dt

=

∫ 1

0

D∑

k=1

{
pT(k) S(q) p(k) + λ

(
S(q) p(k) − q̇(k)

)T(
S(q) p(k) − q̇(k)

)}
dt .
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Inserting the formula for the momenta p(k) =
(
S(q)+ id

λ

)−1

q̇(k), provided by (2.10),

into the above expression yields3

Ẽ[q] =

∫ 1

0

D∑

k=1

{(
q̇(k)

)T(
S +

id

λ

)−T
S

(
S +

id

λ

)−1

q̇(k)

+λ
[
S
(
S +

id

λ

)−1

q̇(k) − q̇(k)
]T[

S
(
S +

id

λ

)−1

q̇(k) − q̇(k)
]}

dt,

which we may rewrite as

Ẽ[q] =

∫ 1

0

D∑

k=1

(
q̇(k)

)T{(
S +

id

λ

)−1

S
(
S +

id

λ

)−1

+λ
[
S
(
S +

id

λ

)−1

− id
]T[

S
(
S +

id

λ

)−1

− id
]}(

q̇(k)
)
dt.(2.13)

It is the case that

[
id− S

(
S +

id

λ

)−1]
· λ

(
S +

id

λ

)
=

[(
S +

id

λ

)
− S

]
λ = id,

whence

id− S
(
S +

id

λ

)−1

=
1

λ

(
S +

id

λ

)−1

.

Inserting the above expression into (2.13) yields:

Ẽ[q] =

∫ 1

0

D∑

k=1

(
q̇(k)

)T[(
S +

id

λ

)−1

S
(
S +

id

λ

)−1

+
1

λ

(
S +

id

λ

)−1(
S +

id

λ

)−1 ]
q̇(k) dt

=

∫ 1

0

D∑

k=1

(
q̇(k)

)T(
S +

id

λ

)−1[
S +

id

λ

] (
S +

id

λ

)−1

q̇(k) dt

=

∫ 1

0

D∑

k=1

(
q̇(k)

)T(
S +

id

λ

)−1

q̇(k) dt =

∫ 1

0

q̇Tg(q) q̇ dt ,

which is precisely the statement of the theorem. ¤

3We are using the notation A−T ,
(
A−1

)T ; if A is symmetric then A−T = A−1.

18



2.3. Discussion. First and foremost, since matrix g : RDN → RDN×DN is posi-

tive definite for any landmark set we have that expression (2.12) provides a Riemann-

ian energy function [11, 23, 27]. Therefore the set of landmarks I is endowed with a

Riemannian structure, where g is the metric tensor, geodesic curves are the extrema

of energy functional (2.12), and the geodesic distance between two shapes I, I ′ ∈ I is

given by d(I, I ′) = infq∈Q0

√
Ẽ[q], where Q0 =

{
q ∈ Q : q(0) = I, q(1) = I ′

}
. Note

that the (infinite-dimensional) diffeomorphism group GV and its Lie algebra V have

formally “disappeared” from the energy, their information being incorporated into

the metric tensor of the Riemannian shape manifold I, of finite dimension n = DN ;

the metric tensor in fact depends on the kernel G of space V , and on smoothing pa-

rameter λ. In following chapters we will investigate the geometry of the Riemannian

structure of I, namely its curvature.

Since metric tensor g is block diagonal with D blocks and the DN × 1 vector q

can be partitioned in precisely the D vectors of the components of the landmarks

set, at a first look it may seem that the D dimensions of q could be treated in an

independent manner from one another, i.e. that we could split enargy (2.12) into D

“uncoupled” integrals

Ẽ[q] =
D∑

k=1

∫ 1

0

(
q̇(k)

)T(
S(q) +

id

λ

)−1

q̇(k) dt,

and minimize them separately. In fact (while the above formula is correct) this is

not the case since all the components appear in the argument of matrix S(q) =
[
G(qi, qj) + δij

λ

]
1≤i,j≤N .

We should note that for small values of parameter λ the metric tensor g gets

close (up to a multiplicative constant) to the DN × DN identity matrix, i.e. the

diagonal elements become far larger than the off-diagonal elements, and they are all

approximately given by 1/λ. This means that the metric converges to the Euclidean

metric in RDN for λ → 0 and the geodesic curves converge to straight lines, as we

anticipated at the end of section 1 of this chapter.
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It is well known from the theory of Riemannian manifolds that energies of the

type (2.12) may not have a unique minimizer. However, if such length-minimizing

geodesic path q∗ exists and is numerically computable, by Corollary 2.6 one can also

compute the “other half” of the minimizer of energy (2.3), i.e. the velocity field v∗

such that (v∗, q∗) = arg minv,q E[v, q] by applying formula (2.9) of Proposition 2.2

to trajectory q∗. Consequently, one can also (numerically) compute the correspond-

ing diffeomorphism ϕv
∗

by implementing the system of ordinary differential equa-

tions (2.2).

Last, but not least we should remark that the Lagrangian function that corre-

sponds to energy (2.12) is:

(2.14) L(q, q̇) =
1

2
q̇TS(q)q̇ =

1

2

D∑

`=1

(
q̇(`)

)T(
S(q) +

id

λ

)−1

q̇(`);

it is easy to see that the momenta, which we defined as the coefficients of the velocity

field of the form (2.5) that minimizes energy E[v, q] with respect to v, actually coincide

with the momenta of landmark points in the sense of classical mechanics [2]. In fact in

the Hamiltonian formalism the momenta are defined as pi,k = ∂L
∂qi,k (q, q̇), i = 1, . . . , N ,

k = 1, . . . , D; that is, in vector notation, p(k) = ∂L
∂q(k) , k = 1, . . . , D. Applying such

definition to (2.14) yields

p(k) =
(
S(q) +

id

λ

)−1

q̇(k), k = 1, . . . , D

which coincide with equations (2.10) of Proposition 2.2. Whence the use of the term

momenta is justified. Chapter 3 is dedicated to momenta for landmarks, Hamilton’s

equations (cogeodesic flow), and conservation laws.

3. Numerical Examples

In this section we briefly illustrate the qualitative behavior of geodesics connecting

pairs of landmark shapes I = (x1, . . . , xN) and I ′ = (y1, . . . , yN) on the plane (D = 2).

In the figures that follow black dots and circles are, respectively, the initial and final
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Figure 2.1. Geodesic curve for landmarks traveling in opposite di-

rections; black dots and circles represent initial and final positions,

respectively. The corresponding diffeomorphism ϕv01 is also shown.

landmark sets I and I ′; the curves represent, in principle4, the length minimizing

(2N -dimensional) geodesic between the initial and final configurations. In each of

the figures that follow the diffeomorphism ϕv01 (induced by the velocity (2.9) that

corresponds to the depicted landmark trajectories) is also shown. In all the examples

smoothing parameter λ is set to a high (but finite) value.

Figure 2.1 shows a case with N = 2 where one landmark must travel from the

left to the right and the other must do the opposite. The qualitative behavior of the

geodesic q(t) =
(
q1(t), q2(t)

)
, t ∈ [0, 1] is such that the two arcs “repel” each other:

in fact if the two landmarks traveled too close to each other the vertical derivative of

the horizontal component of the velocity field vt(x) would be large in a neighborhood

4The curves were computed a conjugate gradient [6, 39] descent algorithm on the energy for

fixed boundary conditions and it may well be the case that the curves are, in fact, points of local

minimum of the functional. An alternative method for solving the boundary value problem is the

geodesic shooting method [35], which we did not implement here.
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Figure 2.2. Geodesic curve for landmarks traveling in the same di-

rection; black dots and circles represent initial and final positions, re-

spectively. The corresponding diffeomorphism ϕv01 is also shown.

of the origin x = (0, 0) and time t = 1
2
, thus giving a strong contribution to the second

term
∫ 1

0

∫
R2

∑2
`=1 ‖∇v`t(x)‖2

R2 dx dt of the Sobolev norm5 of the velocity.

On the other hand, the opposite happens when the two landmarks must travel

in the same direction, as shown in Figure 2.2: the two arcs of the geodesic “attract”

each other. The two landmarks tend to “carpool”, i.e. to use a velocity field with the

smallest possible support in order to minimize the first term
∫ 1

0

∫
R2

∑2
`=1 |v`t(x)|2 dx dt

of the Sobolev norm of the velocity field.

Finally, Figure 2.3 depicts a somewhat more complex situation where four corners

of a square are moved (in this case, N = 4). We shall limit ourselves to note that

the shape of the four arcs of the (8-dimensional) geodesic curve are mostly deter-

mined by the fact that the bottom-right landmark must take the longest journey in a

unit of time, whence traveling the fastest and causing the top-right and bottom-left

landmarks to initially “pull away” from it. This sudden evasive maneuver causes the

5See footnote 1.
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Figure 2.3. Deformation of a square; black dots and circles represent

initial and final positions, respectively. The corresponding diffeomor-

phism ϕv01 is also shown.

remaining (top-left) landmark to initially travel towards the center of the square, but

eventually turning back so to be able to reach its designed destination.

4. More on Kernels

The Green’s function of differential operator L = (id− a2∆)k in RD has the form

G(x, y) = γ
(||x− y||RD

)
, with γ : (0,∞) → R given by the bell-shaped function [20]:

(2.15) γ(%) =
2πk

(k − 1)! (2πa)k+
D
2

%k−
D
2 Kk−D

2

(%
a

)
,

whereKν is a modified Bessel function [1, Ch. 9]; γ can be extended to 0 by continuity.

Such functions are referred to as Bessel kernels or Sobolev kernels (since they are the

inverse of the differential operators that define the Sobolev norms). One can prove

(see Appendix B) that (2.15) is a solution to the ordinary differential equation

(2.16) γ′′ =
2ν − 1

%
γ′ +

1

a2
γ ,
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where ν = k − D
2
, with the appropriate choice of boundary conditions that can be

directly derived from (2.15); Propositions B.4 and B.5 describe the behavior of γ(%)

in a neighborhood of zero.

We should however note that the whole theory we have presented so far would still

hold if, instead of starting from an admissible Hilbert space V of the Sobolev kind and

then building its kernel G (as the Green’s function of the differential operator L that

defines the norm on V ), we started from a generic continuous, positive definite scalar

kernel G ∈ L2
(
RD×RD,R)

; the Mercer-Hilbert-Schmidt theorem [40, 45, 47] would

then allow us to reconstruct the Hilbert space V (which, in general, will not be of the

Sobolev kind) that has G as its reproducing kernel, i.e. such that
〈
G(·, x)α, v〉

V
=

〈
α, v(x)

〉
RD for any point x ∈ RD, vector α ∈ RD, and function v ∈ V (as it is

the case for kernels for Sobolev-type admissible Hilbert spaces, see Corollary A.4).

The energy to be minimized with respect to v ∈ L2
(
[0, 1], V

)
and q ∈ Q (with the

appropriate boundary conditions) would the general form:

E[v, q] ,
∫ 1

0

∥∥vt
∥∥2

V
dt+ λ

∫ 1

0

N∑
i=1

∥∥∥dq
i

dt
(t)− vt

(
qi(t)

)∥∥∥
2

RD
dt,

which of course coincides with (2.3) when the norm on space V is of the Sobolev

type (2.1). Proposition 2.2 and Theorem 2.7 would still hold. The discussion on how

to construct an admissible space from a kernel goes well beyond the scope of this

introductory chapter, and the reader is referred to [47] for further details. However,

in the future we will use functions γ not given by (2.15) but that are of a form which

is easier to manipulate both analytically and numerically, such as Gaussians

(2.17) γ(%) =
1√

2πσ2
exp

{− %2

2σ2
},

or heavy-tailed Cauchy-type functions

(2.18) γ(%) =
1

1 + a2%2
.

We will see in Chapter 5 that the Riemannian curvature tensor and sectional

curvature for the landmarks manifold can be expresses in terms of function γ and its

first and second derivatives γ′ and γ′′; therefore, for a specific choice of the kernel,
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from a computational point of view it is convenient to know how γ and its derivatives

are related to each other. In the case of kernels of the Sobolev form, i.e. deriving from

an admissible Hilbert space with norm (2.1), such relationship is precisely provided

by (2.16); in the case of Gaussian type kernels (2.17) the first and second derivatives

are related to γ simply by

(2.19) γ′(%) = − %

σ2
γ(%) and γ′′(%) =

1

σ2

( %

σ2
− 1

)
γ(%),

respectively; on the other hand, in the case of Cauchy kernels (2.18) it is easy to get

equations

(2.20) γ′(%) = −2a2%γ2(%) and γ′′(%) = 8a4%2γ3(%)− 2a2γ2(%).

We will use these relationships later on in Chapter 5.

5. Further Generalizations

In this final section we shall briefly illustrate how the theory of landmark manifolds

that we have presented so far may be thought of as a particular case of a more general

approach to shape analysis, based on Lie groups of diffeomorphisms acting on shape

manifolds. Such general approach is presented in [36, 47] and here we shall limit

ourselves to summarizing it, noting that it is applicable to landmarks, images, planar

curves, surfaces, and currents [17].

5.1. Extensions to generic Shapes. Given a manifold I of “objects” (e.g. land-

mark configurations, images, curves, etc.) consider a Lie group G that acts on I, i.e. a

map G × I → I : (g, I) 7→ g · I. The group also acts on A = G × I by the operation

G × A → A : (g, (h, I)) 7→ (gh, g · I). Assuming we are given a left-invariant dis-

tanceD(·, ·) onA (i.e.D(g·a, g·a′) = D(a, a′), for all a, a′ ∈ A and g ∈ G) this induces

a (pseudo-)distance on I by defining: d(I, I ′) = inf
{
D

(
(g, I), (g, I ′)

)
: g, g′ ∈ G}

.

This simple idea can be applied to groups G of diffeomorphisms RD → RD

(with group operation ϕψ = ψ ◦ φ) acting on shape manifolds I, such as sets of

D-dimensional landmarks or images (described as scalar functions I : RD → R, with

D = 2). In fact we can construct a left-invariant metric 〈·, ·〉(g,I) on A = G × I, that
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keeps into account both the magnitude of the diffeomorphism generated by vector

fields on G and variations in the structure of objects in I. There are several advan-

tages in designing a left-invariant metric on G ×A (and not just on G): for example,

the resulting distance d on I is tolerant to small group actions, so that object varia-

tions due to “noise” are neglected; also, we shall see later that in the case of image

matching the approach allows to variations in the image values themselves, and not

just in the geometry via a diffeomorphism of the domain. We should also note that,

from a purely mathematical point of view, left-invariance is a conditio sine qua non

for d to be a distance on I.

The energy of a smooth path a : [0, 1] 7→ A : t 7→ at = (gt, It), is

E[a] =

∫ 1

0

∥∥∥dat
dt

∥∥∥
2

at

dt =

∫ 1

0

∥∥∥
(dgt
dt
,
dIt
dt

)∥∥∥
2

(gt,It)
dt ;

it turns out that since the metric 〈·, ·〉(g,I) was constructed to be left-invariant, the

geodesic distance on A: D(b, b′) =
{√

E[a] : a(0) = b, a(1) = b′
}

is left-invariant

with respect to G actions. By the simple construction above, we have that d(I, I ′) =

inf
{
D

(
(g, I), (g, I ′)

)
: g, g′ ∈ G}

is in fact a distance on I. Using the left-invariance

of the metric it is often convenient to rewrite the above energy as follows:

E[a] =

∫ 1

0

∥∥∥
(
Lg−1

t

)
∗

(dgt
dt
,
dIt
dt

)∥∥∥
2(
g−1

t gt, Lg−1
t

(It)
)dt

=

∫ 1

0

∥∥∥
(dgt
dt
◦ g−1

t ,
(
Lg−1

t

)
∗
dIt
dt

)∥∥∥
2(
e, g−1

t ·It
)dt

=

∫ 1

0

∥∥∥
(
vt,

d

dt

(
g−1
s · It

)∣∣∣
s=t

)∥∥∥
2

(e,Jt)
dt =: E[v, J ],(2.21)

where we have set vt := dgt

dt
◦ g−1

t ∈ TeG and Jt := g−1
t · It ∈ I (we have indicated

with Lϕ both the left action on G × I and on I, and with (Lϕ)∗ the corresponding

pushforward map [28] on the corresponding tangent spaces). It turns out that the

pair of functions (gt, It) is uniquely determined by (vt, Jt), whence with an abuse of

notation we can indicate the above energy as E[v, J ]. The induced distance on I is

d(I, I ′) = inf
{√

E[v, J ] : vt ∈ TeG, J0 = I, J1 = I ′
}
. We will now illustrate how this

general approach applies to the manifold of images and the manifold of landmarks.
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5.2. Examples. Depending on how the object space I is defined, on how the

diffeomorphism group G acts on it and on how the left-invariant metric on A = G×I
is constructed, the energy (to be minimized) takes different forms. For example, first

assume that manifold I is the set of scalar images I : [0, 1]2 → R, that G is a group of

diffeomorphisms on [0, 1]2 (that leave the boundary unchanged), and that the group

action is given by composition: g · I = I ◦ g. Let V be the Lie algebra TeG of Lie

group G; we will assume that V is an admissible Hilbert space (which is obviously also

a constraint on the group of diffeomorphisms G that V generates). If the left-invariant

metric is such that

(2.22)
∥∥(v, ξ)

∥∥2

(e,I)
= ‖v‖2

V + λ

∫

[0,1]2
|ξ|2 dx

for all I ∈ I, v ∈ V = TeG ⊂ C∞(R2,R2), and ξ ∈ TII, then energy (2.21) takes the

form

E[v, J ] =

∫ 1

0

∥∥vt
∥∥2

V
dt+ λ

∫ 1

0

∫

[0,1]2

∣∣∣∂Jt
∂t

+
〈∇xJ, vt

〉∣∣∣
2

dx dt,

which in the case of a Sobolev-type admissible Hilbert space V looks like:

E[v, J ] =

∫ 1

0

∫

[0,1]2

〈
Lvt(x), vt(x)

〉
R2 dx dt+ λ

∫ 1

0

∫

[0,1]2

∣∣∣∂Jt
∂t

+
〈∇xJ, vt

〉∣∣∣
2

dx dt.

Note that the integrand in the second term on the right-hand side is the well-known

optical flow constraint equation [19], or transport equation for J , so that the first

integral penalizes large variations due to the diffeomorphism of the domain, while the

second one penalizes violations of the optical flow constraint equation, i.e. variations

of pixel intensity along the flow. This also allows for matching two images with

different luminance values. The induced distance on I between two images I and I ′

is given by d(I, I ′) = inf
{√

E[v, J ] : vt ∈ TeG, J0 = I, J1 = I ′
}
.

Assume now that I is the space of landmark points, that is, the generic element

is given by I = (x1, x2, . . . , xN), xi ∈ RD, with xi 6= xj for i 6= j. If G is a group

of diffeomorphisms RD → RD that leave the point at infinity unchanged, the group

action is g · I = g−1(I) = (g−1(x1), . . . , g
−1(xN)) and the left-invariant metric is such
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that
∥∥(v, ξ)

∥∥2

(e,I)
=

∥∥v
∥∥2

V
+ λ

N∑
i=1

∥∥xi
∥∥2

RD

for all I ∈ I, v ∈ V = TeG ⊂ C∞(RD,RD), and ξ ∈ TII = RDN , then energy (2.21)

takes the form

E[v, q] =

∫ 1

0

∫

RD

〈
Lvt(x), vt(x)

〉
RD dx dt+ λ

∫ 1

0

N∑
i=1

∥∥∥dqi
dt

(t)− vt(qi(t))
∥∥∥

2

Rd
dt,

where we have assumed that the admissible Hilbert space is of the Sobolev type;

in the above equation we have indicated with q(t) = (q1(t), . . . , qN(t)) the set Jt =

g−1
t · It =

(
gt(x1(t)), . . . , gt(xN(t))

)
. Once again, the induced distance on I is given

by d(I, I ′) = inf
{√

E[v, q] : vt ∈ TeG, q(0) = I, q(1) = I ′
}
. Incidentally, note

that the above energy coincides with (2.3) and the induced distance d(I, I ′) coincides

with (2.4); that is, this was precisely our starting point at the beginning of this

chapter.
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CHAPTER 3

Momenta and Conservation Laws

In this chapter we will explore the structure of Hamilton’s equations for the Rie-

mannian manifold of landmarks and discuss the corresponding conserved quantities.

1. Hamilton’s equations

1.1. Generalities. It is well known from the theories of classical mechanics and

variational calculus [2, 4, 37] that for a system with n degrees of freedom the n

second order Euler-Lagrange equations for an energy of the type

F [q] =

∫ 1

0

L(q, q̇) dt,

namely

(3.1)
d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0 i = 1, . . . , n,

are equivalent to 2n first order differential equations, known as Hamilton’s equa-

tions, where the variables are positions q = (q1, . . . , qn) ∈ Rn and momenta p =

(p1, . . . , pn) ∈ Rn. The momenta are in fact defined as the variables

pi =
∂L
∂q̇i

(q, q̇), i = 1, . . . , n;

if the determinant of matrix
[

∂L
∂q̇i∂q̇j

]n
i,j=1

is nonzero then the above system of equations

is (locally) invertible and we can write q̇i = q̇i(p, q), i = 1, . . . , n, or just q̇ = q̇(p, q)

in a more compact notation. The Hamiltonian is the scalar function

H(p, q) ,
[ n∑
i=1

pi q̇i − L(q, q̇)
]
q̇=q̇(p,q)

;
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as anticipated above, the Euler-Lagrange equations (3.1) turn out to be are equivalent

to Hamilton’s Equations:

q̇i =
∂H
∂pi

(p, q),

ṗi = −∂H
∂qi

(p, q).

The flow determined by Hamilton’s equations is known as the cogeodesic flow [23].

The Hamiltonian function is always an integral of motion, i.e. it is conserved along

the cogeodesic flow, since

d

dt
H(p, q) =

n∑
i=1

{∂H
∂pi

ṗi +
∂H
∂qi

q̇i
}

=
n∑
i=1

{
− ∂H
∂pi

∂H
∂qi

+
∂H
∂qi

∂H
∂pi

}
≡ 0.

This approach is very convenient when the variables live on a Riemannian man-

ifold M with metric tensor g(·), since in this case the Lagrangian and Hamiltonian

functions have a particularly simple form. In fact the Lagrangian is given by:

L(q, q̇) =
1

2
q̇Tg(q)q̇ =

1

2

N∑
i,j=1

gij(q) q̇i q̇j;

momenta are scalar variables

(3.2) pi =
∂L
∂q̇i

=
n∑
i=1

gij(q) q̇
j, i = 1, . . . , n, i.e. p = g(q)q̇ in vector form,

and the Hamiltonian function is

(3.3) H(p, q) =
1

2
pTg(q)−1p =

1

2

N∑
i,j=1

gij(q) pi pj

where we have indicated with gij, i, j = 1, . . . , n the elements of the inverse of the

metric tensor, g(q)−1, also known as the cometric tensor ; in other words, it is such

that
∑n

j=1 g
ij(q) gjk(q) = δik (Krnonecker’s symbol). Hamilton’s equations are

q̇i =
∂H
∂pi

=
n∑
j=1

gij(q) pj(3.4)

ṗi = −∂H
∂qi

=
1

2

n∑

j,k=1

∂gjk

∂qi
(q) pj pk(3.5)
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for i = 1, . . . , n. Note that equation (3.5) is in fact equivalent to definition (3.2).

The geodesic flow on the tangent bundle TM is obtained from the cogeodesic flow by

the first of Hamilton’s equations. Being the Hamiltonian an integral of motion the

cogeodesic flow maps the set Ec ,
{
(q, p) ∈ T ∗M : H(p, q) = c

}
onto itself for c ≥ 0,

so that the cotangent bundle T ∗M is partitioned into the level sets Ec, c ≥ 0. In

the following we will compute Hamilton’s equations in the case of the Riemannian

manifold of landmarks and explore the corresponding conservation laws.

1.2. The landmarks manifold case. The metric tensor (2.11) of the Riemann-

ian manifold of landmarks is, in fact, the inverse of a matrix (whose non-zero elements

are given by the Green’s function of a differential operator) which makes the Hamil-

tonian approach especially convenient since the Hamiltonian function itself (3.3) is

expressed in terms of the cometric tensor. A slight complication comes from to the fact

that the variables qi,k introduced in Chapter 2 have in fact two indices, i = 1, . . . , N

and k = 1, . . . , D, the former indicating the landmark label while the latter refers to

the dimensional component of the single landmark; the dimension of the Riemannian

manifold I is n = DN .

Equation (2.10) of Chapter 2 can be rewritten as

q̇(k)(t) =
(
S
(
q(t)

)
+

id

λ

)
p(k)(t), k = 1, . . . , D

so that (omitting the time argument) the single components are

(3.6) q̇i,k =
N∑
j=1

(
G(qi, qj) +

δij

λ

)
pj,k , i = 1, . . . , N, k = 1, . . . , D;

they can also be expressed in the convenient compact form

(3.7) q̇i =
N∑
j=1

(
G(qi, qj) +

δij

λ

)
pj , i = 1, . . . , N,

where both the left-hand and the right-hand sides are 1 × D row vectors. Before

proceeding to the derivation of the second set of equations (3.5) we will introduce

some useful notation.
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Given the block-diagonal nature of theDN×DN metric tensor g, defined in (2.11),

it is convenient to write its generic element as giajb, with i, j = 1, . . . , N and a, b =

1, . . . , D, where:

i = row index within a N ×N block; a = index of row block;

j = column index within a N ×N block; b = index of column block.

For example, with the above convention in the simple case N = 3, D = 2 the elements

of a tensor q would be ordered as follows:

(3.8) g =




g1111 g1121 g1131 g1112 g1122 g1132

g2111 g2121 g2131 g2112 g2122 g2132

g3111 g3121 g3131 g3112 g3122 g3132

g1211 g1221 g1231 g1212 g1222 g1232

g2211 g2221 g2231 g2212 g2222 g2232

g3211 g3221 g3231 g3212 g3222 g3232




.

In general, by Theorem 2.7 the metric tensor for the landmarks manifold is

g(q) = diag
{
R(q), . . . , R(q)︸ ︷︷ ︸

D times

}

where R(q) is the N × N matrix
(
S(q) + id

λ

)−1
(so that in the above example only

the two 3 × 3 diagonal blocks of matrix (3.8) would be non-zero). Therefore, if we

indicate the generic element of R(q) with with Rij(q), i, j = 1, . . . N , we have that

the elements of metric tensor g can be expressed as

giajb(q) = Rij(q) δab , i, j = 1, . . . , N, a, b = 1, . . . , D

where δab is Kronecker’s delta. We can employ analogous notational conventions for

the inverse of the metric tensor, namely the elements of g(q)−1 can be written as

giajb(q) = Rij(q) δab , i, j = 1, . . . , N, a, b = 1, . . . , D,
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where Rij(q) is the generic element of the inverse of R(q). Since R(q)−1 = S(q) + id
λ

we have that Rij(q) = G(qi, qj) + δij

λ
, so that the cometric tensor becomes:

giajb(q) =
(
G(qi, qj) +

δij

λ

)
δab , i, j = 1, . . . , N, a, b = 1, . . . , D.

With this notation we may rewrite the first set of differential equations (3.6) as

q̇i,a =
N∑
j=1

D∑

b=1

giajb(q) pj,b , i = 1, . . . , N, a = 1, . . . , D,

which are formally consistent with (3.4), so that (3.6) are precisely the first set of

Hamilton’s equations, with n = DN .

The notation introduced above will be especially useful in the computation of

curvature for landmarks manifolds, which will be done in Chapter 5. In any case we

have that the Hamiltonian function of the system can be expressed as:

H(p, q) =
1

2
pTg(q)−1p =

1

2

N∑
i,j=1

D∑

a,b=1

giajb(q) pi,a pj,b

=
1

2

N∑
i,j=1

D∑

a,b=1

(
G(qi, qj) +

id

λ

)
δab pi,a pj,b =

1

2

N∑
i,j=1

D∑
a=1

(
G(qi, qj) +

δij

λ

)
pi,a pj,a ,

that is:

(3.9) H(p, q) =
1

2

N∑
i,j=1

(
G(qi, qj) +

δij

λ

) 〈
pi, pj

〉
RD .

Note that G : RD × RD → R : (ξ, η) 7→ G(ξ, η), the chosen Green’s function

(i.e. the kernel of space V ), is a function of 2D real arguments:

G(ξ, η) = G
(
ξ1, ξ2, . . . , ξD, η1, η2, . . . , ηD

)
;

from now on we shall indicate with ∂G
∂ξ` its derivative with respect to the `th component

of vector ξ ∈ RD. Also, we will indicate with ∇ξG : RD × RD → RD the row vector:

∇ξG(ξ, η) =

[
∂G

∂ξ1
(ξ, η)

∂G

∂ξ2
(ξ, η) · · · ∂G

∂ξD
(ξ, η)

]
.
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As we said in Chapter 2, Green’s function G is of the form G(ξ, η) = γ
(||ξ − η||RD

)
,

for some γ : [0,∞) → R; if this is the case, then:

(3.10)
∂G

∂ξ`
(ξ, η) = γ′

(||ξ − η||RD

) ξ` − η`

||ξ − η||RD

, ` = 1, . . . , D.

We now have all the machinery to state and prove the following result.

Proposition 3.1. The DN first order ordinary differential equations hold:

(3.11) ṗi,k = −
N∑
j=1

∂G

∂ξk
(qi, qj) 〈pi, pj〉RD , i = 1, . . . , N, k = 1, . . . , D.

Therefore Hamilton’s equations for the Riemannian manifold of landmarks are

(3.12)





q̇i =
N∑
j=1

(
G(qi, qj) +

δij

λ

)
pj

ṗi = −
N∑
j=1

∇ξG(qi, qj) 〈pi, pj〉RD

i = 1, . . . , N.

Proof. The first of equations (3.12) is simply given by (3.7), which derives di-

rectly from the definition of momenta. The second of Hamilton’s equations is:

ṗi,k = − ∂H
∂qi,k

(p, q) = −1

2

N∑

j,`=1

∂

∂qi,k

(
G(qj, q`) +

id

λ

) 〈
pj p`

〉
RD

= −
N∑
j=1

∂G

∂ξk
(qi, qj)

〈
pi pj

〉
RD

for i = 1, . . . , N and k = 1, . . . , D, which coincides with (3.11). Such equations can

be written in the compact form given by the second of equations (3.12). ¤

2. Conservation laws

As we mentioned above the flow determined by equations (3.12) is called the co-

geodesic flow: the geodesic flow on the manifold I is determined by the solutions qi(·),
i = 1, . . . , N of the above equations. The Hamiltonian function is constant along the

solutions of (3.12), so that the cogeodesic flow partitions the cotangent bundle into

the level sets of H(p, q).
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The structure of the system of equations (3.12) is such that, in fact, other

quantities are conserved along the flow. Before describing such integrals of mo-

tion we will quickly introduce some more notation. If
(
pi(·), qi(·)

)
, i = 1, . . . , N

are solutions of (3.12), let ϕt : RD → RD be the time-dependent diffeomor-

phism ϕt(ξ) , ϕv0t(ξ) induced by velocity field vt(ξ) =
∑N

i=1 pi(t)G
(
ξ, qi(t)

)
, t ∈ [0, 1],

ξ ∈ RD. We will denote the components of such diffeomorphism and the velocity field

as ϕt(ξ) =
(
ϕ1
t (ξ), . . . , ϕ

D
t (ξ)

)
and vt(ξ) =

(
v1
t (ξ), . . . , v

D
t (ξ)

)
, respectively. Let Dϕt

be the Jacobian matrix of the diffeomorphism, i.e.

(3.13) Dϕt(ξ) ,




∂ϕ1
t

∂ξ1
∂ϕ1

t

∂ξ2
· · · ∂ϕ1

t

∂ξD

∂ϕ2
t

∂ξ1
∂ϕ2

t

∂ξ2
· · · ∂ϕ2

t

∂ξD

...
...

. . .
...

∂ϕD
t

∂ξ1
∂ϕD

t

∂ξ2
· · · ∂ϕD

t

∂ξD



.

Note that Dϕ0(ξ) = id (the D ×D identity matrix) for all ξ ∈ RD, since ϕ0(ξ) = ξ.

The following important result holds.

Proposition 3.2 (Strong Conservation Law). Assume λ = ∞ (exact matching

problem). Then it is the case that

(3.14)
D∑

k=1

pi,k(t)
∂ϕkt
∂ξ`

(
qi(0)

)
= pi,`(0), i = 1, . . . , N, ` = 1, . . . , D

for all t ∈ [0, 1], which may be written in terms of (row) vector and matrix multipli-

cation, as1

(3.15) pi(t) ·Dϕt
(
qi(0)

)
= pi(0), i = 1, . . . , N

for all t ∈ [0, 1].

1In differential-geometric, coordinate-free notation the conservation law (3.15) may be written

as
[
ϕt

(
qi(0)

)]∗
pi(t) = pi(0), where the upper star denotes the pullback map [28] applied to cotangent

vector pi(t) ∈ T ∗qi(t)I.
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Proof. Since Dϕ0 = id the proposition holds for t = 0. We claim that the time

derivative of the left-hand side of (3.14) is zero. In fact,

(3.16)

d

dt

{ D∑

k=1

pi,k(t)
∂ϕkt
∂ξ`

(
qi(0)

)}
=

D∑

k=1

{
ṗi,k(t)

∂ϕkt
∂ξ`

(
qi(0)

)
+ pi,k(t)

∂

∂ξ`
∂ϕkt
∂t

(
qi(0)

)}
;

we now want to compute the last term on the right-hand side of the above expression.

Since ϕt(·) is the diffeomorphism induced by the velocity field vt(·) we have that

∂ϕk
t

∂t
(ξ) = vkt

(
ϕt(ξ)

)
, k = 1, . . . , D, for all ξ ∈ RD. Whence by the chain rule

∂

∂ξ`
∂ϕkt
∂t

(ξ) =
∂

∂ξ`
vkt

(
ϕt(ξ)

)
=

D∑
m=1

∂vkt
∂ξm

(
ϕt(ξ)

) ∂ϕmt
∂ξ`

(ξ), ξ ∈ RD.

since vkt (x) =
∑N

j=1 pj,k(t)G
(
x, qj(t)

)
, x ∈ RD, the above expression becomes

∂

∂ξ`
∂ϕkt
∂t

(ξ) =
D∑

m=1

N∑
j=1

pj,k(t)
∂G

∂ξm
(
ϕt(ξ), q

j(t)
) ∂ϕmt
∂ξ`

(ξ), ξ ∈ RD.

In the case of exact matching ϕt
(
qi(0)

)
= qi(t), so for ξ = qi(0) we get:

(3.17)
∂

∂ξ`
∂ϕkt
∂t

(
qi(0)

)
=

D∑
m=1

N∑
j=1

pj,k(t)
∂G

∂ξm
(
qi(t), qj(t)

) ∂ϕmt
∂ξ`

(
qi(0)

)
.

On the other hand, by Proposition 3.1,

(3.18) ṗi,k(t) = −
D∑

m=1

N∑
j=1

∂G

∂ξk
(
qi(t), qj(t)

)
pi,m(t) pj,m(t),

for i = 1, . . . , N and k = 1, . . . , D. Inserting equations (3.17) and (3.18) into expres-

sion (3.16) finally yields:

d

dt

{ D∑

k=1

pi,k(t)
∂ϕkt
∂ξ`

(
qi(0)

)}

=
D∑

k=1

{
−

D∑
m=1

N∑
j=1

∂G

∂ξk
(
qi(t), qj(t)

)
pi,m(t) pj,m(t)

∂ϕkt
∂ξ`

(
qi(0)

)

+ pi,k(t)
D∑

m=1

N∑
j=1

pj,k(t)
∂G

∂ξm
(
qi(t), qj(t)

) ∂ϕmt
∂ξ`

(
qi(0)

)} ≡ 0 ,

where we have implicitly relabeled some summation indices. ¤
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Since ϕt is a diffeomorphism for all time t ∈ [0, 1] we have that its Jacobian

matrix Dϕt is invertible for all t, which immediately implies the following result.

Corollary 3.3. Assume λ = ∞. If pi(0) = 0 for some index (landmark) i ∈
{1, . . . , N}, then the corresponding momentum is such that pi(t) ≡ 0 for all t ∈ [0, 1].

We should also note the strong conservation law for momenta and the system

of differential equations (3.12) are, in fact, equivalent; more precisely, the following

proposition holds.

Proposition 3.4. Assume λ = ∞. If differential equations (3.7), which are

equivalent to the definition of momenta, and conservation laws (3.15) hold for all t ∈
[0, 1], then so do differential equations (3.11).

Proof. Differentiating equations (3.14) with respect to time yields:

0 =
d

dt

{ D∑

k=1

pi,k(t)
∂ϕkt
∂ξ`

(
qi(0)

)}

=
D∑

k=1

{
ṗi,k(t)

∂ϕkt
∂ξ`

(
qi(0)

)
+ pi,k(t)

∂

∂ξ`
∂ϕkt
∂t

(
qi(0)

)}
,

i = 1, . . . , N,

` = 1, . . . , D.

Inserting equation (3.17) from the proof of Proposition 3.2 into the right-hand side

of the above expression yields the equations:

D∑

k=1

ṗi,k(t)
∂ϕkt
∂ξ`

(
qi(0)

)
= −

D∑

k=1

pi,k(t)
D∑

m=1

N∑
j=1

pj,k(t)
∂G

∂ξm
(
qi(t), qj(t)

) ∂ϕmt
∂ξ`

(
qi(0)

)

= −
D∑

m=1

N∑
j=1

〈
pi(t), pj(t)

〉
RD

∂G

∂ξm
(
qi(t), qj(t)

) ∂ϕmt
∂ξ`

(
qi(0)

)

for i = 1, . . . , N and ` = 1, . . . , D. Indicating with ∂ϕt

∂ξ` the `-th column of Jacobian

matrix (3.13) the above equations may be written in terms of vector multiplications:

ṗi(t) · ∂ϕt
∂ξ`

(
qi(0)

)
= −

N∑
j=1

〈
pi(t), pj(t)

〉
RD ∇ξG

(
qi(t), qj(t)

) · ∂ϕt
∂ξ`

(
qi(0)

)
,
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which again hold for i = 1, . . . , N and ` = 1, . . . , D. Whence:

ṗi(t) ·Dϕt
(
qi(0)

)
= −

N∑
j=1

〈
pi(t), pj(t)

〉
RD ∇ξG

(
qi(t), qj(t)

) ·Dϕt
(
qi(0)

)
,

for i = 1, . . . , N ; such equations imply the second set of (3.12), and whence (3.11),

by the invertibility of the Jacobian matrix Dϕt
(
qi(0)

)
. ¤

At this point one could employ Emmy Noether’s Theorem [2, 4, 37] and use the

symmetries of the metric tensor (specifically, translation- and rotation-invariance) to

prove the conservation of linear momentum and angular momentum. We will prove

such conservation laws directly, simply by manipulating differential equations (3.12)

and the general form of the kernel G and its partial derivatives (3.10).

Proposition 3.5 (Conservation of Linear Momentum, or First Weak Conserva-

tion Law). For any choice of smoothing parameter λ, the quantity

(3.19) P (p) ,
N∑
i=1

pi ,

which is a D-dimensional vector, is conserved in time.

Proof. Summing the set of equations (3.11) over index i yields:

N∑
i=1

ṗi,k = −
N∑

i,j=1

∂G

∂ξk
(qi, qj) 〈pi, pj〉RD

= −
N∑
i=1

∂G

∂ξk
(qi, qi) ‖pi‖2

RD −
N∑
i=1

N∑
j=1
j 6=i

∂G

∂ξk
(qi, qj) 〈pi, pj〉RD .(3.20)

for any k = 1, . . . , D. Since ∂G
∂ξk (x, x) = 0 for all x ∈ RD the first summation

in the above expression is identically equal to zero. On the other hand, by (3.10)

we have that ∂G
∂ξk (x, y) = − ∂G

∂ξk (y, x) for all x, y ∈ RD with x 6= y, therefore the

second summation in (3.20) is also zero since all the terms are pairwise opposite. In

conclusion,
∑N

i=1 ṗi,k ≡ 0, so that

N∑
i=1

pi,k(t) =
N∑
i=1

pi,k(0), k = 1, . . . , D, t ∈ [0, 1].

Writing the above equalities in vector form proves the proposition. ¤
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Proposition 3.6 (Conservation of Angular Momentum, or Second Weak Conser-

vation Law). For any choice of smoothing parameter λ, if D ≥ 2 the scalar quantities

(3.21) Lab(p, q) ,
N∑
i=1

(
qi,api,b − qi,bpi,a

)
=

〈
q(a), p(b)

〉
RN −

〈
q(b), p(a)

〉
RN ,

defined for a, b = 1, . . . , D, with a < b, are conserved in time.

Proof. Let Rij(q) = G(qi, qj)+ δij

λ
. Differentiating (3.21) and using (3.12) yields:

d

dt
Lab =

N∑
i=1

{
q̇i,api,b − q̇i,bpi,a + qi,aṗi,b − qi,bṗi,a

}

=
N∑
i=1

{ N∑
j=1

Rij
(
pj,api,b − pj,bpi,a

)
+ qi,aṗi,b − qi,bṗi,a

}
=

N∑
i=1

{
qi,aṗi,b − qi,bṗi,a

}
,

where we have used the symmetry of Rij. Whence

d

dt
Lab =

N∑
i=1

{
qi,a

N∑
j=1

∂G

∂ξb
(qi, qj)〈pi, pj〉RD − qi,b

N∑
j=1

∂G

∂ξa
(qi, qj)〈pi, pj〉RD

}

=
N∑

i,j=1

〈pi, pj〉RD

{
qi,a

∂G

∂ξb
(qi, qj)− qi,b

∂G

∂ξa
(qi, qj)

}
,

and by (3.10):

d

dt
Lab =

N∑
i,j=1

〈pi, pj〉RD

γ′
(‖qi − qj‖RD

)

‖qi − qj‖RD

{
qi,a

(
qi,b − qj,b

)− qi,b
(
qi,a − qj,a

)}

=
N∑

i,j=1

〈pi, pj〉RD

γ′
(‖qi − qj‖RD

)

‖qi − qj‖RD

{
− qi,aqj,b + qi,bqj,a

}
,

which is identically equal to zero by the symmetries of the first two factors. ¤

Note that the linear momentum and angular momentum conservation laws consist,

respectively, of D and D(D−1)
2

scalar conservation laws; taking into the account the

fact that the Hamiltonian (which is a scalar) is also conserved, the cogeodesic flow,

i.e. the dynamics of (p, q), takes place on a space of dimension 2DN−1−D− D(D−1)
2

.

39



CHAPTER 4

Curvature in terms of the Cometric Tensor

In this chapter we compute a formula for the Riemannian curvature tensor and

the sectional curvature for a generic n-dimensional Riemannian manifold M in terms

of the elements of the cometric tensor (i.e. the inverse of metric tensor); also, we

will show how sectional curvature can be written as a ratio of quadratic forms on

the space of alternating 2-forms on TpM, which may also be expressed in terms of

the cometric. An accessible text on alternating forms is [21]. Classic references

for differential geometry are, for example, [11] and [27] (we shall use the notation

introduced in the latter); a modern, more advanced text on the topic is [23].

1. Motivation

We saw in Chapter 2 that when shape is modeled as a labeled N -tuple of land-

marks in D dimensions the corresponding metric tensor, when written as a ma-

trix g, turns out to be the inverse of a positive definite matrix: that is, we may

write g(q) =
(
diag

{
S(q) + id

λ
, . . . , S(q) + id

λ

})−1

, where the elements of S(q) are

computed by evaluating a given Green’s function at different locations.

Under these circumstances calculating sectional curvature in the traditional way,

i.e. by computing Christoffel symbols and their partial derivatives, turns out to be

a formidable task since it involves computing successive derivatives of the inverse of

a tensor. Therefore it would be convenient to have access to a formula expressing

sectional curvature (and, more in general, the Riemannian curvature tensor) in terms

of the derivatives of the inverse of g, that are more easily computed.

The spirit of the current chapter is precisely to express geometric quantities for a

generic Riemannian manifold M of dimension n in as functions of the cometic tensor.

In particular, we will solve the highly non-trivial problem to provide a formula for
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the Riemannian curvature tensor and the numerator of sectional curvature (see next

section) in terms of gij, ∂
∂xk g

ij, and ∂
∂x`∂xk g

ij, with i, j, k, ` = 1, . . . , n. In the last

part of this chapter we will express sectional curvature as the ratio of quadratic forms

on the space of alternating 2-tensors Λ2(TpM), which will allow usa to formulate

the problem of finding bounds for sectional curvature as a generalized eigenvalue

problem. In the next chapter we will apply these formulas to the metric tensor of

the landmarks manifolds. For the sake of notational compactness, from now on we

shall use the simple symbol ∂i in lieu of ∂
∂xi , i = 1, . . . , n. Moreover we will employ

Einstein’s summation convention: that is, an index occurring twice in a product is to

be summed from 1 to n; for example, X i∂i is an abbreviation for
∑n

i=1X
i∂i.

2. Generalities on the Riemannian Curvature Tensor

Suppose that M is an n-dimensional Riemannian manifold with metric tensor g.

If we consider a local chart (U,ϕ) on the manifold with coordinates (x1, . . . , xn) the

metric is represented by a positive definite, symmetric matrix

[
gij(x)

]
i,j=1,...,n

where the coefficients depend smoothly on x ∈ ϕ(U) ⊆ Rn. The product of two

tangent vectors X,Y ∈ TpM, with X = X i∂i and Y = Y i∂i, is

〈X, Y 〉p = gij
(
x(p)

)
X iY j ;

in particular, gij(x(p)) = 〈∂i, ∂j〉p.

Notation. We shall denote the partial derivatives of the elements of tensor g as

follows: gij,k , ∂
∂xk gij and gij,k` , ∂2

∂x`∂xk gij, for i, j, k, ` = 1, . . . , n.

Indicating with T (M) the space of smooth vector fields on the manifold M, let

∇ : T (M) × T (M) → T (M) be the Levi-Civita connection of the Riemannian

manifold. The Christoffel symbols are defined by ∇∂i
∂j = Γkij∂k. It is well known

that they have the form: Γkij = 1
2
gk`(gi`,j + gj`,i − gij,`). The Riemannian curvature
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endomorphism is the map R : T (M)× T (M)× T (M) → T (M) defined by

(4.1) R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

In local coordinates R(∂i, ∂j)∂k = R`
ijk∂`, and

Rijkm , 〈R(∂i, ∂j)∂k, ∂m〉 = gm`R
`
ijk.

The Riemannian curvature tensor acts on vector fields as follows:

(4.2) R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉

and in coordinates it is written as R = Rijkmdx
i⊗ dxj ⊗ dxk⊗ dxm. The Riemannian

curvature tensor has a number of symmetries:

(4.3)
Rijk` = −Rjik`, Rijk` = −Rij`k,

Rijk` = Rk`ij, Rijk` +Rjki` +Rkij` = 0,

the last of which is known as the first Bianchi identity .

With the above conventions, the sectional curvature associated to a pair of non-

parallel tangent vectors X and Y is given by:1

K(X, Y ) =
R(X, Y, Y,X)

‖X‖2‖Y ‖2 − 〈X, Y 〉2 =
〈R(X, Y )Y,X〉

‖X‖2‖Y ‖2 − 〈X,Y 〉2(4.4)

=
RijkmX

iY jY kXm

‖X‖2‖Y ‖2 − 〈X, Y 〉2 ;

1The notation described above is the one adopted by Lee [27]. Other authors use different

sign conventions, however in a way that the definition of sectional curvature eventually agrees in

sign with (4.4). For example, Jost [23] defines R(X,Y )Z in the same way as above, but then

defines the coefficients of the Riemannian curvature tensor as follows: Rijkm = 〈R(∂i, ∂j)∂m, ∂k〉,
i.e. with a sign that is opposite to Lee’s convention; however, Jost eventually defines the numerator

of sectional curvature as RijkmX
iY jXkY m, so that it agrees in sign with (4.4). On the other

hand Do Carmo [11] defines the Riemannian curvature endomorphism as follows: R(X,Y )Z =

∇Y∇XZ − ∇X∇Y Z + ∇[X,Y ]Z, that is, with a sign that is opposite to (4.1); the coefficients are

then defined formally as in (4.2), Rijkm = 〈R(∂i, ∂j)∂k, ∂m〉 so that their sign is in fact opposite

to our convention (they coincide with Jost’s); but then the numerator of K(X,Y ) is set to be

equal to RijkmX
iY jXkY m, so Do Carmo’s definition of sectional curvature is eventually consistent

with (4.4).
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note that the denominator is always positive by the Cauchy-Schwarz inequality.

There are different ways of expressing the Riemannian curvature tensor in terms of

the metric tensor g; the following proposition turns out to be useful for our purposes

since it provides an expression that does not require to compute derivatives of the

Christoffel symbols. The proof that follows is an adaptation from one found in [29].

Proposition 4.1. The following expression holds:

(4.5) 2Rijkm = gik,jm + gjm,ik − gjk,im − gim,jk + 2ΓrikΓ
s
jmgrs − 2ΓrjkΓ

s
imgrs.

Proof. From the definition of the Christoffel symbols, ∇∂i
∂j = Γkij∂k,

2〈∇∂i
∂j, ∂m〉 = 2〈Γkij∂k, ∂m〉 = 2Γkijgmk = gmkg

k`(gi`,j + gj`,i − gij,`)

= δ`m(gi`,j + gj`,i − gij,`) = gim,j + gjm,i − gij,m ;

an appropriate rearrangement of the indices yields the following expression:

(4.6) 2〈∇∂j
∂k, ∂m〉 = gjm,k + gkm,j − gjk,m .

By the metric compatibility of the connection we have that

∂i〈∇∂j
∂k, ∂m〉 = 〈∇∂i

∇∂j
∂k, ∂m〉+ 〈∇∂j

∂k,∇∂i
∂m〉,

whence, by (4.6),

2〈∇∂i
∇∂j

∂k, ∂m〉+ 2〈∇∂j
∂k,∇∂i

∂m〉 = 2∂i〈∇∂j
∂k, ∂m〉

= ∂i(gjm,k + gkm,j − gjk,m) = gjm,ki + gkm,ji − gjk,mi .(4.7)

By switching i and j we also have that

(4.8) 2〈∇∂j
∇∂i

∂k, ∂m〉+ 2〈∇∂i
∂k,∇∂j

∂m〉 = gim,kj + gkm,ij − gik,mj .

Combining (4.7) and (4.8) yields

2〈∇∂i
∇∂j

∂k, ∂m〉 − 2〈∇∂j
∇∂i

∂k, ∂m〉

= gjm,ki − gjk,mi − gim,kj + gik,mj − 2〈∇∂j
∂k,∇∂i

∂m〉+ 2〈∇∂i
∂k,∇∂j

∂m〉.
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But by definition R(∂i, ∂j)∂k = ∇∂i
∇∂j

∂k −∇∂j
∇∂i

∂k, whence

2Rijkm = 2〈R(∂i, ∂j)∂k, ∂m〉 = 2〈∇∂i
∇∂j

∂k, ∂m〉 − 2〈∇∂j
∇∂i

∂k, ∂m〉,

so we have proven that

(4.9) 2Rijkm = gjm,ki − gjk,mi − gim,kj + gik,mj − 2〈∇∂j
∂k,∇∂i

∂m〉+ 2〈∇∂i
∂k,∇∂j

∂m〉.

By the definition of the Christoffels,

〈∇∂i
∂k,∇∂j

∂m〉 = 〈Γrik∂r,Γsjm∂s〉 = ΓrikΓ
s
jmgrs ,

〈∇∂j
∂k,∇∂i

∂m〉 = 〈Γrjk∂r,Γsim∂s〉 = ΓrjkΓ
s
imgrs .

Inserting the above expressions into the right-hand side of (4.9) finally yields (4.5). ¤

Notation. For any pair of tangent vectors X,Y ∈ TpM we shall denote

with Γ(X,Y ) the following vector in TpM:

Γ(X, Y ) , ΓkijX
iY j∂k ,

where the Γkij are the Christoffel symbols for metric tensor g.

Given the above notation the numerator (and the sign) of sectional curva-

ture K(X, Y ) may be computed using the following result.

Proposition 4.2. The following expressions hold for any pair X, Y ∈ TpM:

2R(X, Y, Y,X) = −(X iY j − Y iXj)gik,jm(XkY m − Y kXm)

+ 2‖Γ(X, Y )‖2 − 2〈Γ(X,X),Γ(Y, Y )〉.

Proof. We have that

−(X iY j − Y iXj)gik,jm(XkY m − Y kXm)

= −X iXkY jY mgik,jm +X iY kY jXmgik,jm + Y iXkXjY mgik,jm − Y iY kXjXmgik,jm

= 2X iY kY jXmgik,jm −X iXkY jY mgik,jm − Y iY kXjXmgik,jm

= X iY kY jXmgik,jm +XmY jY kX igmj,ki −X iXmY jY kgim,jk − Y jY kX iXmgjk,im

= X iY jY kXm
(
gik,jm + gjm,ik − gim,jk − gjk,im

)
.
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As far as the Christoffel symbols are concerned,

grsX
iY jY kXmΓrikΓ

s
jm = 〈X iY kΓrik∂r, Y

jXmΓsjm∂s〉

= 〈Γ(X,Y ),Γ(X,Y )〉 = ‖Γ(X,Y )‖2,

and

grsX
iY jY kXmΓrjkΓ

s
im = 〈X iXmΓsim∂s, Y

jY kΓrjk∂r〉 = 〈Γ(X,X),Γ(Y, Y )〉.

This completes the proof. ¤

3. The dual Riemannian Curvature Tensor

One of the purposes of the current chapter is to provide a formula for the nu-

merator of sectional curvature (4.4) in terms the elements of the cometric tensor and

their derivatives gij, gij,ijk , and gij,ijk` , i, j, k, ` = 1, . . . , n. The key idea is to define

a “dual” curvature tensor by raising the indices of the Riemannian curvature tensor

defined and described in the previous section. That is, if we define the coefficients

of the dual Riemannian curvature tensor as Rursv , Rijkm g
iugjrgksgmv and for an

arbitrary pair of tangent vectors X = X i∂i and Y = Y i∂i we consider the cotangent

vectors X[ = Xidx
i and Y [ = Yidx

i, with Xi = gijX
j and Yi = gijY

j (the “flat”

perator [ : TpM → T ∗pM lowers the indices of a tangent vector [21, 28]), then the

numerator of K(X, Y ) may be rewritten as:

〈R(X, Y )Y,X〉 = RijkmX
iY jY kXm = Rijkmg

iugjrgksgmvXuYrYsXv

= RursvXuYrYsXv.(4.10)

In this section we shall factorize the tensor coefficients Rijkm in the following way:

(4.11) Rijkm = giu gjr gks gmv R
ursv,

and express Rursv in terms of gij and its first and second partial derivatives. In

the section that follows we will compute the action of the dual tensor on the cotan-

gent vectors (X[, Y [, Y [, X[), which will cause drastic simplifications and provide a

surprisingly simple formula for the numerator of sectional curvature.
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In Proposition 4.1 we proved the following general formula:

(4.12) 2Rijkm = gik,jm + gjm,ik − gjk,im − gim,jk + 2ΓϕikΓ
ψ
jmgϕψ − 2ΓϕjkΓ

ψ
imgϕψ .

The key idea is to try to factorize each term of the above formula in the way that is

suggested by (4.11). We will start with the terms that involve the first derivatives of

the metric tensor, i.e. the Christoffel symbols on the right-hand side of (4.12).

3.1. First derivatives. If we write the metric tensor as a matrix we have

that g = Q−1, so that2 ∂xg = −Q−1 · ∂xQ · Q−1. In index notation the first par-

tial derivative is given by

gjm,k = −gjr grs,rsk gsm .

By the above formula we may rewrite the Christoffel symbols in (4.12) in a way that

is suitable for our purposes.

2This expression generalizes the fact that for a scalar differentiable function f : R → R of

the form f(x) = 1
g(x) its derivative is given by f ′(x) = − g′(x)

g2(x) . In general, recall the definition

of differential : if Ω is an open set in Rn, φ maps Ω into Rm, x is in Ω and there exists a linear

transformation A ∈ L(Rn,Rm) such that |φ(x + h) − φ(x) − Ah| = o(|h|), then we say that φ

is differentiable at x and we write dφ(x) = A (see [41] for details). The definition can be easily

extended to matrix-valued functions (and in fact to maps between Banach spaces). If a function f

is defined as f : GLn(R) → GLn(R) : A 7→ A−1 (note that GLn(R) is an open subset of Rn×n) then

its differential computed at a point A ∈ GLn(R) is the linear operator df(A) ∈ L(
GLn(R), GLn(R)

)

defined as df(A)B = −A−1BA−1, for all B ∈ GLn(R); in fact it can be proven that
∥∥f(A +H) −

f(A) + A−1HA−1
∥∥/‖H‖ → 0 as ‖H‖ → 0, for example by using the matrix inversion lemma [25].

If f is composed with a differentiable function h : R→ GLn(R), i.e. if we define ψ = f ◦ h, then the

differential of ψ computed at a generic point z ∈ R is a linear operator dψ ∈ L(
R, GLn(R)

)
(simply

representable as a matrix) that can be calculated via the chain rule, i.e. dψ(z) = df(h(z))dh(z). In

the case of f(A) = A−1 this yields dψ(z) = −(
h(z)

)−1
h′(z)

(
h(z)

)−1
.
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For example,

Γϕjk =
1

2
gϕ`

(
gj`,k + g`k,j − gjk,`

)

=
1

2
gϕ`

(− gjr g
rs,
rsk gs` − g`r g

rs,
rsj gsk + gjr g

rs,
rs` gsk

)

=
1

2

(
gjr g

ϕ` grs,rs` gsk − gjr g
rs,
rsk δϕs − δϕr g

rs,
rsj gsk

)

=
1

2

(
gjr g

ϕ` grs,rs` gsk − gjr g
rϕ,
rϕk − gϕs,ϕsj gsk

)
.

We can extract factor gjr gsk from the first of the three terms above, but we need to

manipulate the other two in order to be able to do the same with them. We have

that grϕ,rϕk = grϕ,rϕ` δ
`
k = grϕ,rϕ` g

`s gsk and similarly gϕs,ϕsj = gϕs,ϕs` δ
`
j = gϕs,ϕs` g

`rgjr, whence

the above may be expressed as

(4.13) Γϕjk =
1

2
gjr

(
gϕ` grs,rs` − gs` grϕ,rϕ` − gr` gϕs,ϕs`

)
gsk .

As far as the remaining three Christoffel symbols in (4.12) are concerned, by appro-

priately relabeling the indices we obtain the following:

Γψim =
1

2
giu

(
gψ` guv,uv` − gv` guψ,uψ` − gu` gψv,ψv`

)
gvm ,

Γϕik =
1

2
giu

(
gϕ` gus,us` − gs` guϕ,uϕ` − gu` gϕs,ϕs`

)
gsk ,

Γψjk =
1

2
gjr

(
gψ` grv,rv` − gv` grψ,rψ` − gr` gψv,ψv`

)
gvm .

It is convenient, at this point, to define “anti-Christoffel” symbols, or dual

Christoffel symbols, in the following manner:3

(4.14) Γ̃rsu , 1

2
guϕ

(
gsϕ,sϕξ g

ξr + grϕ,rϕξ g
ξs − grs,rsξ g

ξϕ
)
.

Notation. If we also define:

(4.15) gij,k , gij,ijξ g
ξk and gij,k` , gij,ijξη g

ξkgη`,

3Given the form of expression (4.13), perhaps it would make more sense to add a minus sign

in front of definition (4.14). In any case this is rather irrelevant for our purposes, since on the

right-hand side of (4.12) we have the products of pairs of Christoffel symbols so that, in substituting

the definition of the dual Christoffels in such products, opposite signs would cancel.
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then the dual symbols assume an aspect that is formally analogous to the traditional

definition of Christoffel symbols:

Γ̃rsu =
1

2
guϕ

(
gsϕ,r + grϕ,s − grs,ϕ

)
.

With the above notation and using the obvious fact that gϕψ = gϕρ g
ρσgσψ we may

rewrite the last term of the right-hand side of equation (4.12) as follows:

−2 Γϕjk Γψim gϕψ =− 1

2
gjr gks giu gmv

(
grs,rsξ g

ξϕ − grϕ,rϕξ g
ξs − gsϕ,sϕξ g

ξr
)
gϕρ

· gρσ gσψ
(
guv,uvξ g

ξψ − guψ,uψξ g
ξv − gvψ,vψξ g

ξu
)

=− giu gjr gks gmv 2 Γ̃rsρ Γ̃uvσ gρσ,

whereas the second-to-last of the same formula becomes

2 Γϕik Γψjm gϕψ = giu gjr gks gmv 2 Γ̃usρ Γ̃rvσ gρσ.

Note that we have precisely achieved the desired factorization, as in (4.11).

3.2. Second derivatives. If we write the metric tensor as a matrix g = Q−1 its

second partial derivative is ∂y∂xg = Q−1·(∂yQ·Q−1·∂xQ+∂xQ·Q−1·∂yQ−∂y∂xQ
)·Q−1,

or, in index notation,

gjm,ki = gjr
(
grλ,rλi gλµ g

µv,
µvk + grλ,rλk gλµ g

µv,
µvi − grv,rvki

)
gvm ;

some manipulation is in order so to achieve the factorization that we desire.

We have that:

gjm,ik = gjrgmv δ
ζ
i δ
ξ
k

(
grλ,rλζ gλµ g

µv,
µvξ + grλ,rλξ gλµ g

µv,
µvζ − grv,rvζξ

)

= gjrgmv giugks g
uζgsξ

(
grλ,rλζ gλµ g

µv,
µvξ + grλ,rλξ gλµ g

µv,
µvζ − grv,rvζξ

)

= giugjrgksgmv
[(
grλ,rλζ g

ζu
)
gλµ

(
gµv,µvξ g

ξs
)

+
(
grλ,rλξ g

ξs
)
gλµ

(
gµv,µvζ g

ζu
)− grv,rvζξ g

ζugξs
]

= giugjrgksgmv
(
grλ,ugλµ g

µv,s + grλ,sgλµ g
µv,u − grv,su

)
,
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where we have used definitions (4.15). Note that this is exactly the factorization (4.11)

we needed. So the first four terms on the right-hand side of (4.12) may be rewritten,

respectively, as follows:

gjm,ki = giugjrgksgmv
(
grλ,ugλµ g

µv,s + grλ,sgλµ g
µv,u − grv,su

)
,

gik,jm = giugjrgksgmv
(
guλ,vgλµ g

µs,r + guλ,rgλµ g
µs,v − gsu,rv

)
,

−gjk,im = giugjrgksgmv
(− grλ,ugλµ g

µs,v − grλ,vgλµ g
µs,u + grs,uv

)
,

−gim,jk = giugjrgksgmv
(− guλ,rgλµ g

µv,s − guλ,sgλµ g
µv,r + guv,rs

)
,

where the last three are obtained just by appropriately rearranging the indices. Again,

we have achieved exactly the factorization that we wanted.

3.3. Expressions for the dual Riemannian Curvature Tensor. Inserting

the formulas we have computed in the above subsections into the right-hand side

of (4.12) and comparing the result with (4.11) yields the following formula:

2Rursv =− grv,us − gus,rv + grs,uv + guv,rs + 2Γ̃rvρ Γ̃usσ g
ρσ − 2Γ̃rsρ Γ̃uvσ g

ρσ(4.16)

+ grλ,ugλµ g
µv,s − grλ,ugλµ g

µs,v + guλ,rgλµ g
µs,v − guλ,rgλµ g

µv,s

+ grλ,sgλµ g
µv,u + guλ,vgλµ g

µs,r − grλ,vgλµ g
µs,u − guλ,sgλµ g

µv,r.

In other words the structure of Rursv is formally analogous to the one of Rijkm ex-

pressed by formula (4.5), except for the eight “correction terms” that appear in the

last two lines of (4.16). Note, in particular, that the last four terms could be combined

with the products of dual Christoffel symbols that appear in the first line. However,

inserting the definitions of the Christoffel symbols so that they can be combined with

the last four terms above is not that convenient, since the last four terms in (4.16)

do not include any of the derivatives of the type grv,ϕ, gus,ϕ, grs,ϕ or guv,ϕ, therefore

doing so does not yield any significant simplification: in fact the two products of

Christoffel symbols correspond to eighteen more elementary terms, only four of which

can be combined with the four terms in the third line of the above expression. Also
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note that the terms in the second line of (4.16) do not combine with anything else

but stand by themselves.

We will now introduce some useful notation which will later ease the computation

of sectional curvature in terms of the cometric tensor and its partial derivatives.

Define Bu,v
ϕ , gϕψ g

ψu,v and consider the cotangent vectors Bu,v = Bu,v
ϕ dxϕ ∈ T ∗pM;

in such expressions indices u and v do not commute. The cometric, i.e. the inner

product of cotangent vectors of this type in the cotangent space T ∗pM is given by

〈Bu,v, Bs,r〉 = Bu,v
ϕ Bs,r

ψ 〈dxϕ, dxψ〉 = Bu,v
ϕ Bs,r

ψ gϕψ = gηu,vgησ g
σs,r. Similarly, let Γ̃uv =

Γ̃uvϕ dxϕ ∈ T ∗pM so that 〈Γ̃uv, Γ̃sr〉 = Γ̃uvϕ Γ̃srψ 〈dxϕ, dxψ〉 = Γ̃uvϕ Γ̃srψ g
ϕψ. Note that with an

abuse of notation we have indicated the cometric with 〈·, ·〉, i.e. using the same symbol

that we had used for the metric in previous sections. Also, for any pair of tangent

vectors and the corresponding cotangent vectors X[ = Xi dx
i, Y [ = Yi dx

i in T ∗pM
define a new vector B(X[, Y [) ∈ T ∗pM as follows: B(X[, Y [) , XuYv B

u,v
ϕ dxϕ; again,

note that in such definition X[ and Y [ do not commute. For a given set of dual

Christoffel symbols, in an analogous fashion we define: Γ̃(X[, Y [) , XuYv Γ̃uvϕ dxϕ, in

which case X[ and Y [ do commute.

With the above conventions we have that (4.16) can be rewritten as follows:

2Rursv = −grv,us − gus,rv + grs,uv + guv,rs + 2〈Γ̃rv, Γ̃us〉 − 2〈Γ̃rs, Γ̃uv〉(4.17)

+ 〈Br,u, Bv,s〉 − 〈Br,u, Bs,v〉+ 〈Bu,r, Bs,v〉 − 〈Bu,r, Bv,s〉

+ 〈Br,s, Bv,u〉+ 〈Bu,v, Bs,r〉 − 〈Br,v, Bs,u〉 − 〈Bu,s, Bv,r〉.

Using the above expression one can easily verify that the dual tensor satisfies identi-

ties Rrusv = −Rursv, Rurvs = −Rursv, Rsvur = Rursv, and Rursv + Rusvr + Ruvrs = 0

for any choice of the indices u, r, s and v, which are analogous to symmetries (4.3)

for the regular Riemannian curvature tensor. Equation (4.17) can be manipulated

fairly easily to compute the numerator of sectional curvature (4.4). In fact in the next

section we will multiply it by the components of cotangent vectors (X[, Y [, Y [, X[),

many simplifications will occur and the numerator of (4.4) will finally take a sur-

prisingly simple and elegant form (in terms of the cometric tensor and its partial
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derivatives). However, it is actually convenient to have a “full blown” expression for

the dual tensor: the reason why this is the case will be made evident is section 5 of

the current chapter, where we will find bounds on sectional curvature as the solution

of a generalized eigenvalue problem.

Proposition 4.3. The Riemannian curvature tensor with raised indices Rursv

may be written in function of the cometric tensor and its derivatives as follows:

2Rursv =− grv,su + grs,uv − gus,rv + guv,rs(T1)

− 1

2

{
grs,rsη g

ησguv,uvσ − grs,rsψ

(
gψu,v + gψv,u

)− guv,uvϕ

(
gϕr,s + gϕs,r

)}
(T2)

+
1

2

{
gus,usη g

ησgvr,vrσ − gus,usψ

(
gψv,r + gψr,v

)− gvr,vrϕ

(
gϕu,s + gϕs,u

)}
(T3)

− 1

2

(
gϕr,s − gϕs,r

)
gϕψ

(
gϕu,v − gϕv,u

)
(T4)

+
1

2

(
gϕu,s − gϕs,u

)
gϕψ

(
gϕr,v − gϕv,r

)
(T5)

+
(
gϕu,r − gϕr,u

)
gϕψ

(
gϕs,v − gϕv,s

)
,(T6)

where, as usual, gij,k , gij,ijξ g
ξk and gij,k` , gij,ijξη g

ξkgη`.

Remark. From now on, we shall refer to the six terms in the above proposition

as T1, . . . , T6. Before proceeding to the proof we should note that we have achieved

expressing the dual Riemannian curvature tensor in terms of the cometric tensor; the

metric tensor (with “dummy” lower indices ϕ and ψ) still appears in terms T4, T5

and T6, which will later reduce to only one in the formula for sectional curvature.

Proof. We will expand and recombine the terms in expression (4.17). Clearly

the terms involving second derivatives need no manipulation. We can expand the

Christoffel symbols as follows:

2〈Γ̃us, Γ̃rv〉 =
1

2

[(
gϕu,s + gϕs,u

)− gus,ϕ
]
gϕη g

ησ gσψ
[(
gψr,v + gϕv,r

)− grv,ψ
]
,
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that is:

2〈Γ̃us, Γ̃rv〉 =
1

2

{
gus,usη g

ησgrv,rvσ − gus,usψ

(
gψr,v + gψv,r

)− grv,rvϕ

(
gϕu,s + gϕs,u

)}

+
1

2

(
gϕu,s + gϕs,u

)
gϕψ

(
gψr,v + gψv,r

)
︸ ︷︷ ︸

〈Bu,s +Bs,u, Br,v +Bv,r〉
.

We can now combine the inner product on the right-hand side of the above formula

with the last two terms of (4.17) to get:

1

2
〈Bu,s +Bs,u, Br,v +Bv,r〉 − 〈Br,v, Bs,u〉 − 〈Bu,s, Bv,r〉 =

1

2
〈Bu,s −Bs,u, Br,v −Bv,r〉

=
1

2

(
gϕu,s − gϕs,u

)
gϕψ

(
gψr,v − gψv,r

)
,

whence we may conclude that

2〈Γ̃us, Γ̃rv〉 − 〈Br,v, Bs,u〉 − 〈Bu,s, Bv,r〉 = T3 + T5.

In a completely similar fashion one can prove that:

−2〈Γ̃rs, Γ̃uv〉+ 〈Br,s, Bv,u〉+ 〈Bu,v, Bs,r〉 = T2 + T4.

As far as the remaining four correction terms in the second line of formula (4.17)

it is the case that:

〈Br,u, Bv,s〉 − 〈Br,u, Bs,v〉+ 〈Bu,r, Bs,v〉 − 〈Bu,r, Bv,s〉 = 〈Br,u −Bu,r, Bv,s −Bs,v〉

=
(
gϕr,u − gϕu,r

)
gϕψ

(
gψv,s − gψs,v

)
= T6,

and this concludes the proof. ¤

4. Sectional Curvature in terms of the cometric tensor

The numerator of sectional curvature may be computed from the dual Riemannian

curvature tensor by employing (4.10). Instead of using the “full-blown” expression

provided by Proposition 4.3 we will work on the more compact formula (4.17), which
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will make the procedure somewhat smoother and more elegant. Multiplying by the

components of cotangent vectors (X[, Y [, Y [, X[) yields:

2RursvXuYrYsXv = − YrXvg
rv,usXuYs −XuYsg

us,rvYrXv

+ YrYsg
rs,uvXuXv +XuXvg

uv,rsYrYs

+ 2YrXv〈Γ̃rv, Γ̃us〉XuYs − 2YrYs〈Γ̃rs, Γ̃uv〉XuXv

+ YrXu〈Br,u, Bv,s〉XvYs − YrXu〈Br,u, Bs,v〉YsXv

+ XuYr〈Bu,r, Bs,v〉YsXv −XuYr〈Bu,r, Bv,s〉XvYs

+ YrYs〈Br,s, Bv,u〉XvXu − YrXv〈Br,v, Bs,u〉YsXu

+ XuXv〈Bu,v, Bs,r〉YsYr −XuYs〈Bu,s, Bv,r〉XvYr,

that is,

2RursvXuYrYsXv = YrYsg
rs,uvXuXv +XuXvg

uv,rsYrYs − 2XuYsg
us,rvYrXv

+ 2YrXv〈Γ̃rv, Γ̃us〉XuYs − 2YrYs〈Γ̃rs, Γ̃uv〉XuXv

+ 2XuXv〈Bu,v, Bs,r〉YsYr + 2XuYr〈Bu,r, Bs,v〉YsXv

− 2XuYs〈Bu,s, Bv,r〉XvYr − 2YsXu〈Bs,u, Br,v〉YrXv .

Proceeding in a way that is completely analogous to the the proof of Proposition 4.2

we may rewrite the above expression as follows:

(4.19)

2RursvXuYrYsXv = (XuYr − YuXr) g
su,rv(XsYv − YsXv)

+ 2‖Γ̃(X[, Y [)‖2 − 2〈Γ̃(X[, X[), Γ̃(Y [, Y [)〉
+ 2XuXv〈Bu,v, Bs,r〉YsYr + 2XuYr〈Bu,r, Bs,v〉YsXv

− 2XuYs〈Bu,s, Bv,r〉XvYr − 2YsXu〈Bs,u, Br,v〉YrXv ,

so that the “correction terms” have been reduced in number, with respect to expres-

sions (4.16) and (4.17), from eight to four. No further simplification is possible, unless

we insert the definition of dual Christoffel symbols into the above equation. That is

exactly what we are going to do next; now that the number of terms has almost been

halved, the computation is not going to be unbearably complicated.
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Theorem 4.4. For an arbitrary pair of vectors X = X i∂i and Y = Y i∂i in TpM
the numerator of sectional curvature (4.4) at point p may be written as:

2RursvXuYrYsXv

=
(
XuYr − YuXr

)(
gsu,rv − 1

4
gus,usϕ g

rv,ϕ + gus,usϕ g
ϕr,v − 3

2
guψ,rgψξ g

ξs,v
)(
XsYv − YsXv

)
,

where Xi = gijX
j, Yi = gijY

j and, as usual, gij,k , gij,ijξ g
ξk and gij,k` , gij,ijξη g

ξkgη`.

Proof. We shall split the right-hand side of (4.19) into three terms,

Φ1 , (XuYr − YuXr) g
su,rv(XsYv − YsXv),

Φ2 , 2‖Γ̃(X[, Y [)‖2 − 2〈Γ̃(X[, X[), Γ̃(Y [, Y [)〉,

and

Φ3 , 2XuXv〈Bu,v, Bs,r〉YsYr + 2XuYr〈Bu,r, Bs,v〉YsXv

− 2XuYs〈Bu,s, Bv,r〉XvYr − 2YsXu〈Bs,u, Br,v〉YrXv ,

so that the second derivatives of the inverse of the metric tensor are in term Φ1,

the terms that concern the Christoffel symbols are contained in term Φ2, whereas

term Φ3 consists of the “correction” previously discussed. Obviously we have that

2RursvXuYrYsXv = Φ1 + Φ2 + Φ3. Term Φ1 is in a form that cannot be further

simplified. We shall manipulate the other two terms, Φ2 and Φ3, and then combine

them; this will yield the surprisingly simple final form for the numerator of sectional

curvature as a function of the derivatives of the inverse of the metric tensor reported

in the statement of the theorem.

Inserting the definition of the dual Christoffel symbols into Φ2 yields:

Φ2 =
1

2
XuYr

[(
guψ,r + grψ,u

)− gur,ψ
]
gψϕ g

ϕηgηξ

[(
gξs,v + gξv,s

)− gsv,ξ
]
YsXv

− 1

2
XuXv

[(
guψ,v + gvψ,u

)− guv,ψ
]
gψϕ g

ϕηgηξ

[(
gξr,s + gξs,r

)− grs,ξ
]
YrYs,
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that is

Φ2 = +
1

2
XuYr

[
gur,urϕ g

ϕηgsv,svη − gur,urξ

(
gξs,v + gξv,s

)− gur,urψ

(
gψu,r + gψr,u

)]
YsXv(4.20a)

− 1

2
XuXv

[
guv,uvϕ g

ϕηgrs,rsη − guv,uvξ

(
gξr,s + gξs,r

)− grs,rsψ

(
gψu,v + gψv,u

)]
YrYs(4.20b)

+
1

2
XuYr

(
gψu,r + gψr,u

)
gψξ

(
gξs,v + gξv,s

)
XvYs(4.20c)

− 1

2
XuXv

(
gψu,v + gψv,u

)
gψξ

(
gξr,s + gξs,r

)
YrYs .(4.20d)

The last two terms of (4.20a) may be written (following the multiplication by

XuYrYsXv) as

XuYrg
ur,
urξ

(
gξs,v + gξv,s

)
YsXv + YsXvg

sv,
svξ

(
gξu,r + gξr,u

)
XuYr

= 2XuYrg
ur,
urξ

(
gξs,v + gξv,s

)
YsXv ,

whereas the second term of (4.20b) may be manipulated as follows:

XuXv g
uv,
uvξ

(
gξr,s + gξs,r

)
YrYs = 2XuXv g

uv,
uvξ g

ξr,sYrYs

and analogously for the third term of (4.20b):

YrYs g
rs,
rsξ

(
gξu,v + gξv,u

)
XuXv = 2YrYs g

rs,
rsξ g

ξu,vXuXv .

Furthermore, the multiplication in line (4.20c) can be restated in the following terms:

XuYr
(
gψu,r + gψr,u

)
gψξ

(
gξs,v + gξv,s

)
XvYs

=
(
XuYr + YuXr

)
gψr,ugψξ g

ξs,v
(
XvYs + YvXs

)
,

and the one in line (4.20d) can be simplified as:

XuXv

(
gψu,v + gψv,u

)
gψξ

(
gξr,s + gξs,r

)
YrYs = 4XuXv g

ψu,vgψξ g
ξr,s YrYs .

So Φ2 can be re-expressed as follows:

Φ2 = XuYr

[1

2
gur,urϕ g

ϕηgsv,svη − gur,urξ

(
gξs,v + gξv,s

)]
YsXv

−XuXv

[1

2
guv,uvϕ g

ϕηgrs,rsη − guv,uvξ g
ξr,s − grs,rsξ g

ξu,v
]
YrYs

+
1

2

(
XuYr + YuXr

)
gψr,ugψξ g

ξs,v
(
XvYs + YvXs

)− 2XuXv g
ψu,vgψξ g

ξr,s YrYs .
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Further simplifications are actually possible as far as the first two terms of the

above expression are concerned. In fact, first note that:

−1

4

(
XuYr − YuXr

)
gus,usϕ g

ϕξgrv,rvξ

(
XsYv − YsXv

)
=

= −1

4

(
XuYr g

us,
usϕ g

ϕξgrv,rvξ XsYv − YuXr g
us,
usϕ g

ϕξgrv,rvξ XsYv

−XuYr g
us,
usϕ g

ϕξgrv,rvξ YsXv + YuXr g
us,
usϕ g

ϕξgrv,rvξ YsXv

)

= −1

4

(
XuXs g

us,
usϕ g

ϕξgrv,rvξ YrYv − YuXs g
us,
usϕ g

ϕξgrv,rvξ XrYv

−XuYs g
us,
usϕ g

ϕξgrv,rvξ YrXv + YuYs g
us,
usϕ g

ϕξgrv,rvξ XrXv

)

=
1

2
XuYr g

ur,
urϕ g

ϕξgsv,svξ XsYv − 1

2
XuXv g

uv,
uvϕ g

ϕξgrs,rsξ YrYs .

On the other hand,

(
XuYr − YuXr

)
gus,usϕ g

ϕr,v
(
XsYv − YsXv

)

= XuYrg
us,
usϕ g

ϕr,vXsYv − YuXrg
us,
usϕ g

ϕr,vXsYv

−XuYrg
us,
usϕ g

ϕr,vYsXv + YuXrg
us,
usϕ g

ϕr,vYsXv

= XuXsg
us,
usϕ g

ϕr,vYrYv − YuXsg
us,
usϕ g

ϕr,vXrYv

−XuYsg
us,
usϕ g

ϕr,vYrXv + YuYsg
us,
usϕ g

ϕr,vXrXv

= XuYv

[
− gur,urξ

(
gξs,v + gξv,s

)]
YsXv −XuXv

[
− guv,uvξ g

ξr,s − grs,rsξ g
ξu,v

]
YrYs ,

so that Φ2 can finally be written as

Φ2 =
(
XuYr − YuXr

)(− 1

4
gus,usϕ g

rv,ϕ + gus,usϕ g
ϕr,v

)(
XsYv − YsXv

)

+
1

2

(
XuYr + YuXr

)
gψr,ugψξ g

ξs,v
(
XvYs + YvXs

)− 2XuXv g
ψu,vgψξ g

ξr,s YrYs .

As far as term Φ3 is concerned, we shall simply rewrite it as

Φ3 = 2XuXvg
uψ,vgψξ g

sξ,rYsYr + 2XuYrg
uψ,rgψξ g

ξs,vYsXv

− 2XuYsg
uψ,sgψξ g

vξ,rXvYr − 2YsXug
sψ,ugψξ g

rξ,vYrXv .
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Combining such formula with the latest expression for Φ2 gives:

Φ2 + Φ3 =
(
XuYr − YuXr

)(− 1

4
gus,usϕ g

rv,ϕ + gus,usϕ g
ϕr,v

)(
XsYv − YsXv

)

+
1

2

(
XuYr + YuXr

)
gψr,ugψξ g

ξs,v
(
XvYs + YvXs

)

+ 2XuYrg
uψ,rgψξ g

ξs,vYsXv

− 2XuYsg
uψ,sgψξ g

vξ,rXvYr − 2YsXug
sψ,ugψξ g

rξ,vYrXv .

Performing the multiplication on the second line of the right-hand side and recom-

bining the resulting terms yields:

Φ2 + Φ3 =
(
XuYr − YuXr

)(− 1

4
gus,usϕ g

rv,ϕ + gus,usϕ g
ϕr,v

)(
XsYv − YsXv

)

+ 3XuYrg
uψ,rgψξ g

ξs,vYsXv

− 3

2
XuYsg

uψ,sgψξ g
vξ,rXvYr − 3

2
YsXug

sψ,ugψξ g
rξ,vYrXv .

But we have that

−3

2

(
XuYr − YuXr

)
guψ,rgψξ g

ξs,v
(
XsYv − YsXv

)

= 3XuYrg
uψ,rgψξ g

ξs,vYsXv − 3

2
XuYsg

uψ,sgψξ g
vξ,rXvYr − 3

2
YsXug

sψ,ugψξ g
rξ,vYrXv ,

therefore:

2RursvXuYrYsXv = Φ1 + Φ2 + Φ3 =

=
(
XuYr − YuXr

)(
gsu,rv − 1

4
gus,usϕ g

rv,ϕ + gus,usϕ g
ϕr,v − 3

2
guψ,rgψξ g

ξs,v

)(
XsYv − YsXv

)
,

which is precisely what we wanted to prove. ¤

Remark. We have expressed the numerator of sectional curvature in terms of the

cometric tensor and its derivatives; in the formula provided by Theorem 4.4 the only

term in the middle factor that depends on the metric tensor (with lower indices) is

the fourth one. We should note that the formula was later verified by professor Peter

W. Michor of the University of Vienna, who provided an alternative proof [30] with

index-free notation.
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5. Bounds on Sectional Curvature

In this section we show how sectional curvature for an n-dimensional mani-

fold M can be written as the ratio of quadratic forms on the space of alternating

2-forms Λ2(TpM). This allows to formulate the the problem of finding bounds for sec-

tional curvature as a generalized eigenvalue problem. In the case of three-dimensional

manifolds (such as the manifold of three landmarks in one dimension) these bounds

are actually achieved by computable pairs of tangent vectors. Following the spirit of

the chapter we will express the results and formulas in terms of the cometric tensor

and the dual Riemannian curvature tensor. These results, as well as those achieved

in the previous sections, will be used in the next chapter to compute and plot the

sectional curvature of landmark manifolds. We will indicate with Λk(V ) the linear

space of alternating k-forms on a linear space V (e.g. Λ1(V ) = V ∗), and with Σk(V )

the set of symmetric k-tensors on space V ; for reference, see [21] and [28].

The following proposition holds:

Proposition 4.5. For an arbitrary pair X, Y ∈ TpM define ω = X[ ∧ Y [ ∈
Λ2(TpM), i.e. ω =

∑
u<r(XuYr − YuXr) dx

u ∧ dxr. We can write sectional curvature

at point p ∈M as follows:

K(X, Y ) =
%(ω, ω)

γ(ω, ω)
,

where:

• % is a symmetric bilinear form on Λ2(TpM), i.e. % ∈ Σ2
(
Λ2(TpM)

)
, defined

as follows:4

%(η, ξ) = − ηur R
ursv

4
ξsv

for any pair η, ξ ∈ Λ2(TpM). In the above definition we intend the following:

ηur = η
(

∂
∂xu ,

∂
∂xr

)
, i.e. η =

∑
u<r ηur dx

u ∧ dxr, and similarly for ξ.

4The minus signs follows from the sign conventions for the Riemannian curvature tensor that

we adopted, following Lee’s notation [27]; see footnote 1 of this chapter.
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• γ is a symmetric bilinear form on Λ2(TpM), i.e. γ ∈ Σ2
(
Λ2(TpM)

)
, defined

as follows:

γ(η, ξ) = ηur
Gursv

4
ξsv

for any pair η, ξ ∈ Λ2(TpM), with Gursv = gusgrv − guvgrs. Note that Gursv

has the same symmetries as the dual Riemannian curvature tensor Rursv.

Proof. Sectional curvature associated to the 2-plane spanned by tangent vec-

tors X and Y may be written as (4.4): K(X, Y ) =
XiY jRijk`Y

kX`

‖X‖2‖Y ‖2−〈X,Y 〉2 . We have

that X[ = Xudx
u and Y [ = Yrdx

r, so that ω = X[ ∧ Y [ = XuYr dx
u ∧ dxr =

∑
u<r(XuYr − XrYu) dx

u ∧ dxr, by the skew-symmetry of the wedge product. By

definition, %(η, ξ) = −1
4
ηurR

ursvξsv, whence:

%(ω, ω) = −1

4
(XuYr −XrYu)R

ursv(XsYv −XvYs)

= −1

4

(
XuYrR

ursvXsYv −XuYrR
ursvXvYs −XrYuR

ursvXsYv +XrYuR
ursvXvYs

)

= −1

4
· 4 XuYrR

ursvXsYv = XuYrR
ursvYsXv ,

where we have used the well-knows symmetries of Rursv multiple times. As far as

the denominator is concerned, first note that Gursv = gusgrv − guvgrs has the same

symmetries as the dual Riemannian curvature tensor Rursv, since

Grusv = grsguv − grvgus = −Gursv,

Gurvs = guvgrs − gusgrv = −Gursv,

Gsvur = gsugvr − gsrgvu = Gursv.

By definition γ(η, ξ) = 1
4
ηurG

ursvξsv, whence:

γ(ω, ω) =
1

4
(XuYr −XrYu)G

ursv(XsYv −XvYs) = XuYrG
ursvXsYv

= XuYr(g
usgrv − guvgrs)XsYv = Xug

usXs Yrg
rvYv −Xug

uvYv Yrg
rsXs

= ‖X‖2‖Y ‖2 − 〈X,Y 〉2,

since we have, for example, that Xug
usXs = Xug

uξgξψg
ψsXs = XξgξψX

ψ = ‖X‖2. ¤
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Proposition 4.6. Bilinear forms % and γ may be expressed as:

%(η, ξ) = −
∑
u<r

ηur
∑
s<v

Rursv ξsv and γ(η, ξ) =
∑
u<r

ηur
∑
s<v

Gursv ξsv ,

for any η, ξ ∈ Λ2(TpM).

Proof. It follows from ηru = −ηur, ξru = −ξur and the symmetries the two

tensors of Gursv and Rursv. ¤

Corollary 4.7. Sectional curvature may be expressed as follows:

(4.21) K(X,Y ) =
−∑

u<r ωur
∑

s<v R
ursv ωsv∑

ū<r̄ ωūr̄
∑

s̄<v̄ G
ūr̄s̄v̄ ωs̄v̄

,

where ωur = XuYr −XrYu for any pair of indices u, r.

We also introduce the linear operators:

R̃ : Λ2(TpM) → Λ2(T ∗pM)(4.22)

:
∑
s<v

ωsv dx
s ∧ dxv 7→

∑
u<r

wur
∂

∂xu
∧ ∂

∂xr
, with wur =

∑
s<v

Rursvωsv ,

and

G̃ : Λ2(TpM) → Λ2(T ∗pM)(4.23)

:
∑
s<v

ωsv dx
s ∧ dxv 7→

∑
u<r

wur
∂

∂xu
∧ ∂

∂xr
, with wur =

∑
s<v

Gursvωsv .

Proposition 4.8. Linear operator G̃ is invertible. In fact, if w = G̃ω for some

arbitrary ω ∈ Λ2(TpM) then ωsv =
∑

u<rHsvurw
ur, with Hsvur = gsugvr − gsrgvu.

Proof. The proof consists of the following straightforward computation:

∑
u<r

Hs̄v̄urw
ur =

1

2
Hs̄v̄ur w

ur =
1

2
Hs̄v̄ur

∑
s<v

Gursv ωsv

=
1

4
Hs̄v̄urG

ursv ωsv =
1

4
(gs̄ugv̄r − gs̄rgv̄u) (gusgrv − guvgrs)ωsv

=
1

4
(gs̄ugv̄rg

usgrv − gs̄ugv̄rg
uvgrs − gs̄rgv̄ug

usgrv + gs̄rgv̄ug
uvgrs)ωsv

=
1

4
(δss̄δ

v
v̄ − δvs̄δ

s
v̄ − δvs̄δ

s
v̄ + δss̄δ

v
v̄)ωsv =

1

2
(δss̄δ

v
v̄ − δvs̄δ

s
v̄)ωsv =

1

2
(ωs̄v̄ − ωv̄s̄) = ωs̄v̄,

which, by the arbitrariness of ω, proves the proposition. ¤
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With the above machinery, we can formulate the problem of finding bounds on

sectional curvature as follows:

if: −∑
s<v R

ursvωsv = σ
∑

s<vG
ursvωsv for some σ ∈ R, i.e. if −R̃ω = σG̃ω,

i.e. if σ ∈ R is a generalized eigenvalue [26] of the pair (−R̃, G̃) with gener-

alized eigenvector ω,

then: K(X, Y ) = σ.

Remark. Since G̃ is invertible by Proposition 4.8 the generalized spectrum of

the pair (−R̃, G̃) coincides with the ordinary spectrum of the linear transformation

Λ2(TpM) → Λ2(TpM) : ω 7→ −G̃−1R̃ ω.

Given a chart around a point p a basis for Λ2(TpM) is
{
dxs∧dxv : s < v

}
, while a

basis for Λ2(T ∗pM) is
{

∂
∂xs ∧ ∂

∂xv : s < v
}
; both spaces have, in fact, dimension

(
n
2

)
. We

may express linear transformations R̃ and G̃ with respect to such bases with matrices,

whose elements are given precisely by coefficients Rursv and Gursv, respectively. A

way to write down matrix G ,
[
Gursv

]
u<r
s<v

is the following:

G =




G1212 G1213 · · · G121n G1223 · · · G122n · · ·
G1312 G1313 · · · G131n G1323 · · · G132n · · ·

...
...

. . .
...

...
. . .

... · · ·
G1n12 G1n13 · · · G1n1n G1n23 · · · G1n2n · · ·
G2312 G2313 · · · G231n G2323 · · · G232n · · ·

...
...

. . .
...

...
. . .

... · · ·
G2n12 G2n13 · · · G2n1n G2n23 · · · G2n2n · · ·

...
...

...
...

...
...

...
. . .




∈ R(n
2)×(n

2);

for example when n = dimM = 3 we get:

G =




G1212 G1213 G1223

G1312 G1313 G1323

G2312 G2313 G2323


 .
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Similar arguments hold for matrix −R ,
[−Rursv

]
u<r
s<v

. Note that the generic diagonal

element of −R is −Rurur = Rurru.

For completeness, we will state and prove the following fairly obvious fact, on the

relationship between operators R̃, G̃ and the elements of the corresponding tensors.

Proposition 4.9. It is the case that

Rijk` =
[
R̃(dxk ∧ dx`)](dxi, dxj)

and Gijk` =
[
G̃(dxk ∧ dx`)](dxi, dxj),

for any choice of indices i, j, k and `.

Proof. We shall prove the above proposition for Gijk`. For the sake of compu-

tation, it is convenient to write G̃ω, with ω ∈ Λ2(TpM), as a summation over all

indices, as follows:

G̃ω =
∑
u<r

( ∑
s<v

Gursvωsv

) ∂

∂xu
∧ ∂

∂xr
=

1

2

∑
u<r

(
Gursvωsv

) ∂

∂xu
∧ ∂

∂xr

=
1

4
Gursvωsv

∂

∂xu
∧ ∂

∂xr
,(4.24)

where we have used the symmetries of Gursv, the fact that ωvs = −ωsv, and the

skew-symmetry of the wedge product. For fixed indices k and `, if ω = dxk∧dx` then

ωsv = (dxk ∧ dx`)
( ∂

∂xs
,
∂

∂xv

)
= dxk

( ∂

∂xs

)
dx`

( ∂

∂xv

)
− dxk

( ∂

∂xv

)
dx`

( ∂

∂xs

)

= δks δ
`
v − δ`sδ

k
v ,

by the definition of the wedge product. Substituting such expression into (4.24) yields:

G̃(dxk ∧ dx`) =
1

4
Gursv(δks δ

`
v − δ`sδ

k
v )

∂

∂xu
∧ ∂

∂xr
=

1

4

(
Gurk` −Gur`k

) ∂

∂xu
∧ ∂

∂xr

=
1

2
Gurk` ∂

∂xu
∧ ∂

∂xr
,(4.25)

where we have used the symmetries of Gursv. For arbitrary indices i and j it turns

out that
( ∂

∂xu
∧ ∂

∂xr

)
(dxi, dxj) = δiuδ

j
r − δjuδ

i
r ;
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combining the above expression with (4.25) finally yields:

[
G̃(dxk ∧ dx`)](dxi, dxj) =

1

2
Gurk` (δiuδ

j
r − δjuδ

i
r) =

1

2
(Gijk` −Gjik`) = Gijk`.

An analogous computation holds for R̃. ¤

We shall denote by Σ =
{
σ1, . . . , σm

}
, m =

(
n
2

)
, the generalized spectrum (the set

of generalized eigenvalues) of the pair (−R̃, G̃), i.e. of the pair of matrices
(−R,G

)
.

An upper bound and a lower bound for sectional curvature are given by, respec-

tively, σmax , max Σ and σmin , min Σ.

Remark. Once the set of generalized eigenvalues and eigenvectors is known, one

can consider, for example, the eigenvector ω ∈ Λ2(TpM) that corresponds to the

maximum eigenvalue σmax. Unfortunately since the set of simple (or decomposable5)

2-forms
{
η ∧ ξ : η, ξ ∈ T ∗pM

}
is a proper subset Λ2(TpM) it is not necessarily the

case that ω = X[∧Y [ for some X, Y ∈ TpM. Therefore it may happen that K(X, Y )

is not equal to σmax for any pair of tangent vectors, and σmax and σmin only provide,

respectively, an upper and a lower bound for sectional curvature. However in the

case of three-dimensional manifolds (such as the manifold of three landmarks in one

dimension) the maximum and minimum eigenvalues of the spectrum Σ are achieved

by sectional curvature K(X, Y ) by appropriate choices of the tangent vectors, since

it is the case that every 2-form in Λ2(R3) is decomposable. In fact, if

ω = ω12 dx
1 ∧ dx2 + ω23 dx

2 ∧ dx3 + ω31 dx
3 ∧ dx1,

• when ω12 6= 0 one can pick, for example, η = dx1− ω23

ω12
dx3 and ξ = ω12 dx

2−
ω31 dx

3. It turns out that ω = η ∧ ξ.
• when ω12 = 0 one may instead choose η = −ω31 dx

1 + ω23 dx
2 and ξ = dx3.

Again, it is the case that ω = η ∧ ξ.
Therefore in the case of a three-dimensional manifold once the generalized eigenvec-

tor ωmax that corresponds to the maximum eigenvalue σmax is known, the above formu-

las allow to compute the cotangent vectors X[, Y [ ∈ T ∗pM such that ωmax = X[∧Y [.

5A k-form ω ∈ ΛkV is decomposable if and only if it satisfies the Plücker relations [12].
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The corresponding pair of tangent vectorsX, Y are those for which sectional curvature

is maximal, i.e. K(X, Y ) = σmax. The same holds for the minimum eigenvalue σmin

in the generalized spectrum.

We will conclude this section by showing how the generalized spectrum of the

pair (−R̃, G̃) is related to the scalar curvature of the manifold. We recall from Dif-

ferential Geometry [11, 23, 27] that the Ricci tensor

Ric = Rjk dx
j ⊗ dxk

is the covariant 2-tensor field defined as the trace of the Riemannian curvature tensor

on its first and last indices; in other words its components are defined as:

Rjk , gi`Rijk`.

The scalar curvature is the function S defined as the trace of the Ricci tensor, i.e.:

S , gjkRjk ,

so that we can express it in terms of the dual Riemannian curvature tensor as follows:

S = gi`gjkRijk` = gi`gjk
(
giu gjr gks g`v R

ursv
)

= δ`u δ
k
r gks g`v R

ursv = guv grsR
ursv.

The following proposition holds.

Proposition 4.10. Let {σ1, . . . , σm}, m =
(
n
2

)
, be the generalized spectrum of the

pair of linear operators (−R̃, G̃), defined in (4.22) and (4.23). Then it is the case

that
m∑
i=1

σi =
1

2
S.

Proof. The generalized eigenvalues of the pair (−R̃, G̃) are the ordinary eigen-

values of the linear transformation −G̃−1R̃ : Λ(TpM) → Λ(TpM), since by Propo-

sition 4.8 linear operator G̃ is invertible; the components of inverse G̃−1 are given

by Hsvur = gsu gvr−gsr gvu. An arbitrary two-form ω ∈ Λ2(TpM), which we can write
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as ω =
∑

s<v ωsv dx
s∧dxv, gets mapped by R̃ to R̃ω =

∑
u<r w

ur ∂
∂xu∧ ∂

∂xr ∈ Λ2(T ∗pM),

with wur =
∑

s<v R
ursvωsv. Therefore if we define two-form η ∈ Λ2(TpM) as

η = G̃−1R̃ ω =
∑
y<z

ηyz dx
y ∧ dxz,

its components can be written as

ηyz =
∑
u<r

Hyzur w
ur =

∑
u<r

∑
s<v

Hyzur R
ursv ωsv =

∑
s<v

Lyzsvyz ωsv ,

with:

Lyzsvyz ,
∑
u<r

Hyzur R
ursv =

1

2
Hyzur R

ursv =
1

2

(
gyugzr − gyrgzu

)
Rursv

=
1

2

(
gyugzr R

ursv − gyrgzuR
ursv

)
= gyugzr R

ursv.

The summation of the ordinary eigenvalues of the linear transformation −G̃−1R̃

is given by the ordinary trace of −Lyzsvyz (intended as the summation of its diagonal

elements):

m∑
i=1

σi =
∑
y<z

δyzsv
(− Lyzsvyz

)
= −

∑
y<z

δys δ
z
v L

yzsv
yz = −1

2
δys δ

z
v L

yzsv
yz

= −1

2
δys δ

z
v gyu gzr R

ursv = −1

2
gsu gvr R

ursv = −1

2
gsu gvr R

urvs =
1

2
S ,

which completes the proof. ¤
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CHAPTER 5

Curvature of the Landmarks Manifold

In the present chapter, which is central in this thesis, we apply the formulas that

we developed in Chapter 4 to the Riemannian manifold of landmarks I introduced

in Chapter 2. From now on we make the simplifying assumption that the smoothing

parameter λ is equal to infinity, i.e. that we are dealing with the exact matching

problem. We start with analyzing the simplest but nonetheless very informative

case of two landmarks in one dimension, and then move on to the case of three or

more landmarks in one dimension. Finally we provide a general formula for sectional

curvature for N landmarks in D dimensions. As we did in the previous chapter

we adopt Einstein’s summation convention. In some computations the rules of such

convention are broken, e.g. the summation index may appear three times in the same

factor; in such cases we write the summation symbol explicitly. In any case in most of

the present chapter we denote summation symbols with Greek letters (ϕ, ψ, ξ, η, . . .).

In the next chapter we will study the effect of curvature on the qualitative dynamics

of landmarks, for which we derived the differential equations in Chapter 3.

We start by computing the dual Riemannian curvature tensor forN one-dimensional

landmarks, and then use the result for calculating sectional curvature for two one-

dimensional and three one-dimensional landmarks. This is followed by the computa-

tion of the general expression for sectional curvature of N landmarks in D dimensions

by means of the formula provided by Theorem 4.4.

1. The dual curvature tensor for one-dimensional landmarks

We shall use Proposition 4.3 on the general form of the dual Riemannian curvature

tensor from the previous chapter, which we repeat here for our convenience.
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Proposition 5.1. The Riemannian curvature tensor with raised indices Rursv

may be written in function of the cometric tensor and its derivatives as follows:

2Rursv =− grv,su + grs,uv − gus,rv + guv,rs(T1)

− 1

2

{
grs,rsη g

ησguv,uvσ − grs,rsψ

(
gψu,v + gψv,u

)− guv,uvϕ

(
gϕr,s + gϕs,r

)}
(T2)

+
1

2

{
gus,usη g

ησgvr,vrσ − gus,usψ

(
gψv,r + gψr,v

)− gvr,vrϕ

(
gϕu,s + gϕs,u

)}
(T3)

− 1

2

(
gϕr,s − gϕs,r

)
gϕψ

(
gϕu,v − gϕv,u

)
(T4)

+
1

2

(
gϕu,s − gϕs,u

)
gϕψ

(
gϕr,v − gϕv,r

)
(T5)

+
(
gϕu,r − gϕr,u

)
gϕψ

(
gϕs,v − gϕv,s

)
,(T6)

where, as usual, gij,k , gij,ijξ g
ξk and gij,k` , gij,ijξη g

ξkgη`.

When D = 1, expression (2.15) and differential equation (2.16) provided in Chap-

ter 2 respectively take the forms:

(5.2) γ(%) =
1

2k−
1
2π

1
2 (k − 1)!

1

a

(%
a

)k− 1
2
Kk− 1

2

(%
a

)
,

and

(5.3) γ′′ =
2k − 2

%
γ′ +

1

a2
γ ,

where k and a2 are the parameters of differential operator L = (id − a2∆)k. We

should also note that the most remarkable difference between one-dimesional and D-

dimensional landmark manifolds is topological in nature, in that in the former case

the manifold is not connected since the ordering of landmarks cannot change.

1.1. Generic elements of the dual curvature tensor. In the case of one-

dimensional landmarks the cometric tensor g−1(q) is a N ×N matrix whose generic

element gij(q) = G(qi, qj) only depends on two of the N variables; the diagonal

elements are actually constant. Therefore, for a fixed index k, the matrix of partial

derivatives
[
gij,ijk

]N
i,j=1

will have only one nonzero row and one nonzero column, namely

the k-th ones. Similarly, for fixed k and m, with k 6= m, the the matrix of second
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partial derivatives
[
gij,ijkm

]N
i,j=1

will have only two nonzero elements, namely those in

positions (k,m) and (m, k). We shall return on this after proving of the following

result.

Lemma 5.2. Let γ : [0,+∞) → R be the function such that G(x, y) = γ(|x − y|)
is the kernel of admissible space V . Then the first and second partial derivatives of

the cometric tensor for N one-dimensional landmarks are respectively given by:

(5.4) gij,ijk (q) = (δik − δjk) γ
′(%ij) sgn(qi − qj)

and

(5.5) gij,ijkm (q) = (δik − δjk) (δim − δjm) γ′′(%ij) ,

where %ij , |qi − qj| and sgn is the sign function.

Proof. We have that gij(q) = γ(%ij), where %ij = |qi − qj|. Therefore

gij,ijk (q) =
∂

∂qk
gij(q) =





0 for k 6= i, k 6= j

∂
∂qiγ(%

ij) for k = i

∂
∂qj γ(%

ij) for k = j

.

Now choose k = i without loss of generality. By the chain rule we have that

∂

∂qi
γ(%ij) = γ′(%ij)

∂

∂qi
|qi − qj| = γ′(%ij)

qi − qj

|qi − qj| = γ′(%ij) sgn(qi − qj) .

Analogously,
∂

∂qj
γ(%ij) = γ′(%ij) sgn(qj − qi) = −γ′(%ij) sgn(qi − qj) . Combining the

above formulas we finally have that:

gij,ijk (q) = δikγ
′(%ij) sgn(qi − qj)− δjkγ

′(%ij) sgn(qi − qj) = (δik − δjk)γ
′(%ij) sgn(qi − qj).

Let us now compute the second derivatives:

gij,ijkm (q) =
∂

∂qm
gij,ijk (q) =

∂

∂qm
(δik − δjk) γ

′(%ij) sgn(qi − qj)

= (δik − δjk)
{[ ∂

∂qm
γ′(%ij)

]
sgn(qi − qj) + γ′(%ij)

∂

∂qm
sgn(qi − qj)

}

= (δik − δjk)
[ ∂

∂qm
γ′(%ij)

]
sgn(qi − qj) .(5.6)
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The derivative in square brackets above may be rewritten as:

(5.7)
∂

∂qm
γ′(%ij) =





0 for m 6= i,m 6= j

∂
∂qiγ

′(%ij) for m = i

∂
∂qj γ

′(%ij) for m = j

.

Again, without loss of generality choose m = i. By the chain rule,

∂

∂qi
γ′(%ij) = γ′′(%ij)

∂

∂qi
%ij = γ′′(%ij)

∂

∂qi
|qi − qj|

= γ′′(%ij)
qi − qj

|qi − qj| = γ′′(%ij) sgn(qi − qj)

and analogously

∂

∂qj
γ′(%ij) = γ′′(%ij) sgn(qj − qi) = −γ′′(%ij) sgn(qi − qj) .

Therefore we may write (5.7) in the following compact form:

∂

∂qm
γ′(%ij) = (δim − δjm) γ′′(%ij) sgn(qi − qj) .

Inserting such expression into (5.6) finally yields:

gij,ijkm (q) = (δik − δjk) (δim − δjm) γ′′(%ij)
[
sgn(qi − qj)

]2
,

that is:

gij,ijkm (q) = (δik − δjk) (δim − δjm) γ′′(%ij) ,

which is precisely what we wanted to prove. ¤

Remark. Some comments about the expressions provided by the above lemma

are in order. Consider matrix S(q), whose generic element is given by gij. We have

that gij depends only on two out of the N variables (q1, . . . , qN), namely qi and qj.

Therefore in matrix ∂
∂qkS(q) only the k-th row and the k-th column are nonzero (with

the notable exception of the element that lies on the diagonal, which must be zero).

This fact is reflected in the right-hand side of expression (5.4), where the presence

of factor (δik − δjk) implies that gij,ijk is nonzero only when i = k or j = k (again,

note that when i = j then δik − δjk = 0 so that all the elements on the diagonal of

matrix ∂
∂qkS(q) are zero, for all k). For a fixed value of index k, matrix ∂

∂qkS(q) turns
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Figure 5.1. Typical shape of function f̃ : R→ R.

out to be skew-symmetric. As far as the second partial derivatives are concerned,

since each of the “surviving” elements gij,ijk of matrix ∂
∂qkS(q) depends only on the

two variables qi and qj, the following holds:

• if m 6= k then matrix ∂2

∂qm∂qkS(q) will have only two nonzero elements, namely

those in positions (k,m) and (m, k). This is reflected by the right-hand side

of (5.5), which is nonzero only when either i = k and j = m, or i = m and

j = k. If i = j (diagonal elements) the right-hand side of (5.5) is zero.

• if m = k then only the k-th row and the k-th column of matrix ∂2

∂(qk)2
S(q) are

nonzero (with the usual exception of the diagonal element). Note that when

m = k expression (5.5) takes the form: gij,ijkk (q) = (δik − δjk)
2 γ′′(%ij), which

is nonzero when either i = k or j = k, once again with the exception i = j.

In any case, matrix ∂2

∂qm∂qkS(q) is symmetric for any choice of indices k and m.

Definition 5.3. Let f̃ : R→ R be the map x 7→ γ′(|x|) sgn(x). Define:

f(x, y) , f̃(x− y) = γ′(|x− y|) sgn(x− y), for x, y ∈ R.

The above function is such that f(x, y) = −f(y, x) and f(x, x) = 0. Also,

f 2(x, y) =
[
γ′(|x − y|)]2

. The typical shape of function f̃(x) is shown in Figure 5.1.

With the above definition we may write

gij,ijk (q) = (δik − δjk) f(qi, qj)

by the first part of Lemma 5.2. The proposition that follows provides the expression

for the generic element of the dual Riemannian curvature tensor for one-dimensional

landmarks, as a function of γ and its derivatives.

70



Proposition 5.4. In the case of one-dimensional landmarks, the six terms of the

dual Riemannian curvature tensor listed in Proposition 5.1 take the following form:

T1 = − [
γ(%ru)− γ(%vu)

][
γ(%rs)− γ(%vs)

]
γ′′(%rv)

+
[
γ(%ru)− γ(%su)

][
γ(%rv)− γ(%sv)

]
γ′′(%rs)

− [
γ(%ur)− γ(%sr)

][
γ(%uv)− γ(%sv)

]
γ′′(%us)

+
[
γ(%ur)− γ(%vr)

][
γ(%us)− γ(%vs)

]
γ′′(%uv) ,

T2 + T3 =
1

2

([
γ(%ru)− γ(%uv)− γ(%sr) + γ(%sv)

]
f(qu, qs) f(qr, qv)

− [
γ(%ru)− γ(%rv)− γ(%su) + γ(%sv)

]
f(qr, qs) f(qu, qv)

+
[
γ(%uv)− γ(%rv)

]{
f(qs, qu) f(qu, qr)− f(qs, qr)

[
f(qs, qu) + f(qu, qr)

]}

+
[
γ(%rs)− γ(%us)

]{
f(qv, qr) f(qr, qu)− f(qv, qu)

[
f(qv, qr) + f(qr, qu)

]}

− [
γ(%su)− γ(%vu)

]{
f(qr, qs) f(qs, qv)− f(qr, qv)

[
f(qr, qs) + f(qs, qv)

]}

− [
γ(%vr)− γ(%sr)

]{
f(qu, qv) f(qv, qs)− f(qu, qs)

[
f(qu, qv) + f(qv, qs)

]})
,

T4 = − 1

2

∑

ϕψ

{[
γ(%rs)− γ(%sϕ)

]
f(qr, qϕ)− [

γ(%rs)− γ(%rϕ)
]
f(qs, qϕ)

}

· gϕψ
{
f(qψ, qu)

[
γ(%ψv)− γ(%uv)

]− f(qψ, qv)
[
γ(%ψu)− γ(%uv)

]}
,

T5 =
1

2

∑

ϕψ

{[
γ(%us)− γ(%sϕ)

]
f(qu, qϕ)− [

γ(%us)− γ(%uϕ)
]
f(qs, qϕ)

}

· gϕψ
{
f(qψ, qr)

[
γ(%ψv)− γ(%rv)

]− f(qψ, qv)
[
γ(%ψr)− γ(%vr)

]}
,

T6 =
∑

ϕψ

{[
γ(%ur)− γ(%rϕ)

]
f(qu, qϕ)− [

γ(%ru)− γ(%uϕ)
]
f(qr, qϕ)

}

· gϕψ
{
f(qψ, qs)

[
γ(%ψv)− γ(%sv)

]− f(qψ, qv)
[
γ(%ψs)− γ(%vs)

]}
.

Remark. As we anticipated at the beginning of the chapter we have written the

summation symbols (such as
∑

ϕψ) explicitly where the rules of Einstein’s summation

conventions are broken, for example when the summation index appears more than
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twice in a product. In any case, in the above expressions and in the proof that follows

Greek letters are used for summation indices.

Proof of Proposition 5.4. We will compute the six terms one by one. We

have that

grv,su = grv,rvξη g
ξsgηu = (δrξ − δvξ ) (δrη − δvη) γ

′′(%rv) γ(%ξs) γ(%ηu)

=
[
γ(%sr)− γ(%sv)

] [
γ(%ur)− γ(%uv)

]
γ′′(%rv);

by appropriately rearranging the labels one can get analogous expressions for grs,uv,

gus,rv, and guv,rs; the expression for T1 follows immediately. As far as terms T2 and T3

are concerned, it is the case that:

grs,rsη g
ησguv,uvσ = (δrη − δsη) f(qr, qs) γ(%ησ) (δuσ − δvσ) f(qu, qv)

= (δrηδ
u
σ − δrηδ

v
σ − δsηδ

u
σ + δsηδ

v
σ) γ(%

ησ) f(qr, qs) f(qu, qv)

=
[
γ(%ru)− γ(%rv)− γ(%su) + γ(%sv)

]
f(qr, qs) f(qu, qv).

By appropriately relabeling the indices, we can use the above formula to express the

summation of the first terms of T1 and T2:

− 1

2

{
grs,rsη g

ησguv,uvσ − gus,usη g
ησgvr,vrσ

}
(5.8)

=
1

2

{
gus,usη g

ησgvr,vrσ − grs,rsη g
ησguv,uvσ

}

=
1

2

{[
γ(%ru)− γ(%uv)− γ(%sr) + γ(%sv)

]
f(qu, qs) f(qr, qv)

− [
γ(%ru)− γ(%rv)− γ(%su) + γ(%sv)

]
f(qr, qs) f(qu, qv)

}
.

On the other hand,

grs,rsψ

(
gψu,v + gψv,u

)

= grs,rsψ

(
gψu,ψuσ g

σv + gψv,ψvσ g
σu

)

=
∑

ψ

(δrψ − δsψ) f(qr, qs)
[
(δψσ − δuσ) f(qψ, qu) γ(%σv) + (δψσ − δvσ) f(qψ, qv) γ(%σu)

]

=
∑

ψ

(δrψ − δsψ) f(qr, qs)
{[
γ(%ψv)− γ(%uv)

]
f(qψ, qu) +

[
γ(%ψu)− γ(%vu)

]
f(qψ, qv)

}
,
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so that we can finally write

grs,rsψ

(
gψu,v + gψv,u

)

= f(qr, qs)
{[
γ(%rv)− γ(%uv)

]
f(qr, qu) +

[
γ(%ru)− γ(%vu)

]
f(qr, qv)

− [
γ(%sv)− γ(%uv)

]
f(qs, qu)− [

γ(%su)− γ(%vu)
]
f(qs, qv)

}
.

We can use such expression to write the summation of the last two terms of both T1

and T2 as follows (modulo the multiplication by 1
2
):

(?) , grs,rsψ

(
gψu,v + gψv,u

)
+ guv,uvϕ

(
gϕr,s + gϕs,r

)

− gus,usψ

(
gψv,r + gψr,v

)− gvr,vrϕ

(
gϕu,s + gϕs,u

)

= + f(qr, qs)
{[
γ(%rv)− γ(%uv)

]
f(qr, qu) +

[
γ(%ru)− γ(%vu)

]
f(qr, qv)(5.9a)

− [
γ(%sv)− γ(%uv)

]
f(qs, qu)− [

γ(%su)− γ(%vu)
]
f(qs, qv)

}
(5.9b)

+ f(qu, qv)
{[
γ(%us)− γ(%rs)

]
f(qu, qr) +

[
γ(%ru)− γ(%sr)

]
f(qu, qs)(5.9c)

− [
γ(%sv)− γ(%rs)

]
f(qv, qr)− [

γ(%vr)− γ(%sr)
]
f(qv, qs)

}
(5.9d)

− f(qu, qs)
{[
γ(%uv)− γ(%rv)

]
f(qu, qr) +

[
γ(%ru)− γ(%vr)

]
f(qu, qv)(5.9e)

− [
γ(%sv)− γ(%rv)

]
f(qs, qr)− [

γ(%sr)− γ(%vr)
]
f(qs, qv)

}
(5.9f)

− f(qr, qv)
{[
γ(%rs)− γ(%us)

]
f(qr, qu) +

[
γ(%ru)− γ(%su)

]
f(qr, qs)(5.9g)

− [
γ(%sv)− γ(%us)

]
f(qv, qu)− [

γ(%vu)− γ(%su)
]
f(qv, qs)

}
;(5.9h)

the underlined terms in the above expression cancel two by two: precisely, (5.9a)

cancels with (5.9g), (5.9b) with (5.9f), (5.9c) with (5.9e), and (5.9d) with (5.9h); in

some cases the antisymmetry of function f is used. By recombining the surviving
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terms in the square brackets two by two yields:

(?) = + f(qr, qs)
{[
γ(%rv)− γ(%uv)

]
f(qr, qu)− [

γ(%su)− γ(%vu)
]
f(qs, qv)

− [
γ(%rv)− γ(%uv)

]
f(qs, qu)

}
(5.10a)

+ f(qu, qv)
{[
γ(%us)− γ(%rs)

]
f(qu, qr)− [

γ(%vr)− γ(%sr)
]
f(qv, qs)

− [
γ(%us)− γ(%rs)

]
f(qv, qr)

}
(5.10b)

− f(qu, qs)
{[
γ(%uv)− γ(%rv)

]
f(qu, qr)− [

γ(%sr)− γ(%vr)
]
f(qs, qv)

+
[
γ(%rs)− γ(%rv)

]
f(qu, qv)

}
(5.10c)

− f(qr, qv)
{[
γ(%rs)− γ(%us)

]
f(qr, qu)− [

γ(%vu)− γ(%su)
]
f(qv, qs)

+
[
γ(%uv)− γ(%us)

]
f(qr, qs)

}
,(5.10d)

where we have underlined the terms deriving from the recombinations: term (5.10a)

derives from combining the surviving terms in the square brackets in (5.9b) and

in (5.9f), term (5.10b) from (5.9d) and (5.9h), term (5.10c) from (5.9e) and (5.9c),

and term (5.10d) from (5.9g) and (5.9a). Two terms in each pair of curly brackets

can be factorized as:

(?) =

+ f(qr, qs)
{[
γ(%uv)− γ(%rv)

][
f(qu, qr) + f(qs, qu)

]− [
γ(%su)− γ(%vu)

]
f(qs, qv)

}

+ f(qu, qv)
{[
γ(%rs)− γ(%us)

][
f(qr, qu) + f(qv, qr)

]− [
γ(%vr)− γ(%sr)

]
f(qv, qs)

}

− f(qu, qs)
{[
γ(%uv)− γ(%rv)

]
f(qu, qr) +

[
γ(%rs)− γ(%rv)

][
f(qu, qv) + f(qv, qs)

]}

− f(qr, qv)
{[
γ(%rs)− γ(%us)

]
f(qr, qu) +

[
γ(%uv)− γ(%us)

][
f(qr, qs) + f(qs, qv)

]}
,
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so that we can finally write (?) as the summation of four terms:

(?) = +
[
γ(%uv)− γ(%rv)

] {
f(qs, qu) f(qu, qr)− f(qs, qr)

[
f(qs, qu) + f(qu, qr)

]}

+
[
γ(%rs)− γ(%us)

] {
f(qv, qr) f(qr, qu)− f(qv, qu)

[
f(qv, qr) + f(qr, qu)

]}

− [
γ(%us)− γ(%uv)

] {
f(qr, qs) f(qs, qv)− f(qr, qv)

[
f(qr, qs) + f(qs, qv)

]}

− [
γ(%rv)− γ(%rs)

] {
f(qu, qv) f(qv, qs)− f(qu, qs)

[
f(qu, qv) + f(qv, qs)

]}
,

which coincide precisely with the last four terms of T2 + T3.

Moving on to terms T4, T5, and T6 we have that, for example,

(5.11) gϕu,s = gϕu,ϕuη g
ηs = (δϕη − δuη ) f(qϕ, qu) γ(%ηs) =

[
γ(%ϕs)− γ(%us)

]
f(qϕ, qu),

so that

(5.12) gϕu,s − gϕs,u =
{[
γ(%ϕs)− γ(%us)

]
f(qϕ, qu)− [

γ(%ϕu)− γ(%su)
]
f(qϕ, qs)

}
,

while

gψr,v − gψv,r =
{[
γ(%ψv)− γ(%rv)

]
f(qψ, qr)− [

γ(%ψr)− γ(%vr)
]
f(qψ, qv)

}
.

The expression for T5 follows immediately from the antisymmetry of function f ,

whereas those for T4 and T6 are obtained in a completely similar manner. ¤

1.2. Diagonal elements of the tensor. One may be interested in the general

form of the diagonal elements of the dual Riemannian curvature tensor; for example,

in the simple case of two one-dimensional landmarks the Riemannian curvature tensor

consists of only one element. The following result holds.
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Proposition 5.5. The diagonal elements of the Riemannian curvature tensor are

given by Rursv
∣∣
s=u
v=r

= Rurur = 1
2

∑6
i=1 Ti, with:

T1 = −2
[
γ(0)− γ(%ur)

]2
γ′′(%ur) ,

T2 + T3 =
[
γ(0)− γ(%ru)

] · [γ′(%ru)]2
,

T5 = 0 ,

T4 + T6 =
3

2

∑

ϕψ

{[
γ(%ur)− γ(%rϕ)

]
f(qu, qϕ)− [

γ(%ur)− γ(%uϕ)
]
f(qr, qϕ)

}

· gϕψ
{[
γ(%ur)− γ(%ψr)

]
f(qu, qψ)− [

γ(%ur)− γ(%ψu)
]
f(qr, qψ)

}
.

Remark. Of the three nonzero terms in the expression for 2Rurur provided by

Proposition 5.5 the last two, T2 and T4 + T6, are always positive for any landmark

configuration, whereas the sign of T1 is determined by the sign of function −γ′′(%ur).

Proof of Proposition 5.5. Setting s = u and v = r in term T1 yields:

T1

∣∣
s=u
v=r

=− 0 +
[
γ(%ru)− γ(0)

][
γ(0)− γ(%ur)

]
γ′′(%ur)

− 0 +
[
γ(%ur)− γ(0)

][
γ(0)− γ(%ru)

]
γ′′(%ur)

=− 2
[
γ(0)− γ(%ru)

]2
γ′′(%ur).

We now note that the first line of the expression for term T2 + T3 provided by

Proposition 5.4 is equal to zero when s = u and v = r; the remaining five lines of the

same term become:

(T2 + T3)
∣∣
s=u
v=r

=
1

2

(
− 2

[
γ(0)− γ(%ru)

][
γ′(%ru)

]2

− [
γ(0)− γ(%ru)

]{− [
γ′(%ru)

]2
}
− [

γ(0)− γ(%ru)
]{− [

γ′(%ru)
]2

}

− [
γ(0)− γ(%ru)

]{− [
γ′(%ru)

]2
}
− [

γ(0)− γ(%rv)
]{− [

γ′(%ru)
]2

})

=
[
γ(0)− γ(%ru)

][
γ′(%ru)

]2
.
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As far as terms T4, T5 and T6 are concerned it is convenient to turn directly to the

expressions provided by Proposition 5.1; we have that:

T4

∣∣
s=u
v=r

= −1

2

(
gϕr,u − gϕu,r

)
gϕψ

(
gψu,r − gψr,u

)
=

1

2

(
gψu,r − gψr,u

)
gϕψ

(
gψu,r − gψr,u

)
,

which, with the notation introduced in subsection 3.3 of Chapter 4, we may also write

as T4

∣∣
s=u
v=r

= 1
2

∥∥(
Bu,r − Br,u

)]∥∥2
where the “sharp” operator ] raises the indices of a

cotangent vector, i.e. ] : T ∗I I → TII : Xidx
i 7→ (gijXj)∂i, and ‖ · ‖ is the norm

induced by the metric. It is easy to verify that T5

∣∣
s=u
v=r

= 0, while

T6

∣∣
s=u
v=r

=
(
gϕu,r − gϕr,u

)
gϕψ

(
gϕu,r − gϕr,u

)
=

∥∥(
Bu,r −Br,u

)]∥∥2
,

so that (T4 + T6)
∣∣
s=u
v=r

= 3
2

∥∥(
Bu,r −Br,u

)]∥∥2
; but by expression (5.12) we have

gϕu,r − gϕr,u =
{[
γ(%ϕr)− γ(%ur)

]
f(qϕ, qu)− [

γ(%ϕu)− γ(%ru)
]
f(qϕ, qr)

}
,

so that

(T4 + T6)
∣∣
s=u
v=r

=
3

2

∥∥(
Bu,r −Br,u

)]∥∥2

=
∑

ϕψ

{[
γ(%ϕr)− γ(%ur)

]
f(qϕ, qu)− [

γ(%ϕu)− γ(%ru)
]
f(qϕ, qr)

}

· gϕψ
{[
γ(%ψr)− γ(%ur)

]
f(qψ, qu)− [

γ(%ψu)− γ(%ru)
]
f(qψ, qr)

}
,

which completes the proof. ¤

2. Sectional curvature for two one-dimensional landmarks

In the case of just two one-dimensional landmarks (q1, q2) matrices G and −R

introduced in section 5 of Chapter 4 are just scalars, since Λ2(R2) ' R. For example,

when the smoothing parameter λ is set to be equal to infinity (exact matching):

G = G1212 =
(
gusgrv − guvgrs

)∣∣∣
u=s=1
r=v=2

= g11g22 − g12g21(5.13)

= γ2(0)− γ2(%12) =
[
γ(0) + γ(%12)

][
γ(0)− γ(%12)

]
,

which is always positive since γ(0) > γ(%12). Similarly it is the case that −R =

−R1212 = R1221, whose expression can be computed by means of Proposition 5.5;

more precisely the following result holds.
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Proposition 5.6. In the case of two one-dimensional landmarks term T4 + T6

of 2R1212 provided by Proposition 5.5 takes the following form, for a generic value of

smoothing parameter λ:

T4 + T6 = 3

[
γ(0)− γ(%12)

]2

γ(0) + γ(%12)
· [γ′(%12)

]2
,

so that the only element of matrix −R = R1221 can be expressed as

R1221 = −R1212 = −1

2

( ∑6
i=1 Ti

)∣∣
s=u=1
v=r=2

=
[
γ(0)− γ(%12)

]2
γ′′(%12)− [

γ(0)− γ(%12)
]2γ(0)− γ(%12)

γ(0) + γ(%12)

[
γ′(%12)

]2
.

Remark. Of the three terms in the expression for R1221 provided by the above

proposition the last two are always negative, whereas the sign of the first one is

determined by the sign of function γ′′(%12).

Proof of Proposition 5.6. The first two terms of the expression for R1221 =

−R1212 derive directly form terms T1 and T2+T3 (multiplied by 1
2
) for Rurur provided

by Proposition 5.5. As far as the last term is concerned, we note that in the case of

two landmarks

g−1 =


 γ(0) γ(%12)

γ(%12) γ(0)




=⇒ g =
1

γ2(0)− γ2(%12)


 γ(0) −γ(%12)

−γ(%12) γ(0)


 .(5.14)

By the proof of Proposition 5.5 we have that term T4 + T6 can be written as

(T4 + T6)
∣∣
s=u=1
v=r=2

=
3

2

∥∥(
B1,2 −B2,1

)]∥∥2

=
3

2

(
gϕ1,2 − gϕ2,1

)
gϕψ

(
gψ1,2 − gψ2,1

)
,

which by the Einstein summation convention expands out to

(T4 + T6)
∣∣
s=u=1
v=r=2

=
3

2

{(
g11,2 − g12,1

)
g11

(
g11,2 − g12,1

)
+

(
g11,2 − g12,1

)
g12

(
g21,2 − g22,1

)

+
(
g21,2 − g22,1

)
g21

(
g11,2 − g12,1

)
+

(
g21,2 − g22,1

)
g22

(
g21,2 − g22,1

)}
;
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but g11,2 = 0, g22,1 = 0, g11 = g22 and g12 = g21, so the above expression reduces to:

(5.15) (T4 + T6)
∣∣
s=u=1
v=r=2

=
3

2

{
g11

[(
g12,1

)2
+

(
g21,2

)2
]
− 2g12

(
g12,1g21,2

)}
.

From equation (5.11) we have that

g12,1 =
[
γ(0)− γ(%12)

]
f(q1, q2)

and g21,2 =
[
γ(0)− γ(%12)

]
f(q2, q1) = −g12,1,

so that:

(
g12,1

)2
=

(
g12,1

)2
=

[
γ(0)− γ(%12)

]2[
γ′(%12)

]2

and g12,1g21,2 = −[
γ(0)− γ(%12)

][
γ′(%12)

]2
= −(

g12,1
)2

;

on the other hand, by expression (5.14) we have

g11 =
γ(0)

γ2(0)− γ2(%12)
, g12 = − γ(%12)

γ2(0)− γ2(%12)
.

Whence we may rewrite (5.15) as:

(T4 + T6)
∣∣
s=u=1
v=r=2

= 3
(
g12,1)2

{
g11 + g12

}

= 3
[
γ(0)− γ(%12)

]2[
γ′(%12)

]2 γ(0)− γ(%12)

γ2(0)− γ2(%12)

= 3

[
γ(0)− γ(%12)

]2

γ(0) + γ(%12)

[
γ′(%12)

]2
;

Summing the above to the other terms (and multiplying by −1
2
) yields

R1221 =
[
γ(0)− γ(%12)

]2
γ′′(%12)

− 1

2

[
γ(0)− γ(%12)

][
γ′(%12)

]2 − 3

2

[
γ(0)− γ(%12)

]2

γ(0) + γ(%12)

[
γ′(%12)

]2

=
[
γ(0)− γ(%12)

]2
γ′′(%12)

− 1

2

[
γ(0)− γ(%12)

][
γ(0) + γ(%12)

]
+ 3

[
γ(0)− γ(%12)

]

γ(0) + γ(%12)

[
γ′(%12)

]2

=
[
γ(%12)− γ(0)

]2
γ′′(%12) − [

γ(0)− γ(%12)
]2γ(0)− γ(%12)

γ(0) + γ(%12)

[
γ′(%12)

]2
,

which completes the proof. ¤
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The problem of computing the generalized eigenvalues of the pair (−R,G) is at

this point trivial: equation −R̃ω = σ G̃ω (with ω = ω12 dq
1 ∧ dx2) can simply be

written as −R1212ω12 = σ G1212ω12, whose only solution is obviously σ = R1221

G1212 , which

is the sectional curvature of the two-dimentional landmarks manifold I at the point

of coordinates (q1, q2). In fact such result can also be obtained directly by applying

formula (4.21) of the previous chapter:

(5.16) K(X,Y ) =
−∑

u<r ωur
∑

s<v R
ursv ωsv∑

ū<r̄ ωūr̄
∑

s̄<v̄ G
ūr̄s̄v̄ ωs̄v̄

=
−ω12R

1212 ω12

ω12G1212 ω12

=
R1221

G1212
,

which is only a function of %12 = |q1 − q2|; we will denote it with κ(%12). By (5.13)

and Proposition 5.5 we can finally compute the expression for sectional curvature for

two one-dimensional landmarks.

Corollary 5.7. Sectional curvature for two landmarks in one dimension (5.16)

has the following expression for λ = ∞ (exact matching):

(5.17) κ(%12) =
γ(0)− γ(%12)

γ(0) + γ(%12)
γ′′(%12)− 2γ(0)− γ(%12)[

γ(0) + γ(%12)
]2

[
γ′(%12)

]2
,

where we have merged the two terms with factor
[
γ′(%12)

]2
into one.

Proof. It suffices to divide R1221, provided by Proposition 5.6, by G1212, given

by equation (5.13). ¤

We implemented the above equations in the case of a Gaussian kernel,

(5.18) γ(%) =
1√

2πσ2
exp

{
− 1

2

%2

σ2

}
,

with σ2 = 1. The shape of sectional curvature κ(%12), provided by equation (5.17), is

plotted in Figure 5.2. It turns out that κ has a minimum, a zero (other than the one

at %12 = 0) and a maximum at points:

%m = 0.953, %z = 1.534, %M = 2.198,

κ(%m) = −0.1594, κ(%z) = 0, κ(%M) = 0.1786,
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Figure 5.2. Sectional curvature κ(%12) for the Gaussian kernel.

respectively. So we see that when the two landmarks are close to each other curvature

is negative, it is positive for higher values of the mutual distance of the landmarks,

and finally converges to zero from above as %12 →∞. Figure 5.2 refers to the Gaussian

kernel (5.18) but if fact it turns out that graph of sectional curvature κ(%) is qualita-

tively similar to the one above for a wide class of Kernels. The following proposition

is an adaptation of a result by François-Xavier Vialard [44].

Proposition 5.8. Consider function κ(%), % > 0, given by (5.17), i.e. the sec-

tional curvature for two one-dimensional landmarks in the case of exact matching.

If γ′(0) = 0 (which is verified when the kernel is bell-shaped) then:

(5.19) κ(%) = −1

2

[
γ′′(0)

]2

γ(0)
%2 + o(%2) as %→ 0,

so that κ(%) is negative in a neighborhood of zero. Under the following condition on

the behavior of function γ at infinity:

(5.20)
[
γ′(%)

]2
= o

(
γ′′(%)

)
as %→∞,

it is the case that

κ(%) = γ′′(%)
(
1 + o(1)

)
as %→∞,
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therefore, since γ′′(%) > 0 for large %, curvature κ is “convex at infinity”, i.e. it

converges to zero from above as %→∞.

Proof. First of all note that function (5.17) can be written as follows:

κ(%) =
κ̃(%)

γ(0) + γ(%)
,

where

κ̃(%) ,
[
γ(0)− γ(%)

]
γ′′(%)− 2γ(0)− γ(%)

γ(0) + γ(%)

[
γ′(%12)

]2
.

Since
[
γ(0) + γ(%)

]−1
is strictly greater than zero for all % > 0 and it converges

to
[
2γ(0)

]−1
as %→ 0+, in order to prove (5.19) it is sufficient to study the properties

of κ̃(%) in a neighborhood of zero. First note that since γ′(0) = 0 the Taylor expansion

of γ near the origin is given by:

γ(%) = γ(0) +
1

2
γ′′(0)%2 + o(%2);

therefore we may write the first term of κ̃(%) as:

[
γ(0)− γ(%)

]
γ′′(%) =

[
− 1

2
γ′′(0)%2 + o(%2)

][
γ′′(0) + o(1)

]

=− 1

2

[
γ′′(0)

]2
%2 + o(%2)(5.21)

in an neighborhood of zero. As far as the second term of κ(%) is concerned, we first

note that γ′(%) = γ′′(0)%+ o(%), whence
[
γ′(%)

]2
=

[
γ′′(0)

]2
%2 + o(%2); consequently,

−[
2γ(0)− γ(%)

][
γ′(%)

]2
= −

[
γ(0)− 1

2
γ′′(0)%2 + o(%2)

]{[
γ′′(0)

]2
%2 + o(%2)

}

= −γ(0)
[
γ′′(0)

]2
%2 + o(%2),

whence

−2γ(0)− γ(%)

γ(0) + γ(%)

[
γ′(%)

]2
=

[ 1

2γ(0)
+ o(1)

]{
− γ(0)

[
γ′′(0)

]2
%2 + o(%2)

}

= −1

2

[
γ′′(0)

]2
%2 + o(%2),(5.22)

as %→ 0. Summing (5.21) and (5.22) yields

κ̃(%) = −[
γ′′(0)

]2
%2 + o(%2),
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so that we finally have

κ(%) =
1

γ(0) + γ(%)
κ̃(%) =

[ 1

2γ(0)
+ o(1)

]{
− [

γ′′(0)
]2
%2 + o(%2)

}

= −1

2

[
γ′′(0)

]2

γ(0)
%2 + o(%2).

which proves the first part of the proposition.

Now assume now that (5.20) holds. We may rewrite (5.17) in a neighborhood of

infinity as:

κ(%12)

γ′′(%12)
=

γ(0)− γ(%12)

γ(0) + γ(%12)︸ ︷︷ ︸
1 + o(1)

− 2γ(0)− γ(%12)[
γ(0) + γ(%12)

]2

︸ ︷︷ ︸
2

γ(0)
+ o(1)

[
γ′(%12)

]2

γ′′(%12)︸ ︷︷ ︸
o(1)

= 1 + o(1)

as %→∞, which concludes the proof since γ′′(%) > 0 for large values of %. ¤

We will now verify the validity of condition (5.20) for three families of kernels.

Example 1 (Gaussian kernels). As we mentioned in Chapter (2) the Gaussian

kernel γ(%) = 1√
2πσ2

exp
{− 1

2
%2

σ2

}
is such that equations (2.19) hold, i.e.:

γ′(%) = − %

σ2
γ(%) and γ′′(%) =

1

σ2

( %

σ2
− 1

)
,

therefore

[γ′(%)]2

γ′′(%)
= γ(%)

%2

%2 − σ2

which converges to zero as %→∞; whence (5.21) is satisfied.

Example 2 (Sobolev kernels). With the notation introduced in Appendix B, i.e.:

ηk,D , 1

2k+
D
2
−1π

D
2 Γ(k)

1

ak+
D
2

,

function (2.15) may be rewritten as:

γ(%) = ηk,D %
k−D

2 Kk−D
2

(%
a

)
,

while its derivative is provided by Corollary B.2:

γ′(%) = −ηk,D 1

a
%k−

D
2 Kk−D

2
−1

(%
a

)
.
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We will use the following property [1, §9.7.2] of modified Bessel functions in a neigh-

borhood of infinity:

(5.23) Kν(z) ∼
√

π

2z
e−z

{
1+

µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2
+

(µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+. . .

}

for | arg z| < 3
2
π, where µ(ν) = 4ν2. In our case D = 1 and we shall also assume for

simplicity a = 1; furthermore ν , k − D
2

= k − 1
2
. Function γ satisfies differential

equation (5.3) with a = 1, which we rewrite for convenience:

γ′′ =
2k − 2

%
γ′ − γ;

hence the second derivative of γ can be written, in a neighborhood of infinity, as

γ′′ = (2k − 2)%−1γ′ − γ

= −ηk,1(2k − 2)%ν−1Kν−1(%) + ηk,1 %
νKν(%)

= −ηk,1(2k − 2)%ν−1

√
π

2%
e−%

{
1 +

(2k − 3)2 − 1

8%
+ o

(1

%

)}

+ ηk,1 %
ν

√
π

2%
e−%

{
1 +

(2k − 1)2 − 1

8%
+ o

(1

%

)}

= ηk,1 %
ν− 1

2

√
π

2
e−%

{
1 +

[(2k − 3)2 − 1

8
− (2k − 2)

]1

%
+ o

(1

%

)}
,(5.24)

since µ(ν) = 4
(
k− 1

2

)2
= (2k− 1)2 and µ(ν− 1) = 4(ν− 1)2 = 4

(
k− 3

2

)2
= (2k− 3)2.

On the other hand,

[
γ′(%)

]2
= η2

k,1 %
2ν K2

ν−1(%)

∼ η2
k,1 %

2ν−1 π

2
e−2%

{
1 + 2

(2k − 3)2 − 1

8

1

%
+ o

(1

%

)}
.

Comparing (5.24) with the above expression one concludes that

[
γ′(%)

]2

γ′′(%)
→ 0

as %→∞; whence
[
γ′(%)

]2
= o

(
γ′′(%)

)
, which is exactly (5.20).
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Example 3 (Cauchy kernels). Again, as we mentioned in Chapter (2) the Cauchy-

type kernel γ(%) = 1
1+a2%2

is such that equations (2.20) hold, i.e.:

γ′(%) = −2a2%γ2(%) and γ′′(%) = 8a4%2γ3(%)− 2a2γ2(%),

therefore [γ′(%)]2 = 4a4%2γ4(%) and

[γ′(%)]2

γ′′(%)
=

4a2
[
a2%2γ(%)

]
γ3(%)

8a2
[
a2%2γ(%)

]
γ2(%)− 2a2γ2(%)

= γ(%)
2
[
a2%2γ(%)

]

4
[
a2%2γ(%)

]− 1
,

which converges to zero as %→∞ since a2%2γ(%) → 1; whence (5.20) is satisfied.

3. Sectional curvature for three one-dimensional landmarks

In this section we analyze sectional curvature for different configurations of three

landmarks on the real line. We will use the techniques developed in section 5 of the

previous chapter, motivated by the fact that in this case the shape manifold I has

dimension 3 and that Λ2(TII) ' R3 is indeed decomposable. That is, for any ω ∈
Λ2(TII) there exists a pair (X, Y ) ∈ TII × TII such that ω = X[ ∧ Y [; so the

maximum and minimum generalized eigenvalues of the pair of linear maps (−R̃, G̃)

indeed provide the maximum and minimum sectional curvatures over possible choice

of tangent 2-planes at the point I (landmark shape) under consideration.

Assuming the three one-dimensional landmarks are such that q1 < q2 < q3 at

all times, let %12 = |q1 − q2| and %23 = |q2 − q3|. We have computed numerically

the dual Riemannian curvature tensor Rursv and tensor Gursv using the formulas

provided by Proposition 5.4 and equation (5.13), respectively, for N = 3 using the

Gaussian kernel (5.18) with unit variance: maximum, median and minimum gener-

alized eigenvalues were also computed numerically for (%12, %23) ∈ (0, 5) × (0, 5).

Figure 5.3 represents the maximum generalized eigenvalue: it is positive for any

choice of %12 and %23; for (%12, %23) → 0 the maximum generalized eigenvalue con-

verges to some finite, positive limit. Figure 5.4 represents the minimum generalized

eigenvalue, for different values of %12 and %23: it is negative for any choice of such

parameters; note that for (%12, %23) → 0 (i.e. when the three landmarks are close to

each other) the minimum generalized eigenvalue converges to some finite, negative
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Figure 5.3. Maximum generalized eigenvalue (i.e. maximum sectional

curvature) for three landmarks in one dimension, as a function of dis-

tances %12 and %23.

limit. Figure 5.5 represents the median generalized eigenvalue (out of three): it has

positive and negative values for different choices of %12 and %23; for (%12, %23) → 0 the

median generalized eigenvalue converges to the same finite, positive limit to which

the maximum eigenvalue converges.

Finally, Figure 5.6 shows the generalized trace, i.e. the summation of the three

generalized generalized eigenvalues: we proved in Proposition 4.10 that this number

is actually equal to (1
2

times) the scalar curvature of the manifold at a point; again,

it has positive and negative values for different choices of %12 and %23. Note, in

particular, that for small values of distances %12 and %23 it is negative and it has

a positive maximum when %12 = %23 ' 2.2. Also, note that when one of the two

landmarks is “far away”—say, when %23 is very large, the profile of the graph as a

function of %12 only is the same one that we got in the case of two one-dimensional

landmarks (see Figure 5.2): curvature converges to zero as %12 → 0, then it has a
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Figure 5.4. Minimum generalized eigenvalue (i.e. minimum sectional

curvature) for three landmarks in one dimension, as a function of dis-

tances %12 and %23.

negative bump, followed by a positive bump, and finally flattens again to zero (from

above) as %12 diverges.

Figure 5.7 compares the generalized eigenvalues along the line %12 = %23 (sym-

metric landmark configurations); as anticipated above, for %→ 0 along such line the

maximum and median eigenvalues converge to the same positive limit. Also, we may

note that the maximum and minimum eigenvalues are always, respectively, positive

and negative, the median one has both positive and negative values. Also, the trace

converges to zero from above as % → ∞ as it was the case for two one-dimensional

landmarks—see Figure 5.2.

Table 5.1 shows possible choices of tangent vectors X and Y that achieve max-

imum and minimum curvature along the line %12 = %23; they were computed us-

ing the techniques described at the end of the previous chapter. It is interesting

to note that along the line %12 = %23 the tangent plane of maximum curvature is

the same i.e. it is spanned by the same vectors. On the other hand, the tangent

87



0
1

2
3

4
5

0

1

2

3

4

5
−0.02

0

0.02

0.04

0.06

0.08

0.1

ρ12

MEDIAN EIGENVALUE

ρ23

Figure 5.5. Median generalized eigenvalue for three landmarks in one

dimension, as a function of distances %12 and %23.
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Figure 5.6. Trace (i.e. 1
2

times scalar curvature) for three landmarks

in one dimension, as a function of distances %12 and %23.
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Figure 5.7. Generalized eigenvalues of (−R̃, G̃) for three landmarks

in one dimension of the quadratic form along the line %12 = %23.

plane of minimum curvature changes; one of the two tangent vectors can actually be

fixed, Y = (−1, 0, 1) while the other tangent vector can always be chosen to be of the

form X =
(
X1(%), 1, 0

)
, where X1 is a decreasing function of % , %12 = %23.

Finally, Table 5.2 shows possible choices of tangent vectors that achieve maxi-

mum and minimum curvature along a “ridge” of the graph for scalar curvature (the

summation of the generalized eigenvalues, times 1
2
): the locations are shown in Fig-

ure 5.8 with different symbols, that also appear in Table 5.2. It is certainly interest-

ing to follow the “evolution” along the ridge of the tangent plane that corresponds,

for example, to the maximum eigenvalue (sectional curvature). In the position de-

noted by a square, that corresponds to the central local maximum of scalar curvature

(%12 = %23 = 2.225), the two tangent vectors that maximize sectional curvature

are X = (0, 1, 0) and Y = (1, 0, 1): moving along these directions makes the central
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Position Eigenvalues Eigenvectors are ω = X[ ∧ Y [, with:

%12 = 0.025
%23 = 0.025

σmax = 4.99 · 10−2

σmin = −5.48 · 10−1

-

- -

--

¾ -

X = (0, 1, 0)

Y = (1, 0, 1)

X ' (2, 1, 0)

Y = (−1, 0, 1)• • •
• • •
• • •
• • •

%12 ' 1.15
%23 ' 1.15

σmax = 2.28 · 10−2

σmin = −2.94 · 10−1

-

- -

--

¾ -

X = (0, 1, 0)

Y = (1, 0, 1)

X = (1.03, 1, 0)

Y = (−1, 0, 1)• • •
• • •
• • •
• • •

%12 = 2.15
%23 = 2.15

maximum of
σmax along
%12 = %23

σmax = 9.38 · 10−2

σmin = −3.95 · 10−3

-

- -

--

¾ -

X = (0, 1, 0)

Y = (1, 0, 1)

X = (0.198, 1, 0)

Y = (−1, 0, 1)• • •
• • •
• • •
• • •

%12 = 3.5
%23 = 3.5

large
distances

σmax = 9.73 · 10−3

σmin = −1.02 · 10−7

-

- -

- -

¾ -

X = (0, 1, 0)

Y = (1, 0, 1)

X ' (ε, 0,−1)

Y = (−1, 0, 1)• • •
• • •
• • •
• • •

Table 5.1. Eigenvalues and pairs (X,Y ) that achieve them, along

%12 = %23; ε denotes a very small (but nonzero) number.

landmark closer to the other two, which on the other hand do not change their rel-

ative positions. On the other end of the path, in the position denoted by a circle

(we are close to the boundary of the manifold, when two landmarks almost coincide),

the two tangent vectors that maximize sectional curvature are close to X = (1, 1, 0)

and Y = (0, 0, 1), “as if” the two close landmarks were actually clustered into one.
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Position Eigenvalues Eigenvectors are ω = X[ ∧ Y [, with:

%12 = 2.225
%23 = 2.225

maximum of
trace along
%12 = %23

¤

σmax = 9.27 · 10−2

σmin = −2.51 · 10−3

-

- -

- -

¾ -

X = (0, 1, 0)

Y = (1, 0, 1)

X = (0.168, 1, 0)

Y = (−1, 0, 1)• • •
• • •
• • •
• • •

%12 = 1.525
%23 = 2.30

.

σmax = 8.79 · 10−2

σmin = −2.51 · 10−2

--

- -

- -

¾ -

X = (0.316, 1, 0)

Y = (0.039, 0, 1)

X = (0.445, 1, 0)

Y = (−2.12, 0, 1)• • •
• • •
• • •
• • •

%12 = 0.825
%23 = 2.45

¦

σmax = 8.18 · 10−2

σmin = −9.40 · 10−2

--

¾ -

- -

¾ -

X = (0.620, 1, 0)

Y = (−0.084, 0, 1)

X = (1.040, 1, 0)

Y = (−1.519, 0, 1)• • •
• • •
• • •
• • •

%12 = 0.425
%23 = 2.65

/

σmax = 7.84 · 10−2

σmin = −7.00 · 10−2

--

¾ -

- -

¾ -

X = (0.807, 1, 0)

Y = (−0.122, 0, 1)

X = (0.318, 1, 0)

Y = (−1.532, 0, 1)• • •
• • •
• • •
• • •

%12 = 0.025
%23 = 2.875

◦

σmax = 7.89 · 10−2

σmin = −5.75 · 10−2

--

- -

- -

¾ -

X ' (1− ε, 1, 0)

Y ' (0, ε, 1)

X ' (1 + ε, 1, 0)

Y ' (−ε, 0, 1)• • •
• • •
• • •
• • •

Table 5.2. Eigenvalues and pairs (X,Y ) that achieve them, in selected

locations of along the ridge of scalar curvature, shown in Figure 5.8;

ε denotes a very small (but nonzero) number.

4. Sectional curvature for N one-dimensional landmarks

In the previous chapter we computed the following formula for the numerator of

sectional curvature of an n-dimensional Riemannian manifold in terms of the cometric
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Figure 5.8. Locations along the “ridge” of scalar curvature for Table 5.2.

tensor gij and its partial derivatives gij,ijk and gij,ijk` :

2RursvXuYrYsXv

(5.25)

=
(
XuYr − YuXr

)(
gsu,rv − 1

4
gus,usϕ g

rv,ϕ + gus,usϕ g
ϕr,v − 3

2
guψ,rgψξ g

ξs,v
)

· (XsYv − YsXv

)

=
(
XuYr − YuXr

)

·
(
grϕgsu,suϕψ g

ψv − 1

4
gus,usϕ g

ϕψgrv,rvψ + gus,usϕ g
ϕr,
ϕrψ g

ψv − 3

2
grϕguψ,uψϕ gψξ g

ξs,
ξsη g

ηv
)

· (XsYv − YsXv

)
.

Our notation is such that the sign of the above quantity the same as the sign of

sectional curvature K(X, Y ). Our objective in this section is to provide a formula

for sectional curvature in the case of N landmarks in one dimension; we will achieve

this be inserting the expression for the partial derivative of the cometric, which are

provided by Lemma 5.2, into the right-hand-side of expression (5.25). We will first

“process” separately the four terms in the middle factor of (5.25). We should note that
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the dimension of the shape manifold I is in this case n = N ; since Λ2(TII) ' R(N
2 )

is not decomposable for N ≥ 3 the method illustrated in section 5 of the previous

chapter would only provide upper and lower bounds for sectional curvature at a point,

not necessarily achievable at a pair of tangent vectors.

4.1. First term. An appropriate relabeling of the indices in (5.5) yields

gsu,suϕψ = (δsϕ − δuϕ) (δsψ − δuψ) γ′′(%su) ,

so that the first term in the middle factor of (5.25) can be expressed as

grϕgsu,suϕψ g
ψv = (δsϕ − δuϕ) (δsψ − δuψ) γ′′(%su) γ(%rϕ) γ(%ψv)

=
[
γ(%rs)− γ(%ru)

] [
γ(%sv)− γ(%uv)

]
γ′′(%su).

Further simplifications can be derived after the multiplication by the components

of the cotangent vectors. In fact we have that

grϕgsu,suϕψ g
ψv =

[
γ(%rs)− γ(%ru)

] [
γ(%sv)− γ(%uv)

]
γ′′(%su)

=
[
γ(%rs)γ(%sv)− γ(%rs)γ(%uv)− γ(%ru)γ(%sv) + γ(%ru)γ(%uv)

]
γ′′(%su);(5.26)

but appropriately relabeling the indices (u→ s, s→ u, r → v, v → r) yields:

∑
u

(XuYr − YuXr

)[
γ(%ru)γ(%uv)γ′′(%su)

]
(XsYv − YsXv

)

=
∑
s

(XsYv − YsXv

)[
γ(%vs)γ(%sr)γ′′(%us)

]
(XuYr − YuXr

)
,

so that the first and fourth terms within the square brackets of (5.26) can be combined.

Note that we are summing over all four indices u, r, s and v; however, we write the

summation symbols
∑

u and
∑

s because indices u and s break the rules of Einstein’s

summation convention, since they appear three times within the same term. In

conclusion, we may write:

(XuYr − YuXr

)
grϕgsu,suϕψ g

ψv(XsYv − YsXv

)
=

∑
su

(XuYr − YuXr

)·

·
{[

2γ(%rs)γ(%sv)− γ(%rs)γ(%uv)− γ(%ru)γ(%sv)
]
γ′′(%su)

}
(XsYv − YsXv

)
.
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4.2. Second term. First note that following auxiliary identity holds:

γ(%ϕψ)(δuϕ − δsϕ)(δ
r
ψ − δvψ) =

[
γ(%ϕψ)δuϕ − γ(%ϕψ)δsϕ

]
(δrψ − δvψ)

=
[
γ(%uψ)− γ(%sψ)

]
(δrψ − δvψ) =

[
γ(%uψ)− γ(%sψ)

]
δrψ −

[
γ(%uψ)− γ(%sψ)

]
δvψ

= γ(%ur)− γ(%sr)− γ(%uv) + γ(%sv),

so that the second term of the middle factor of (5.25) can be rewritten as:

−1

4
gus,usϕ g

ϕψgrv,rvψ = −1

4
(δuϕ − δsϕ) f(qu, qs) γ(%ϕψ) (δrψ − δvψ) f(qr, qv)

= −1

4

[
γ(%ur)− γ(%sr)− γ(%uv) + γ(%sv)

]
f(qu, qs) f(qr, qv).

Simplifications occur after multiplying by the cotangent vector components. Relabel-

ing the indices (u→ s, s→ u, r → v, v → r) yields:

∑
sv

(XuYr − YuXr

)
γ(%sv)f(qu, qs)f(qr, qv) (XsYv − YsXv

)

=
∑
ur

(XsYv − YsXv

)
γ(%ur)f(qs, qu)f(qv, qr) (XuYr − YuXr

)

=
∑
ur

(XsYv − YsXv

)
γ(%ur)f(qu, qs)f(qr, qv) (XuYr − YuXr

)

(we have also used the antisymmetry of function f) and

∑
uv

(XuYr − YuXr

)
γ(%uv)f(qu, qs)f(qr, qv) (XsYv − YsXv

)

=
∑
sr

(XsYv − YsXv

)
γ(%sr)f(qs, qu)f(qv, qr) (XuYr − YuXr

)

=
∑
sr

(XsYv − YsXv

)
γ(%sr)f(qu, qs)f(qr, qv) (XuYr − YuXr

)
.

In conclusion, we may write the second term as follows:

(XuYr − YuXr

)(− 1

4
gus,usϕ g

ϕψgrv,rvψ

)
(XsYv − YsXv

)

=
∑
urs

(XuYr − YuXr

){− 1

2

[
γ(%ur)− γ(%sr)

]
f(qu, qs) f(qr, qv)

}
(XsYv − YsXv

)
.
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4.3. Third term. The following holds (we’re summing over both ϕ and ψ):

gus,usϕ g
ϕr,
ϕrψ g

ψv =
∑
ϕ

(δuϕ − δsϕ) f(qu, qs) (δϕψ − δrψ) f(qϕ, qr) γ(%ψv) = Aursv f(qu, qs),

with:

Aursv ,
∑
ϕ

(δuϕ − δsϕ) (δϕψ − δrψ) f(qϕ, qr) γ(%ψv)

=
∑
ϕ

δuϕδ
ϕ
ψ f(qϕ, qr) γ(%ψv)− δuϕδ

r
ψ f(qϕ, qr) γ(%ψv)

−
∑
ϕ

δsϕδ
ϕ
ψ f(qϕ, qr) γ(%ψv) + δsϕδ

r
ψ f(qϕ, qr) γ(%ψv)

= f(qu, qr) γ(%uv)− f(qu, qr) γ(%rv)− f(qs, qr) γ(%sv) + f(qs, qr) γ(%rv)

= f(qu, qr)
[
γ(%uv)− γ(%rv)

]
+ f(qs, qr)

[
γ(%rv)− γ(%sv)

]
.

Whence the third term takes the form:

gus,usϕ g
ϕr,
ϕrψ g

ψv =
{
f(qu, qr)

[
γ(%uv)− γ(%rv)

]
+ f(qs, qr)

[
γ(%rv)− γ(%sv)

]}
f(qu, qs).

4.4. Fourth term. We need to compute: −3

2
grϕguψ,uψϕ gψξ g

ξs,
ξsη g

ηv. Note that:

grϕguψ,uψϕ = γ(%rϕ) (δuϕ − δψϕ) f(qu, qψ) =
[
γ(%ru)− γ(%rψ)

]
f(qu, qψ),

and analogously gvηgξs,ξsη =
[
γ(%vξ)− γ(%vs)

]
f(qξ, qs). Therefore:

− 3

2
grϕguψ,uψϕ gψξ g

ξs,
ξsη g

ηv

= −3

2

∑

ϕξ

[
γ(%ru)− γ(%rψ)

]
f(qu, qψ) gψξ f(xξ, qs)

[
γ(%vξ)− γ(%vs)

]
.

Remark. Let Zψ ,
(
XuYr − YuXr

)
grϕguψ,uψϕ . Then

(
XuYr − YuXr

) (
− 3

2
grϕguψ,uψϕ gψξ g

ξs,
ξsη g

ηv
)(
XsYv − YsXv

)
= −3

2
Zψgψξ Z

ξ < 0,

since the metric tensor gψξ is positive definite. Whence the fourth term provides

a negative contribution to the numerator of sectional curvature, for any choice of

tangent vectors X = qi∂i and Y = Y j∂j in TII.
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4.5. Summation of four terms. The above discussion boils down to the fol-

lowing way of rewriting formula (5.25):

2RursvXuYrYsXv =
∑
rsu

(
XuYr − YuXr

) ·

·
([

2γ(%rs)γ(%sv)− γ(%rs)γ(%uv)− γ(%ru)γ(%sv)
]
γ′′(%su) + f(qu, qs)·

·
{
f(qu, qr)

[
γ(%uv)− γ(%rv)

]
+ f(qs, qr)

[
γ(%rv)− γ(%sv)

]− 1

2
f(qr, qv)

[
γ(%ur)− γ(%sr)

]}

− 3

2

∑

ϕξ

[
γ(%ru)− γ(%rψ)

]
f(qu, qψ) gψξ f(xξ, qs)

[
γ(%vξ)− γ(%vs)

])(
XsYv − YsXv

)
;

in the next section we will extend the above formula to the D-dimensional case.

5. Sectional curvature for N D-dimensional landmarks

As we discussed in Chapter 3 in the case of landmarks in D ≥ 2 dimensions it is

convenient to introduce a metric tensor and a cometric tensor with “double indices”,

one that refers to the landmark index and the other that refers to the dimensional

component of that specific landmark. Given the block-diagonal nature of the metric

tensor we can write its generic element as follows:

(5.27) giajb(q) = hij(q) δab, i, j = 1, . . . , N, a, b = 1, . . . , D

where (in the case of exact matching, λ = ∞) hij(q) = G(qi, qj) = γ
(‖qi − qj‖RD

)
.

The following result is the D-dimensional counterpart of Lemma 5.2.

Lemma 5.9. Let γ : [0,+∞) → R be such that G(x, y) = γ
(‖x − y‖RD

)
is the

kernel of admissible space V . Then the first and second partial derivatives of the

cometric tensor for N one-dimensional landmarks are respectively given by:

(5.28) giajb,iajbkc =
∂

∂qkc
giajb = (δik − δjk) γ

′(%ij)
qic − qjc

%ij
δab,
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and

giajb,iajbkc`d =
∂

∂q`d
giajb,iajbkc = (δik − δjk) (δi` − δj` ) δ

ab

{
γ′′(%ij)

(
qic − qjc

)(
qid − qjd

)
(
%ij

)2

+
γ′(%ij)
%ij

[
δcd −

(
qic − qjc

)(
qid − qjd

)
(
%ij

)2

]}
,(5.29)

where %ij , ‖qi − qj‖RD .

Proof. We have that giajb,iajbkc = ∂
∂qkc

(
hij

)
δab, where

∂

∂qkc
hij(q) =

∂

∂qkc
γ(%ij) =





0 for k 6= i, k 6= j

∂
∂qicγ(%

ij) for k = i

∂
∂qjcγ(%

ij) for k = j

By the chain rule

∂

∂qic
γ(%ij) = γ′(%ij)

∂

∂qic
%ij = γ′(%ij)

qic − qjc

‖qi − qj‖RD

,

hence

giajb,iajbkc =





0 for k 6= i, k 6= j

γ′(%ij)
qic − qjc

‖qi − qj‖RD

δab for k = i

−γ′(%ij) qic − qjc

‖qi − qj‖RD

δab for k = j

which we may write in the compact form

(5.30) giajb,iajbkc = (δik − δjk) γ
′(%ij)

qic − qjc

%ij
δab,

which is precisely (5.28). We can use such expression to write:

giajb,iajbkc`d =
∂

∂q`d
giajb,iajbkc = (δik − δjk)

∂

∂q`d

[
γ′(%ij)

qic − qjc

%ij

]
δab(5.31)

= (δik − δjk)

{
qic − qjc

%ij
∂

∂q`d
γ′(%ij)

+
γ′(%ij)
%ij

∂

∂q`d
(qic − qjc) + γ′(%ij)

(
qic − qjc

) ∂

∂q`d
1

%ij

}
δab;

we will now compute the three derivatives inside the curly brackets.
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In a way that is analogous to how (5.30) was computed we can prove that:

(5.32)
∂

∂q`d
γ′(%ij) = (δi` − δj` ) γ

′′(%ij)
qid − qjd

%ij
.

Also,

∂

∂q`d
(
qic − qjc

)
=





0 if ` 6= i and ` 6= j

0 if c 6= d

∂
∂qic

(
qic − qjc

)
= 1 if ` = i and d = c

∂
∂qic

(
qic − qjc

)
= −1 if ` = j and d = c

which may be expressed compactly as

(5.33)
∂

∂q`d
(
qic − qjc

)
= δi`δ

c
d − δj`δ

c
d = (δi` − δj` )δ

c
d .

We should now note that

∂

∂q`d
%ij =

∂

∂q`d
‖qi − qj‖RD =





0 if ` 6= i and ` 6= i

∂

∂qid
%ij =

qid − qjd

%ij
if ` = i

∂

∂qjd
%ij =

qjd − qid

%ij
if ` = j

that is,

∂

∂q`d
%ij = (δi` − δj` )

qid − qjd

%ij
;

whence we can finally compute

(5.34)
∂

∂q`d
1

%ij
=

∂

∂q`d
(
%ij

)−1
= − 1(

%ij
)2

∂

∂q`d
%ij = −(δi` − δj` )

qid − qjd(
%ij

)3 .

Inserting the right-hand sides of equations (5.32), (5.33) and (5.34) into the right-hand

side of (5.31) finally yields (5.29), thus completing the proof of the lemma. ¤

Remark. We should note that, as expected, in the case D = 1 equations (5.28)

and (5.29) reduce, respectively, to equations (5.4) and (5.5) provided by Lemma 5.2.

In fact in this case we have that a = b = c = d = 1, whence

qic − qjc

%ij
= sgn(qi1 − qj1),

(
qic − qjc

)(
qid − qjd

)
(
%ij

)2 =

(
qi1 − qj1

)2

(
%ij

)2 = 1
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Figure 5.9. Typical shape of function f̃1(x), x = (v, u), for D = 2;

and obviously δab = δcd = 1.

Definition 5.10. For notational convenience, for a fixed index a ∈ {1, . . . , D}
we will introduce function f̃a : RD → R : x 7→ γ′

(‖x‖RD

)
xa

‖x‖RD
and define:

fa(x, y) , f̃a(x− y) = γ′
(‖x− y‖RD

) xa − ya

‖x− y‖RD

,

where xa and ya are the a-th components of points x, y ∈ RD.

As we had for function f introduced in Definition 5.3, it is the case that fa(x, y) =

−fa(y, x) and fa(x, x) = 0, for any choice of index a ∈ {1, . . . , D}. Figure 5.9 shows

the typical shape of function f̃1 : RD → R in the case D = 2; compare it with

the one-dimensional counterpart shown in Figure 5.1. With the above notation,

equation (5.28) can be simply written as

giajb,iajbkc = (δik − δjk) fc(q
i, qj) δab.

We are now going to apply the results of Lemma 5.9 to Theorem 4.4 so to com-

pute the general formula for sectional curvature for the Riemannian manifold of N
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landmarks in D dimensions. In order to do that, we first need to rewrite the for-

mula provided by Theorem 4.4 in terms of the “double index” notation introduced

in Chapter 3. We are going to use u, r, s, v for the indices concerning the landmark

label, and a, b, c, d for those regarding the component of a specific landmark; as far

as summation indices are concerned, we are going to use ϕ, ψ, ξ, η and α, β, γ, ε for

the two types of indices, respectively. We have:

2RuarbscvdXuaYrbYscXvd =
(
XuaYrb − YuaXrb

)(
gscua,rbvd − 1

4
guasc,uascϕα g

rbvd,ϕα

+ guasc,uascϕα g
ϕαrb,vd − 3

2
guaψβ,rbgψβξγ g

ξγsc,vd
)(
XscYvd − YscXvd

)
,

with u, r, s, v = 1, . . . , N and a, b, c, d = 1, . . . , D. As we did in section 4 we are going

to analyze the four terms in the central factor of the right-hand side of the above

equation one by one.

5.1. First term. We can use formula (5.29) from Lemma 5.9 to compute:

gscua,rbvd , gscua,scuaϕαψβ g
ϕαrbgψβvd

= (δsϕ − δuϕ) (δsψ − δuψ) δca
{
γ′′(%su)

(
qsα − quα

)(
qsβ − quβ

)
(
%su

)2

+
γ′(%su)
%su

[
δαβ −

(
qsα − quα

)(
qsβ − quβ

)
(
%su

)2

]}
γ(%ϕr) δαb γ(%ψv) δβd,

that is, summing over indices α, β, ϕ and ψ,

gscua,rbvd =
[
γ(%sr)− γ(%ur)

][
γ(%sv)− γ(%uv)

]
δac

{
γ′′(%su)

(
qsb − qub

)(
qsd − qud

)
(
%su

)2

+
γ′(%su)
%su

[
δbd −

(
qsb − qub

)(
qsd − qud

)
(
%su

)2

]}
,

that is,

gscua,rbvd =
[
γ(%sr)γ(%sv)− γ(%sr)γ(%uv)− γ(%ur)γ(%sv) + γ(%ur)γ(%uv)

]
δac

·
{
γ′′(%su)

(
qsb − qub

)(
qsd − qud

)
(
%su

)2 +
γ′(%su)
%su

[
δbd −

(
qsb − qub

)(
qsd − qud

)
(
%su

)2

]}
.
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After multiplying by the components of the contangent vectors a simplification occurs,

in the same way that they occurred in the one-dimensional case: that is, the two

underlined terms in the above equation actually combine. The final result is:

(
XuaYrb − YuaXrb

)
gscua,rbvd

(
XscYvd − YscXvd

)

=
∑
su

(
XuaYrb − YuaXrb

)
(

[
2γ(%sr)γ(%sv)− γ(%sr)γ(%uv)− γ(%ur)γ(%sv)

]
δac

·
{
γ′′(%su)

(
qsb − qub

)(
qsd − qud

)
(
%su

)2 +
γ′(%su)
%su

[
δbd −

(
qsb − qub

)(
qsd − qud

)
(
%su

)2

]})

· (XscYvd − YscXvd

)
;

as usual, we have written the summation symbols explicitly only for those indices

that break the rules of Einstein’s summation convention.

5.2. Second term. This time we need formula (5.28) from Lemma 5.9:

− 1

4
guasc,uascϕα g

rbvd,ϕα = −1

4
guasc,uascϕα g

rbvd,
rbvdψβ g

ϕαψβ

= −1

4
(δuϕ − δsϕ) γ

′(%us)
quα − qsα

%us
δac (δrψ − δvψ) γ′(%rv)

qrβ − qvβ

%rv
δbd γ(%ϕψ) δαβ

= −1

4
δacδbd

[
γ(%ur)− γ(%uv)− γ(%sr) + γ(%sv)

]
fα(q

u, qs)δαβfβ(q
r, qv)

= −1

4
δacδbd

[
γ(%ur)− γ(%uv)− γ(%sr) + γ(%sv)

] D∑
α=1

fα(q
u, qs) fα(q

r, qv).

Once again, multiplying by the components of the cotangent vectors causes some

simplifications: the two underlined and and the two doubly underlined terms combine.

The final result is:

(
XuaYrb − YuaXrb

)
gscua,rbvd

(
XscYvd − YscXvd

)

=
∑
su

(
XuaYrb − YuaXrb

)
(
− 1

2
δac δbd

[
γ(%ur)− γ(%sr)

] D∑
α=1

fα(q
u, qs) fα(q

r, qv)

)

· (XscYvd − YscXvd

)
.
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5.3. Third term. Once again, by formula (5.28) from Lemma 5.9:

guasc,uascϕα g
ϕαrb,vd = guasc,uascϕα g

ϕαrb,
ϕαrbψβ g

ψβvd

=
∑
ϕ

(δuϕ − δsϕ) fα(q
u, qs) δac (δϕψ − δrψ) fβ(q

ϕ, qr) δαb γ(%ψv) δβd

=
[ ∑

ϕ

δuϕδ
ϕ
ψ f

d(qϕ, qr) γ(%ψv)− δuϕδ
r
ψ f

d(qϕ, qr) γ(%ψv)

−
∑
ϕ

δsϕδ
ϕ
ψ f

d(qϕ, qr) γ(%ψv) + δsϕδ
r
ψ f

d(qϕ, qr) γ(%ψv)
]
f b(qu, qs) δac

=
[
fd(qu, qr) γ(%uv)− fd(qu, qr) γ(%rv)

− fd(qs, qr) γ(%sv) + fd(qs, qr) γ(%rv)
]
f b(qu, qs) δac

=
{[
γ(%uv)− γ(%rv)

]
fd(qu, qr) +

[
γ(%rv)− γ(%sv)

]
fd(qs, qr)

}
f b(qu, qs) δac,

where we have (only notationally) raised the indices in functions fd and f b to make

them consistent with the left-hand side, e.g. defining f b , δαbfα.

5.4. Fourth term. We have:

− 3

2
guaψβ,rb gψβξγ g

ξγsc,vd = −3

2
guaψβ,uaψβϕα g

ϕαrb gψβξγ g
ξγsc,
ξγscηε g

ηεvd

= −3

2

∑

ϕψ

(δuϕ − δψϕ) fα(q
u, qψ) δaβ γ(%ϕr)δαb gψβξγ (δξη − δsη) fε(q

ξ, qs) δγc γ(%ηv)δεd

= −3

2

∑

ϕψ

[
γ(%ur)− γ(%ψr)

]
f b(qu, qψ)hψξ f

d(qξ, qs)
[
γ(%ξv)− γ(%sv)

]
δac,

where hij(q) is the inverse tensor of hij(q) = G(qi, qj), defined in (5.27): it is in fact

the case that gψβξγ δ
aη δγc = hψξ δβγ δ

aη δγc = hψξ δ
ac.
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5.5. Summation of four terms. The discussion above finally leads to:

2RuarbscvdXuaYrbYscXvd =
∑
rsu

(
XuaYrb − YuaXrb

) (
XscYvd − YscXvd

)
δac·

·
(

[
2γ(%sr)γ(%sv)− γ(%sr)γ(%uv)− γ(%ur)γ(%sv)

]

·
{
γ′′(%su)

(
qsb − qub

)(
qsd − qud

)
(
%su

)2 +
γ′(%su)
%su

[
δbd −

(
qsb − qub

)(
qsd − qud

)
(
%su

)2

]}

− 1

2
δbd

[
γ(%ur)− γ(%sr)

] D∑
α=1

fα(q
u, qs) fα(q

r, qv)

+
{[
γ(%uv)− γ(%rv)

]
fd(qu, qr) +

[
γ(%rv)− γ(%sv)

]
fd(qs, qr)

}
f b(qu, qs)

− 3

2

∑

ϕψ

[
γ(%ur)− γ(%ψr)

]
f b(qu, qψ)hψξ f

d(qξ, qs)
[
γ(%ξv)− γ(%sv)

]
)
,

where, as usual, we have written the summation symbols explicitly for the indices

for which the rules of Einstein’s summation conventions are broken, i.e. when the

summation index appears more than twice in a product.

Remark. Once again, one can easily verify that the formula computed above for

sectional curvature in the general case for N landmarks in D dimensions simplify to

the one that we had computed for N one-dimensional landmarks reported at the end

of section 4, simply by setting a = b = c = d = 1.

6. Conclusions

In this chapter we have provided explicit formulas for the dual Riemannian cur-

vature tensor in the case of N one-dimensional landmarks and for sectional curvature

in the case of N landmarks in one or D ≥ 2 dimensions; in particular, we have have

also analyzed in detail the graphs of sectional curvature for two and three landmarks

on the real line. The formulas are expressed in terms of the function γ that defines

the kernel G(x, y) = γ
(‖x − y‖RD

)
, and its first and second derivatives. For specific

choices of γ its derivatives are related to it, e.g. by second order differential equa-

tion (2.15) in the case of Sobolev-type kernels or by equations (2.19) and (2.20) for
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the Gaussian and Cauchy kernels, respectively; using such expressions the formulas

for sectional curvature could be made analytically more explicit, although we chose

to leave them in their most general form—which is still numerically implementable.

In the next chapter we will use some of the formulas we worked out in the present

one to investigate the effects of curvature on the qualitative dynamics of landmarks,

i.e. the geodesic flow determined by the Hamiltonian system discussed in Chapter 3.
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CHAPTER 6

The Qualitative Dynamics of Landmarks

In this chapter we explore the qualitative dynamics of geodesics for landmarks

manifolds and analyze how such dynamics are influenced by curvature, which we

studied in the previous chapter.

1. Introduction

Geodesics are determined by the Euler-Lagrange equations for the Riemannian

energy that was introduced in Chapter 2. The geodesic flow on the tangent bundle

can also be obtained from the cogeodesic flow determined by Hamilton’s equations:

(6.1)





q̇i =
N∑
j=1

(
G(qi, qj) +

δij

λ

)
pj

ṗi = −
N∑
j=1

∇ξG(qi, qj) 〈pi, pj〉RD

i = 1, . . . , N.

which we derived in Chapter 3. Having studied curvature in the previous chapter we

will analyze the effect that it has on the qualitative dynamics of landmarks, e.g. by

verifying the existence of conjugate points (that is, points on the manifold that are

connected by distinct geodesic curves) in regions of positive curvature, or by verifying

the divergence of geodesics in regions of negative curvature.

Before proceeding we will express the conservation of the Hamiltonian for land-

marks, whose expression is

(6.2) H(p, q) =
1

2

N∑
i,j=1

(
G(qi, qj) +

δij

λ

) 〈
pi, pj

〉
RD ,

in a way that will be useful for our study. As usual, we assume that the kernel G of

admissible Hilbert space V has the form G(x, y) = γ
(‖x−y‖RD

)
for some function γ :

[0,∞) → R.
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Proposition 6.1. For any choice of the smoothing parameter λ, the following

scalar quantity is conserved:

M(p, q) ,
∑

1≤i<j≤N

[
γ(0) +

1

λ
− γ(%ij)

]
〈pi, pj〉RD ,

where %ij = ‖qi − qj‖RD .

Proof. We can manipulate the expression for the Hamiltonian as follows:

H(p, q) =
1

2

{ N∑
i=1

(
γ(0) +

1

λ

)
〈pi, pi〉RD + 2

∑
i<j

γ(%ij)〈pi, pj〉RD

}

=
1

2

{(
γ(0) +

1

λ

)[ N∑
i=1

〈pi, pi〉RD + 2
∑
i<j

〈pi, pj〉RD

]

− 2
∑
i<j

(
γ(0) +

1

λ

)
〈pi, pj〉RD + 2

∑
i<j

γ(%ij)〈pi, pj〉RD

}

=
1

2

(
γ(0) +

1

λ

)〈 N∑
i=1

pi,

N∑
j=1

pj

〉
RD
−

∑
i<j

[
γ(0) +

1

λ
− γ(%ij)

]
〈pi, pj〉RD ;

but the first term on the right-hand side is conserved by the conservation of linear

momentum. Since the Hamiltonian is conserved, so in the second term of the above

expression and this completes the proof. ¤

Remark. We have not proven a “new” conservation law. The above proposi-

tion is a consequence of the conservation of the Hamiltonian function (6.2) and the

conservation of linear momentum (Proposition 3.5).

For now on we shall assume, like we did in the previous chapter, that λ = ∞.

2. Dynamics of two one-dimensional landmarks

In the case of two landmarks on the real line Proposition 6.1 immediately implies

the following result.

Corollary 6.2. For λ = ∞ (exact matching), in the case of two one-dimensional

landmarks the scalar quantity
[
γ(0)− γ(%12)

]
p1p2 is conserved.
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The conservation of linear momentum and the above result allow as to write the

following expressions for the sum and product of momenta p1 and p2:

p1(t) + p2(t) = p1(0) + p2(0),(6.3)

p1(t) p2(t) =
γ(0)− γ

(
%12(0)

)

γ(0)− γ
(
%12(t)

) p1(0) p2(0) ,(6.4)

for all time t. Thanks to the above equations the evolution of momenta can be

completely solved in function of the evolution of the mutual distance %12(t) between

the two landmarks and the initial distance %12(0); in particular, when the asymptotic

behavior of %12(t) for t → ∞ is known, equations (6.3) and (6.4) allow one to infer

the asymptotic behavior of the momenta, as a function of the initial distance %12(0).

Hamilton’s equations (6.1) provided by Proposition 3.1 simplify to the following:

q̇1 = γ(0) p1 + γ(%12) p2(6.5a)

q̇2 = γ(%12) p1 + γ(0) p2(6.5b)

ṗ1 = −f(
q1, q2

)
p1p2

ṗ2 = −f(
q2, q1

)
p1p2 = −ṗ1

with %12(t) = |q1(t)− q2(t)| and f(x, y) = γ′(|x−y|) sgn(x−y) (see Definition 5.3). If

we assume, as we do in the following, that q1 < q2 at all time, then f(q1, q2) = −γ′(%12)

and the last two equations above can be rewritten as follows:

ṗ1 = γ′
(
%12

)
p1p2(6.5c)

ṗ2 = −γ′(%12
)
p1p2 .(6.5d)

Note also that the strong conservation law for momenta (Proposition 3.2) becomes:

(6.6)
∂ϕt
∂ξ

(
qi(0)

)
pi(t) = pi(0), t ∈ [0, 1], i = 1, 2.

Since D = 1 there is no conservation of angular momentum, whence from now on in

this section by “weak conservation law” we will always mean the conservation of linear
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Case # Initial momenta p1(0), p2(0)

1. -• • p1 > 0, p2 = 0

2. - -• • 0 < p2 < p1

3. - -• • 0 < p1 = p2

4. - -• • 0 < p1 < p2

5. -• • p1 = 0, p2 > 0

6. - ¾• • p1 > 0, p2 < 0, with p1 = |p2|

7. - ¾• • p1 > 0, p2 < 0, with p1 > |p2|

8. ¾ -• • p1 < 0, p2 > 0, with |p1| = p2

9. ¾ -• • p1 < 0, p2 > 0, with |p1| < p2

Table 6.1. The nine cases of initial momenta
(
p1(0), p2(0)

)
.

momentum (6.3). We also note that since q2 > q1 for all t we have that %12 = q2− q1,

whence the distance between landmarks satisfies the ordinary differential equation:

(6.7)
d

dt
%12 = q̇2 − q̇1 =

[
γ(0)− γ(%12)

]
(p2 − p1),

by (6.5a) and (6.5b).

As far as the dynamics of equations (6.5a)÷(6.5d) are concerned, we shall analyze

the different cases listed in Table 6.1 (which are characterized by different initial
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Figure 6.1. Sectional curvature κ(%12) for the Gaussian kernel.

values of the momenta p1 and p2) in various regions of the manifold, i.e. in areas with

positive or negative curvature. From now on, we shall always assume that q1 < q2

(and since we assume that λ = ∞ such order cannot change in time). The qualitative

behavior of the dynamical system in other cases not listed in Table 6.1 (e.g. p1 = 0,

p2 < 0) can be inferred, by symmetry, from those listed.

We remind the reader that for the manifold of two one-dimensional landmarks

sectional curvature κ, given by formula (5.17), only depends on %12 and is plotted

again for convenience in Figure 6.1 in the case of the Gaussian kernel (5.18) with unit

variance. As we saw in the previous chapter function κ has a minimum, a zero (other

than the one at %12 = 0) and a maximum at points:

%m = 0.953, %z = 1.534, %M = 2.198,

κ(%m) = −0.1594, κ(%z) = 0, κ(%M) = 0.1786,

respectively. We have implemented numerically differential equations (6.5a)÷(6.5d)

precisely in the case of the Gaussian kernel with unit variance.

In the several figures that follow, where q1(t) is plotted against q2(t), the thick

diagonal line has equation q1 = q2 (or %12 = 0). Since we assume that q2 > q1 the

dynamics of the system take place above such line (see, for example, Figure 6.2: the
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details regarding such Figure will be discussed later; note also that the scale may

change from figure to figure). Proceeding from bottom to top, the next (dashed)

diagonal line represents the points where q2−q1 = %m, i.e. the points where curvature

has its minimum; the next (continuous) diagonal line represents the points where q2−
q1 = %z, i.e. the points where curvature has a zero; finally, the next (dash-dotted)

diagonal line represents the points where q2−q1 = %M, i.e. the points where curvature

has its maximum; above the latter line curvature is positive, and converges to zero

from above as q2− q1 → +∞. We shall now analyze the nine cases listed in Table 6.1

in some detail.

Remark. Before proceeding, we should note some immediate consequences of

the conservation laws that hold for all cases listed in Table 6.1. For example, when

either one of the initial momenta is zero then by the strong conservation law (6.6)

such momentum remains equal to zero for all time; if this is the case, then the other

momentum is constant in time by the weak conservation law (6.3).

Also, note that for any t the map ξ 7→ ϕt(ξ) is a diffeomorphism, whence ∂ϕt

∂ξ
(ξ) 6= 0

for all pairs (t, ξ); but for any ξ the map t 7→ ∂ϕt

∂ξ
(ξ) is continuous and ∂ϕt

∂ξ

∣∣
t=0

= 1,

therefore ∂ϕt

∂ξ
(ξ) > 0 for all pairs (t, ξ). Whence by the strong conservation law (6.6)

if pi(0) 6= 0 then pi(t) never changes sign in finite time and in particular never becomes

zero. This implies, for example, that if the two landmarks collide into one another

with opposite initial velocities then they will not “bounce” and escape to infinity in

opposite directions, since this would imply a change of sign for both momenta; we

shall provide the details of this instance later on (Case 6).

Case 1 (p1 > 0, p2 = 0). By the strong conservation law (6.6) we have p2(t) ≡ 0

for all t ∈ [0, 1]; a direct consequence of this, together with the weak conservation

law (6.3), is that p1(t) ≡ p1(0) for all t ∈ [0, 1]. By equations (6.5a) and (6.5b) the

first landmark moves to the right with constant speed q̇1(t) = γ(0)p1(0) and “pushes”

the second landmark, whose speed increases as %12 decreases since q̇2(t) = γ(%12)p1(0)

and γ is monotone decreasing. The whole picture is provided by the following result.
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Figure 6.2. Six trajectories in Case 1:
(
q1(0), q2(0)

)
=

(0, 1), (0, 2), . . . , (0, 6) and, in all six cases,
(
p1(0), p2(0)

)
= (10, 0).

Proposition 6.3. Under the hypotheses of Case 1, i.e. p1(0) > 0 and p2(0) = 0,

we have that p1(t) ≡ p1(0), p2(t) ≡ 0, q1(t) → ∞ and q2(t) → ∞ with %12(t) → 0 as

t→∞. Also, q̇1(t) ≡ γ(0)p1(0) for all t and q̇2(t) → γ(0)p1(0) as t→∞.

Proof. Equation (6.7) becomes

d

dt
%12 = −[

γ(0)− γ(%12)
]
p1(0) < 0,

so %12(t) is a monotone decreasing and positive function; whence it converges. This

implies that d
dt
%12(t) → 0 as t→∞, so that, by the above equation, γ

(
%12(t)

) → γ(0);

therefore %12(t) → 0 by the monotonicity of function γ. The rest of the proof descends

directly from the equations (6.5a) and (6.5b). ¤

Typical trajectories in the (q1, q2) plane are shown in Figure 6.2.

Case 2 (0 < p2 < p1). In this case both landmarks initially move to the right,

with the first one moving faster than the second one and therefore approaching it. It

is not the case anymore that either p1(t) or p2(t) remain constant, but by the weak

111



conservation law their summation p1(t) + p2(t) does. The interesting phenomenon

that happens is that the second landmark “bounces” off the first one, and the two

momenta are eventually “swapped” between the two; we will later provide a rigorous

justification of such a behavior. This is illustrated in Figure 6.3: the top graph

shows the time evolution of q1(t) and q2(t), whereas the bottom portion illustrates

the corresponding time evolution of momenta p1(t) and p2(t); note that p1(t) + p2(t)

is constant in time. Figure 6.4 shows the same trajectory in the (q1, q2) plane; since

initial velocities are eventually swapped the final slope of the curve is the inverse of

the initial slope. The following result holds.

Proposition 6.4. Under the hypotheses of Case 2, i.e. 0 < p2(0) < p1(0), we

have that q1(t) →∞, q2(t) →∞ and %12(t) →∞ as t→∞. Also,

lim
t→∞

p1(t) = lim
t→−∞

p2(t), lim
t→∞

p2(t) = lim
t→−∞

p1(t),

i.e. the two momenta are swapped.

Proof. Differential equation (6.7) holds for the mutual distance %12:

d

dt
%12 =

[
γ(0)− γ

(
%12

)]
(p2 − p1).

Factor [γ(0)−γ(%12)] is always positive, so that the sign of the right-hand side of (6.7)

depends only on the difference p2−p1, and is initially negative; whence %12(t) initially

decreases. By the strong conservation law momenta p1(t) and p2(t) are always positive

in finite time therefore

ṗ1 = γ′
(
%12

)
p1p2 < 0,

ṗ2 = −γ′(%12
)
p1p2 > 0,

i.e. p1(t) and p2(t) are respectively monotone decreasing and increasing. But we

have that p1(t) > 0, so it will converge so some positive value p1(∞); on the other

hand p2(t) < p1(0) + p2(0) so it will also converge to some positive value p2(∞).

We now claim that there exists a finite time t∗ such that p1(t
∗) = p2(t

∗). We

will reason by contradiction, assuming that p1(t) > p2(t) for all t > 0; in particular,
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Figure 6.3. Trajectory in Case 2:
(
q1(0), q2(0)) = (0, 1),

(
p1(0), p2(0)

)
= (9, 1). The top and bottom graphs represent, respec-

tively, the evolution of positions and momenta versus time. Note that

the second landmark (dashed line) bounces off the first one (continuous

line) and eventually the two momenta are swapped.

we assume that p1(∞) ≥ p2(∞) > 0. If this is true %12(t) is a monotone decreasing

function for t ≥ 0 by (6.7) and it must necessarily be the case that %12(t) → 0 as

t → ∞; in fact if %12(t) → D, for some D > 0, then ṗ1(t) → γ′(D) p1(∞) p2(∞) < 0

and ṗ2(t) → −γ′(D) p1(∞) p2(∞) > 0 as t→∞, which would imply that the graphs

of p1 and p2 cross, immediately reaching a contradiction. So our hypothesis implies

that %12(t) → 0.
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Figure 6.4. The same trajectory of Figure 6.3 drawn in the (q1, q2) plane.

Let us study the convexity of function p2(t). Differentiating equation (6.5d) and

subsequently inserting equations (6.7), (6.5a) and (6.5b) yields:

p̈2 = −γ′′(%12
)
%̇12 p1p2 − γ′

(
%12

)
ṗ1p2 − γ′

(
%12

)
p1ṗ2

= −γ′′(%12
)[
γ(0)− γ

(
%12

)]
(p2 − p1)p1p2 −

[
γ′

(
%12

)]2
p1p

2
2 +

[
γ′

(
%12

)]2
p2

1p2

=
{
γ′′

(
%12

)[
γ(0)− γ

(
%12

)]
+

[
γ′

(
%12

)]2
}
p1p2(p1 − p2).(6.8)

By our hypothesis it must be the case that p1p2(p1− p2) > 0, so that the sign of p̈2 is

determined by the factor in the curly braces; note that the first term in the braces is

negative near zero and positive away from zero (this is determined by the sign of γ′′)

while the second term is always positive. However, since %12(t) → 0 as t → ∞, we
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are allowed to consider the following approximations:

γ(0)− γ
(
%12

)
= −1

2
γ′′(0)

(
%12

)2
+ o

((
%12

)2)
since γ′(0) = 0,

γ′′
(
%12

)
= γ′′(0) + o

(
%12

)
since γ′′′(0) = 0,

γ′
(
%12

)
= γ′′(0) %12 + o

(
%12

)
since γ′(0) = 0,

[
γ′

(
%12

)]2
=

[
γ′′(0)

]2 (
%12

)2
+ o

((
%12

)2)
.

Inserting the above into the expression in curly braces in (6.8) yields:

γ′′
(
%12

)[
γ(0)− γ

(
%12

)]
+

[
γ′

(
%12

)]2

= −1

2

[
γ′′(0)

]2(
%12

)2
+ o

((
%12

)2)
+

[
γ′′(0)

]2(
%12

)2
+ o

((
%12

)2)

=
1

2

[
γ′′(0)

]2(
%12

)2
+ o

((
%12

)2)
,

so that we may conclude that p̈2 > 0 (and p̈1 = −p̈2 < 0) once %12 reaches a neigh-

borhood of zero. This implies that from that time onwards p2(t) is convex (and p1(t)

is concave); in particular it cannot be that p2(t) converges to a finite limit (nor

can p1(t)), which is a contradiction.

The time t∗ defined above is the “crossing point” of Figure 6.3; when this occurs

by equation (6.7) the time derivative %̇12 changes sign, so that the distance between

the landmarks starts increasing (in the (q1, q2) plane, the angle between the tangent

vector to the trajectory and the q1 axis reaches 45◦, and keeps increasing). We should

now note that the evolution of p1(t) and p2(t) depends on positions q1(t) and q2(t)

only through their difference %12 = q2−q1, i.e. if one is interested only in the evolution

of momenta it is sufficient to consider (6.5c) and (6.5d) in conjunction with ordinary

differential equation (6.7), with the appropriate initial conditions. We will now reverse

115



time by defining %̃12(s) = %12(−s), p̃1(s) = p1(−s), p̃2(s) = p2(−s). We have that

d

ds
p̃1(s) = −dp1

dt

∣∣∣
t=−s

= −γ′(%12(−s)) p1(−s) p2(−s) = −γ′(%̃12(s)
)
p̃1(s) p̃2(s),

d

ds
p̃2(s) = −dp2

dt

∣∣∣
t=−s

= +γ′
(
%12(−s)) p1(−s) p2(−s) = +γ′

(
%̃12(s)

)
p̃1(s) p̃2(s),

d

ds
%̃12(s) = −d%

12

dt

∣∣∣
t=−s

= −[
γ(0)− γ

(
%12(−s))](p2(−s)− p1(−s)

)

=
[
γ(0)− γ

(
%̃12(s)

)](
p̃1(s)− p̃2(s)

)
,

so that the evolution of %̃12, p̃1 and p̃1 is determined by the following system of

ordinary differential equations:

˙̃%12 =
[
γ(0)− γ

(
%̃12

)]
(p̃1 − p̃2),

˙̃p1 = −γ′(%̃12
)
p̃1p̃2 ,

˙̃p2 = γ′
(
%̃12

)
p̃1p̃2 ,

which are the same as (6.7), (6.5c) and (6.5d), except that the roles of p1 and p2

are exchanged . This implies that starting from the same initial conditions at the

“crossing point” of Figure 6.3 the evolution of p̃1(s), s > 0 will be the same as that

of p2(t), t > 0 and the evolution of p̃2(s), s > 0 will be the same as that of p1(t),

t > 0; that is, the evolution in the past of p1 will be the same as the evolution in the

future of p2, and vice versa. In conclusion, p1(−∞) = p2(∞) and p2(−∞) = p1(∞),

so that momenta are eventually swapped between the two landmarks. ¤

It is especially interesting in this case to study trajectories in different regions of

the (q1, q2) plane; specifically, in regions of positive and negative curvature. It should

first be noted that the behavior described above (the “bouncing” and swapping of

momenta) is common to all regions, therefore, independently of where the trajectory

originates, since %12 →∞ the point
(
q1(t), q2(t)

)
will eventually end up in the region

of positive curvature (characterized by q2 − q1 > %z). However, it turns out that

trajectories that originate at a common point in the region of positive curvature may

exhibit conjugate points , as illustrated in Figure 6.5. Note that a trajectory that orig-

inates at a point in the region of positive curvature may enter the region of negative
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Figure 6.5. Conjugate points for trajectories that originate at a com-

mon point in the region of positive curvature (Case 2).

curvature (if, for example, p1 À p2 > 0) and then “bounce back” in the region of

positive curvature, where it could have a conjugate point with another trajectory that

originated at the same point. On the other hand, as illustrated in Figure 6.6, tra-

jectories that originate at a common point in the region of negative curvature, never

cross again within such region; however, they may meet again, i.e. have conjugate

points, once they enter the region of positive curvature (Figure 6.7).

Case 3 (0 < p1 = p2). The graphs and trajectories relative to this case can be

inferred from those of Case 2. In fact, with reference to Figure 6.3, the trajectories

start from the point where the momenta are the same (the “crossing point” of the

bottom graph) and then are completely the same as in Case 2, with the two momenta

settling to two final values p2 > p1 > 0 and both landmarks diverging (the second

one faster than the first one).

For a fixed pair of (equal) initial momenta, the values of the final momenta depend

on the starting point on the (q1, q2) plane, i.e. on the initial distance between the

landmarks. More precisely, the following result holds.
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Figure 6.6. Trajectories that originate at the same point in the region

of negative curvature (Case 2).

Proposition 6.5. Under the hypotheses of Case 3, i.e. 0 < p2(0) = p1(0), we

have that q1(t) →∞, q2(t) →∞ with %12(t) →∞ as t→∞. Also,

p1(∞) , lim
t→∞

p1(t) = p1(0)

{
1−

√
γ
(
%12(0)

)

γ(0)

}
< p1(0)

and

p2(∞) , lim
t→∞

p2(t) = p1(0)

{
1 +

√
γ
(
%12(0)

)

γ(0)

}
> p2(0).

In particular if %12(0) ' 0 we have that p1(∞) ' 0 and p2(∞) ' 2p1(0), i.e. the

transfer of momentum between the landmarks is almost complete.

Proof. By the strong conservation law momenta must be positive for all time,

whence by equations (6.5c) and (6.5d) we must have ṗ1 < 0 and ṗ2 > 0. So p1(t)

increases and p2(t) decreases with time; consequently p2 − p1 > 0 for t > 0. The

following equation holds:

d

dt
%12 =

[
γ(0)− γ(%12)

]
(p2 − p1) > 0;
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Figure 6.7. Trajectories that originate at the same point in the region

of negative curvature and meet again in the region of positive curvature

(Case 2). Dashed trajectory:
(
q1(0), q2(0)

)
= (0, 1.3),

(
p1(0), p2(0)

)
=

(7, 3). Continuous trajectory:
(
q1(0), q2(0)

)
= (0, 1.3),

(
p1(0), p2(0)

)
=

(5.01, 4.99).

since both factors on the right-hand side increase in time it must be the case

that %12 →∞ as t→∞. By (6.3) and (6.4) it is the case that

p1(∞) + p2(∞) = 2p1(0),(6.9)

p1(∞) p2(∞) =

[
1− γ

(
%12(0)

)

γ(0)

]
p2

1(0) ,

since lim%→∞ γ(%) = 0. Combining the above equations implies

p2
1(∞)− 2p1(0)p1(∞) +

[
1− γ

(
%12(0)

)

γ(0)

]
p2

1(0) = 0,

which in turn yields

p1(∞) = p1(0)

{
1±

√
γ
(
%12(0)

)

γ(0)

}
;

the minus sign must be picked since p1(t) is a decreasing function. The result

for p2(∞) follows immediately from (6.9). ¤
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Figure 6.8. Trajectories with initial momenta
(
p1(0), p2(0)

)
= (5, 5)

but different initial positions (Case 3).

Figure 6.8 shows different landmark trajectories in the (q1, q2) plane which all

have common initial momenta
(
p1(0), p2(0)

)
= (5, 5) but different starting points

(
q1(0), q2(0)

)
= (0, k · 0.12), k = 1, 2, . . . , 35.

Case 4 (0 < p1 < p2). Most of the relevant information on this case can be

inferred from the previous graphs. For example, momenta evolve in time as in Fig-

ure 6.3, except that only the portion of the graph relative to some time after the “cross-

ing point” of momenta should be considered. We should note that since p2 > p1 > 0

the initial tangent vectors to trajectories in the (q1, q2) plane form an angle with the q1

axis that is greater than 45◦.

Proposition 6.6. Under the hypotheses of Case 4, i.e. 0 < p1(0) < p2(0), we

have that q1(t) →∞, q2(t) →∞ with %12(t) →∞ as t→∞. Also

lim
t→∞

p1(t) =
p1(0) + p2(0)

2

{
1−

√
1− 4

[
1− γ

(
%12(0)

)

γ(0)

] p1(0)p2(0)

[p1(0) + p2(0)]2

}
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and

lim
t→∞

p2(t) =
p1(0) + p2(0)

2

{
1 +

√
1− 4

[
1− γ

(
%12(0)

)

γ(0)

] p1(0)p2(0)

[p1(0) + p2(0)]2

}
.

Note that setting p1(0) = p2(0) yields the result of Proposition 6.5.

Proof. The fact that %12(t) → ∞ as t → ∞ is proven exactly as in Proposi-

tion 6.5. As far as momenta are concerned, we have that

p1(∞) + p2(∞) = p1(0) + p2(0),

p1(∞) p2(∞) =

[
1− γ

(
%12(0)

)

γ(0)

]
p1(0)p2(0) ,

since lim%→∞ γ(%) = 0. Combining the above equations implies:

p2
1(∞)− [

p1(0) + p2(0)
]
p1(∞) +

[
1− γ

(
%12(0)

)

γ(0)

]
p1(0)p2(0) = 0.

Solving the above quadratic equation yields the result. ¤

Figure 6.9 shows two sets of eight trajectories. The two sets start from points
(
q1(0), q2(0)

)
= (0, 1) and (0, 5) respectively, and within each set the eight initial mo-

menta are
(
p1(0), p2(0)

)
= (4.5, 5.5), (4, 6), (3.5, 6.5), (3, 7), (2.5, 7.5), (2, 8), (1.5, 8.5),

and (1, 9), for both sets.

Case 5 (p1 = 0, p2 > 0). As in Case 1, since one of the two momenta is initially

equal to zero the conservation laws imply that both momenta remain constant at

all time; whence p1(t) ≡ 0 and p2(t) ≡ p2(0) for all t. What happens is that if the

two landmarks are initially close then the first one is “dragged” by the second one

for a while, until the latter detaches itself and escapes to infinity, leaving the former

virtually still. More precisely, the following holds.

Proposition 6.7. Under the hypotheses of Case 5, i.e. p1(0) = 0 and p2(0) > 0,

we have that p1(t) ≡ 0, p2(t) ≡ p2(0), q̇2(t) ≡ γ(0)p2(0) and q̇1(t) → 0 as t → ∞.

That is, q1(t) converges and q2(t) →∞ as t→∞.

121



0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

q
1
(t)

q 2(t
)

Figure 6.9. Two sets of trajectories for Case 4, which share common

initial momenta but have two different starting positions.
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Figure 6.10. Trajectories for Case 5, all with initial momenta
(
p1(0), p2(0)

)
= (0, 10) but different initial positions.
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Proof. Equations (6.5a) and (6.5b) become, respectively, q̇1 = γ(%12)p2(0)

and q̇2 = γ(0)p2(0); the latter velocity is constant and positive, therefore q2(t) → +∞
as t diverges. As far as the mutual distance %12 is concerned, the ordinary differential

equation

d

dt
%12 = q̇2 − q̇1 =

[
γ(0)− γ

(
%12

)]
p2(0) > 0

holds; since the right-hand side is always positive function %12(t) is monotone in-

creasing. Whence q̇1 is monotone decreasing by (6.5a), i.e. the first landmark

slows down in time; we will now argue that it comes to a virtual stop. In fact

d
dt
%12(t) =

[
γ(0)− γ(%12(t))

]
p2(0) >

[
γ(0)− γ(%12(0)

)]
p2(0) for all t because %12(t) is

monotone increasing, which implies, by integration, that

%12(t) > %12(0) +
[
γ(0)− γ(%12(0))

]
p2(0) t ,

whence %12(t) diverges as t→∞. When %12 becomes large enough we have γ(%12) ' 0,

therefore the dragging effect stops and the first landmark comes to a halt while the

second diverges to infinity with constant speed. ¤

Figure 6.10 shows some typical trajectories for this case, with initial momenta

all equal to
(
p1(0), p2(0)

)
= (0, 10) and initial positions

(
q1(0), q2(0)

)
= (0, k · 0.2),

k = 1, . . . , 12; note that all trajectories eventually become virtually vertical.

Case 6 (p1 > 0, p2 < 0, with p1 = |p2|). What qualitatively happens in this

case is that the two landmarks q1(t) and q2(t) converge towards each other without

bouncing back, as we mentioned in a previous remark, while their momenta p1(t)

and p2(t) diverge to plus and minus infinity, respectively.

Proposition 6.8. Under the hypotheses of Case 6, i.e. 0 < p1(0) = −p2(0), it

is the case that qi(t) → q1(0)+q2(0)
2

, for i = 1, 2, and %12(t) → 0 as t → ∞. Also,

p1(t) →∞ and p2(t) → −∞ as t→∞.

Proof. Assuming p1(0) + p2(0) = 0, we have by the weak conservation law

that p2(t) = −p1(t) for all t. Therefore ordinary differential equations (6.5a)
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Figure 6.11. Evolution of positions (top) and momenta (bottom) ver-

sus time in Case 6. The continuous lines represent q1(t) and p1(t), while

the dashed lines represent q2(t) and p2(t).

and (6.5b) may be written as:

q̇1 =
[
γ(0)− γ(%12)

]
p1(t),(6.10a)

q̇2 =
[
γ(%12)− γ(0)

]
p1(t);(6.10b)

in particular, we note that q̇2(t) = −q̇2(t) at all time. As far as the differential

equations for momenta (6.5c) and (6.5d) are concerned, we have

ṗ1 = −γ′(%12) p2
1(t) > 0,(6.10c)

ṗ2 = γ′(%12) p2
2(t) < 0;(6.10d)
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therefore p1(t) and p2(t) are monotone increasing and decreasing, respectively. Com-

bining (6.10a) and (6.10b) yields the ordinary differential equation

(6.11)
d

dt
%12 = q̇2 − q̇1 = 2

[
γ(%12)− γ(0)

]
p1(t);

the right-hand side is always negative since γ(%12) < γ(0), p1(0) > 0 and p1(t) is mono-

tone increasing by (6.10c). This implies that the mutual distance %12(t) is a monotone

decreasing, continuously differentiable, lower bounded function; hence d
dt
%12(t) → 0

as t→∞. Since p1(t) is strictly positive and monotone increasing, by (6.11) we have

that that γ
(
%12(t)

) → γ(0), i.e., by the monotonicity of function γ, that %12(t) → 0

as t→∞. In order to prove the divergence of the momenta we will use the formula

on the product of momenta (6.3); since p1(t) = −p2(t) at all time we have that

p1(t) =

√
γ(0)− γ

(
%12(0)

)

γ(0)− γ
(
%12(t)

) p1(0),

whence p1(t) → +∞ (and p2(t) → −∞) as t→∞. ¤

Figure 6.11 shows exactly this behavior for initial positions
(
q1(0), q2(0)

)
= (0, 4)

and momenta
(
p1(0), p2(0)

)
= (5,−5).

Case 7 (p1 > 0, p2 < 0, with p1 > |p2|). This case is similar to the previous one

except that, since p1 is initially larger (in absolute value) than p2, when the colli-

sion occurs the “stronger” landmark prevails and the two eventually diverge together

to +∞, with their mutual distance %12(t) quickly converging to zero (see Figure 6.13).

Even though the second landmark eventually travels toward +∞ its momentum never

changes sign from negative to positive (by the strong conservation law) and in fact

diverges to −∞; p1(t) also diverges (to +∞), but by the weak conservation law it is

always the case that p1(t) maintains “the edge” against p2(t) (exactly by the differ-

ence p1(0) − |p2(0)|) so that the two landmarks finally travel together, at virtually

constant positive speed.

Proposition 6.9. Under the hypotheses of Case 7, i.e. p1(0) > 0, p2(0) < 0

with p1(0) > |p2(0)|, it is the case that q1(t) → ∞, q2(t) → ∞ with %12(t) → 0
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as t → ∞. Also, p1(t) → ∞, p2(t) → −∞ and q̇i(t) → γ(0)[p1(0) + p2(0)], i = 1, 2,

as t→∞.

Proof. Let ∆p , p1(t) + p2(t) = p1(0) + p2(0) > 0; we can write

d

dt
%12 =

[
γ(0)− γ

(
%12

)]
(p2 − p1)

= 2
[
γ(0)− γ

(
%12

)]
p2 +

[
γ
(
%12

)− γ(0)
]
∆p.(6.12)

Since ∆p > 0 and p2(t) < 0 for all t both terms on the right-hand side of the above

equation are always negative, therefore %12(t) is a monotone decreasing, continuously

differentiable function bounded from below, so that d
dt
%12(t) → 0 as t→∞; whence

both terms on the right-hand side of (6.12) must converge to zero as t → ∞. In

particular γ
(
%12(t)

) → γ(0) so that, by the monotonicity of γ, it must be the case

that %12(t) → 0. Now, combining equations (6.3) and (6.4) yields

p2
1(t)−∆p p1(t) +

γ(0)− γ
(
%12(0)

)

γ(0)− γ
(
%12(t)

) p1(0) p2(0) = 0,

where we have used p2 = ∆p− p1, which yields:

p1(t) =
∆p

2
±

√(∆p

2

)2

− γ(0)− γ
(
%12(0)

)

γ(0)− γ
(
%12(t)

) p1(0) p2(0);

the plus sign must be chosen since p1(t) is an increasing function. Analogously,

p2(t) =
∆p

2
−

√(∆p

2

)2

− γ(0)− γ
(
%12(0)

)

γ(0)− γ
(
%12(t)

) p1(0) p2(0).

Taking limits for t → ∞ proves the divergence of momenta. Finally, note that we

can rewrite ordinary differential equation (6.5a) as follows:

q̇1 = γ(0) ∆p− [
γ(0)− γ

(
%12

)]
p2 = γ(0) ∆p−

[
γ(0)− γ

(
%12(0)

)]
p1(0)p2(0)

p1

,

where we have used (6.4). Since p1(t) →∞ as t→∞ we also have q̇1(t) → γ(0)∆p.

A similar reasoning holds for q̇2(t). ¤

The situation described above is illustrated in Figure 6.12, where a the evolution

of positions and momenta is shown for initial conditions
(
q1(0), q2(0)

)
= (0, 4) and

(
p1(0), p2(0)

)
= (8,−5). Note that in this particular instance the two landmarks are
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Figure 6.12. A typical trajectory for Case 7, plotted against time.

Top: positions; bottom: momenta. Continuous line: first landmark;

dashed line: second landmark.

initially relatively far, so that they initially travel at virtually constant speeds q̇1 '
γ(0)p1(0) > 0 and q̇2 ' γ(0)p2(0) < 0, with |q̇2| < q̇1; as they get closer they start

feeling each other’s influence, and eventually both move linearly together with positive

speed. Figure 6.13 shows three sets of eight trajectories in the (q1, q2) plane. The three

sets start at initial positions
(
q1(0), q2(0)

)
= (0, 0.75), (0, 2), and (0, 4) respectively;

within each set, the eight trajectories have initial momenta
(
p1(0), p2(0)

)
= (5.5,−5),

(6,−5), (6.5,−5), (7,−5), (7.5,−5), (8,−5), (8.5,−5), and (9,−5). The farther away

the two landmarks start from each other, the straighter are the trajectories initially;

all trajectories eventually converge to the q1 = q2 diagonal line. It is perhaps useful
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Figure 6.13. Three sets of trajectories in Case 7.

to remark that if it were the case that p2(0) = −p1(0) < 0 (Case 6) the trajectory in

the (q1, q2) plane would be a straight line perpendicular to the q1 = q2 diagonal line.

Case 8 (p1 < 0, p2 > 0, with |p1| = p2). In this situation the two landmarks are

pulling away from each other, with equal (in absolute value) but opposite initial mo-

menta. When the two landmarks are finally far away from each other, they break free

and diverge with constant speed in opposite directions, having exchanged a certain

amount of momentum prior to this.

Proposition 6.10. Under the hypotheses of Case 8, i.e. p2(0) = −p1(0) > 0, it

is the case that q1(t) → −∞ and q2(t) → +∞ as t→∞. Also,

lim
t→∞

pi(t) = pi(0)

√
1− γ

(
%12(0)

)

γ(0)
, i = 1, 2.

Proof. Since p1(0) + p2(0) = 0, by the weak conservation law we will have

that p1(t) + p2(t) = 0 for all t. By the strong law p1(t) < 0 and p2(t) > 0 for all time.
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Equations (6.5a) and (6.5b) become, respectively:

q̇1 =
[
γ(%12)− γ(0)

]
p2 < 0,

q̇2 =
[
γ(0)− γ(%12)

]
p2 = −q̇1 > 0,

so that
d

dt
%12 = q̇2 − q̇1 = 2

[
γ(0)− γ

(
%12

)]
p2 > 0. Therefore %12(t) is an increasing

function of time; we claim that %12(t) →∞.

Since %12(t) > %12(0) and γ(·) is monotone decreasing, we have

(6.13)
d

dt
%12(t) = 2

[
γ(0)− γ

(
%12(t)

)]
p2(t) > 2

[
γ(0)− γ

(
%12(0)

)]
p2(t);

but by (6.4) and the fact that p1(t) = −p2(t) we also have

p2
2(t) = p2

2(0)
γ(0)− γ

(
%12(0)

)

γ(0)− γ
(
%12(t)

) ,

that is

p2(t) = p2(0)

√
γ(0)− γ

(
%12(0)

)

γ(0)− γ
(
%12(t)

)(6.14)

> p2(0)

√
1− γ

(
%12(0)

)

γ(0)
.

Therefore (6.13) becomes

d

dt
%12(t) > 2

[
γ(0)− γ

(
%12(0)

)]
p2(0)

√
1− γ

(
%12(0)

)

γ(0)
;

the right-hand side is a positive number that does not depend on time, therefore

%12(t) →∞ as t→∞. Finally, expression (6.14) implies

lim
t→∞

p2(t) = p2(0)

√
1− γ

(
%12(0)

)

γ(0)
;

the result for p1(t) follows from p1(t) = −p2(t). ¤

The situation is illustrated in Figure 6.14 for initial conditions
(
q1(0), q2(0)

)
=

(−0.15, 0.15),
(
p1(0), p2(0)

)
= (−5, 5).
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Figure 6.14. A typical trajectory for Case 8, plotted against time.

Top: positions; bottom: momenta. Continuous line: first landmark;

dashed line: second landmark. Note the exchange of momentum that

occurs in the first part of the trajectory, when the two landmarks are

relatively close.

Case 9 (p1 < 0, p2 > 0, with |p1| < p2). This case is similar to the previous one,

except that the second landmark “pulls to the right” more than the first one “pulls

to the left”, thus if the two start close enough to each other the former initially drags

the latter to the right for a while, until the two eventually detach from each other.

In the process some momentum is exchanged, as shown in Figure 6.15, which refers

to the initial data
(
q1(0), q2(0)

)
= (−0.1, 0.1) and

(
p1(0), p2(0)

)
= (−5; 9).
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Figure 6.15. A typical trajectory for Case 9, plotted against time.

Top: positions; bottom: momenta. Continuous line: first landmark;

dashed line: second landmark.

Proposition 6.11. Under the hypotheses of Case 9, i.e. p1(0) < 0, p2(0) > 0

with |p1(0)| < p2(0), it is the case that q1(t) → −∞ and q2(t) →∞ as t→∞. Also,

lim
t→∞

p1(t) =
∆p

2
+

√(∆p

2

)2

−
[
1− γ

(
%12(0)

)

γ(0)

]
p1(0) p2(0)

and

lim
t→∞

p2(t) =
∆p

2
−

√(∆p

2

)2

−
[
1− γ

(
%12(0)

)

γ(0)

]
p1(0) p2(0),

where ∆p , p1(0) + p2(0) = p2(0)− |p1(0)| > 0.
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Proof. We have that p1(0) + p2(0) = ∆p > 0. By the weak conservation law

p2(t) = ∆p− p1(t) for all t. Equations (6.5a) and (6.5b) can be written as:

q̇1 = γ(0) p1 + γ(%12) (∆p− p1) =
[
γ(0)− γ

(
%12

)]
p1 + γ

(
%12

)
∆p

q̇2 = γ(%12) p1 + γ(0) (∆p− p2) =
[
γ
(
%12

)− γ(0)
]
p1 + γ(0) ∆p

so that
d

dt
%12 = 2

[
γ
(
%12

)− γ(0)
]
p1 +

[
γ(0)− γ

(
%12

)]
∆p > 0; in fact, both terms on

the right-hand side are positive; since %12(t) is monotone increasing,

d

dt
%12 ≥ [

γ(0)− γ
(
%12(t)

)]
∆p ≥ [

γ(0)− γ
(
%12(0)

)]
∆p,

so that %12(t) ≥ %12(0) +
[
γ(0) − γ

(
%12(0)

)]
∆p · t, i.e. %12(t) → ∞ as t → ∞.

Manipulating equations (6.3) and (6.4) yields

p2
2(t)−∆p p2(t) +

γ(0)− γ
(
%12(0)

)

γ(0)− γ
(
%12(t)

) p1(0) p2(0) = 0,

whose solution is

p2(t) =
∆p

2
+

√(∆p

2

)2

− γ(0)− γ
(
%12(0)

)

γ(0)− γ
(
%12(t)

) p1(0) p2(0);

taking the limit for t→∞ completes the proof. ¤

Figure 6.16 shows three sets of eight trajectories in the (q1, q2) plane. The three

sets start at initial positions
(
q1(0), q2(0)

)
= (−0.1, 0.1), (−0.5, 0.5), (−2.5, 2.5) re-

spectively; within each set, the eight trajectories have initial momenta
(
p1(0), p2(0)

)
=

(−5, 5.5), (−5, 6), (−5, 6.5), (−5, 7), (−5, 7.5), (−5, 8), (−5, 8.5), and (−5, 9). Once

again, the farther away the two landmarks start from each other, the straighter are

the trajectories initially. In any case, all trajectories eventually straighten as the two

landmarks get farther away from each other.

Remark. After having analyzed in detail all nine cases listed in Table 6.1 we

should note that we have implicitly shown that in the case of two landmarks in

one dimension the dynamical system 6.1 admits no closed orbits . François-Xavier

Vialard provides an alternative and elegant short proof of this fact [44]. However, it
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Figure 6.16. Three sets of trajectories for Case 9.

is currently not known weather such result can be extended to landmarks in D ≥ 2

dimensions.

3. Dynamics of three one-dimensional landmarks

In this brief section we show the qualitative behavior of three one-dimensional

landmarks for some sets of initial conditions and draw some comparison with the case

of two landmarks in one dimension, which was thoroughly analyzed in the previous

section. Hamilton’s equations for three one dimensional landmarks are:

q̇1 = γ(0) p1 + γ(%12) p2 + γ(%13) p3

q̇2 = γ(%12) p1 + γ(0) p2 + γ(%23) p3

q̇3 = γ(%13) p1 + γ(%23) p2 + γ(0) p3

ṗ1 = +γ′
(
%12

)
p1p2 + γ′

(
%13

)
p1p3

ṗ2 = −γ′(%12
)
p1p2 + γ′

(
%23

)
p2p3

ṗ3 = −γ′(%13
)
p1p3 − γ′

(
%23

)
p2p3 ;
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Figure 6.17. Positions and momenta versus time for Example 1

(p1(0) > 0, p2(0) = p3(0) = 0). Landmark 1: thin line; Landmark 2:

thick line; Landmark 3: thick dashed line.

we shall limit ourselves to illustrating three possible combinations of initial conditions

for positions and momenta.

Example 1. (p1(0) > 0, p2(0) = p3(0) = 0) In this case, by the strong law, the

momenta for the second and third landmarks are identically equal to zero in time

and consequently p1(t) ≡ p1(0) by the weak law. Therefore the velocity of the first

landmark is constant it time, q̇1 = γ(0)p1(0), and the remaining two landmarks are

“pushed” to +∞ by the first one, without bouncing off; this type of behavior is

completely analogous to the one of the two landmarks in one dimension of Case 1;

see Figure 6.17.

Example 2. (p1(0) À p2(0) = p3(0) > 0) In this case all three landmarks have

strictly positive momenta, so that “transfer” of momentum among them is possible,

as it happened in Case 2 for two one-dimensional landmarks. The first landmark is

initially much faster than the other two, and eventually bumps into the second one;
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Figure 6.18. Positions and momenta versus time for Example 2

(p1(0) À p2(0) = p3(0) > 0); large initial mutual distances. Land-

mark 1: thin line; Landmark 2: thick line; Landmark 3: dashed line.

momentum is swapped between the first and the second one, and later between the

second one and the third one. Eventually the latter escapes to infinity at great speed,

leaving the first and second one behind (at nonzero positive speed). Figures 6.18

and 6.19 refer, respectively, to the cases of large and small initial mutual distances;

in the latter case the second landmark never gains “full” momentum, since this is

transferred directly to the third one in an intermediate phase when all three landmarks

travel closely to each other.
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Figure 6.19. Positions and momenta versus time for Example 2

(p1(0) À p2(0) = p3(0) > 0); small initial mutual distances. Land-

mark 1: thin line; Landmark 2: thick line; Landmark 3: dashed line.

Example 3. (p1(0) > 0, p2(0) < 0, p3(0) < 0, with p1(0) > |p2(0) + p3(0)|) This

case is analogous to Case 7 for two one-dimensional landmarks. The first landmark

collides into the other two, which initially travel in the opposite direction. Since

p1(0) > |p2(0) + p3(0)| the three eventually travel together towards +∞; note that

the three momenta diverge, to +∞, −∞ and −∞ respectively. See Figure 6.20.
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Figure 6.20. Positions and momenta versus time for Example 3

(p1(0) > 0, p2(0) < 0, p3(0) < 0, with p1(0) > |p2(0) + p3(0)|). Land-

mark 1: thin line; Landmark 2: thick line; Landmark 3: dashed line.

4. Dynamics of two two-dimensional landmarks

In this section we briefly analyze the qualitative behavior of two landmarks in-

teracting with each other. We should say right away that while the dynamics of two

landmarks are fully understood, it is not the case for two landmarks in two dimen-

sions. Further research is needed, and here we shall limit ourselves to describe the

observed qualitative phenomena.

If the two landmarks have initial momenta that lie on the same line, i.e. p1(0) =

kp2(0) for some k ∈ R, then the problem is reduced to the one-dimensional case that
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was fully explored in section 2. For example, if

(6.15) p2(0) = −p1(0)

and the momenta point “towards” each other, we are exactly in the situation described

in Case 6 for two landmarks in one dimension. Since we are in two dimensions we

are allowed to modify the angle of collision. For example Figure 6.21 shows the

trajectories of two landmarks in two dimensions with initial positions

q1(0) = (1, 0), q2(0) = (−1, 0),

and initial momenta

p1(0) = (−10, 8.6), p2(0) = (10,−8.6)

(as usual, we are using a Gaussian kernel with unit variance); that is, situation (6.15)

is perturbed by adding “opposite angles” to each of the initial momenta. As in

case (6.15) the two landmarks eventually collide (in infinite time) by spinning around

one another a countably infinite number of times. Figure 6.22 is a zoomed-in version of

Figure 6.21 around the origin (note the different scale on the axes). As far as momenta

are concerned, it is still the case that both p1(t) and p2(t) diverge as t→∞.

Remark. We should remind the reader that the landmark trajectories illustrated

in Figures 6.21 and 6.22, despite being apparently complicated around the origin, are

in fact generated by flows of diffeomorphisms of the plane. Such diffeomorphisms

can be computed from the trajectories by implementing the techniques discussed in

Chapter 2.

If we increase the value of the angle between the initial momenta beyond a certain

threshold we have a bifurcation in the qualitative behavior of trajectories. This is

illustrated in Figure 6.23 for initial positions

q1(0) = (1, 0), q2(0) = (−1, 0),
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Figure 6.21. Converging trajectories for two landmarks in 2D.
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Figure 6.22. Converging trajectories for two landmarks in 2D—detail.

and initial momenta

p1(0) = (−10, 9), p2(0) = (10,−9).
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Figure 6.23. Diverging trajectories for two landmarks in 2D.

We observe that the two landmarks still spin around one another for a while, but

eventually escape to infinity in opposite directions. The corresponding momenta

(graphs not shown) eventually converge to finite values (p1(∞) + p2(∞) = 0 by the

conservation of linear momentum) that determine the escape velocities of landmarks.

A similar behavioral pattern is observed when initial condition (6.15) is perturbed

by adding an angle to each initial momentum “in the same direction”; this is depicted

in Figure 6.24, which refers to initial positions

q1(0) = (2,−4), q2(0) = (−2,−4),

and initial momenta

p1(0) = (−12, 10), p2(0) = (12, 10);

in this case the two landmarks still converge and collide in infinite time. However, if

the angle between the initial momenta is further increased beyond a certain threshold,
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Figure 6.24. Converging trajectories for two landmarks in 2D.

e.g. if the initial momenta are chosen to be

p1(0) = (−7, 10), p2(0) = (7, 10)

with the same initial positions, then the qualitative behavior of Figure 6.25 is ob-

served: the landmark trajectories eventually diverge.

As we mentioned at the beginning of this section we have not yet developed a

rigorous explanation for the qualitative behavior of the dynamics of two landmarks in

two dimensions. In particular, it would be of interest to find an analytical expression

for the threshold “collision angle” beyond which the two landmarks eventually diverge,

expressed in terms of the initial positions and the function γ that determines the

kernel. Also, the question of whether periodic orbits exist in two dimensions is still

an open one. The conservation of angular momentum is probably key to answering

all these questions.

We conclude this section, and the chapter, by observing the effects of curvature

on the qualitative dynamics of two landmarks on the plane: Figure 6.26 illustrates
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Figure 6.25. Diverging trajectories for two landmarks in 2D.
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Figure 6.26. Existence of conjugate points for two landmarks in 2D.

the existence of conjugate points for trajectories originating at points

q1(0) = (2,−4), q2(0) = (−2,−4)
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with different initial momenta, namely

p1(0) = (−7− k, 10), p2(0) = (7 + k, 10),

for k = 1, 2, . . . , 7 (the thicker line corresponds to the choice of k = 1). The above

conditions correspond to positive sectional curvature at the point in question, and

the existence of conjugate points is evident. The next chapter, which concludes this

thesis, briefly illustrates the possible effects of the existence of conjugate points in

the statistical analysis on shape spaces.
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CHAPTER 7

Conclusions

1. Results

In this thesis we have endowed the set of N landmark points in D dimensions with

the structure of Riemannian manifold: such structure derives directly from the notion

that the distance between two shapes can be computed as the square root of the min-

imal energy that is necessary to match the first shape to the second one by means of a

fluid flow. The metric tensor of the resulting DN -dimensional Riemannian manifold

was made explicit, as well as the ordinary differential equations that determine the

cogeodesic flow. Conservation laws, that follow from the translation-invariance and

rotation-invariance of the metric tensor, were also explored.

Once the metric tensor of a generic Riemannian manifold is known, in principle

one can compute the Riemannian curvature tensor by taking first and second partial

derivatives of the elements of the metric and combining them. In our case following

this procedure was unfeasible since the metric tensor is given by the inverse of a

matrix; on the other hand, the structure of the matrix of partial derivatives of the

cometric tensor happens to be very sparse, since each element of such tensor only

depends on 2D out of the n = DN coordinates. This suggested solving the problem

of finding formulas for the Riemannian curvature tensor and sectional curvature that

depend on the first and second derivatives of the elements of the cometric.

We then applied these formulas to computing the general expression of sectional

curvature for landmark manifolds, both in one and D dimensions. In particular,

we explored in great detail the simple but nonetheless very informative examples of

two and three one dimensional landmarks: in the latter case we also identified the

tangent 2-planes that correspond to maximum and minimum curvature in a number

of different landmark configurations.
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Last, but not least, we analyzed the effects that curvature has on the qualita-

tive dynamics of landmarks. In particular, we verified the divergence of geodesics

in regions of negative sectional curvature and the existence of conjugate points in

regions of positive sectional curvature. These facts have important consequences in

applications, as we will briefly discuss in the next section.

2. Applications and Future Work

Model (2.3) introduced in Chapter 2 and analogous ones are currently in use in

the emerging discipline of computational anatomy [10, 14, 15, 18, 22, 34, 35, 46],

specifically in analyzing Magnetic Resonance Imaging (MRI) data of the human brain.

In such field one has the interest in building templates from data, i.e. models for a

typically healthy brain and for a brain that is at a certain stage of a pathology, such

as Alzheimer’s disease, that modifies its geometry and structure in a characteristic

manner. The ultimate goal of this exercise is the creation of diagnostic software.

Typically, statistical analysis on a data set B = {J1, . . . , JM} ⊂ I is performed as

follows. First of all the so-called intrinsic (or Karcher’s) mean [38] is computed:

(7.1) m := arg min
I∈I

∑
J∈B

d(I, J)2,

where d(·, ·) is the geodesic distance. Then vectors wi ∈ TmI, i = 1, . . . ,M are found

such that, for all i, expm(wi) = Ji (the mean m is “shot” with initial velocity wi

“evolves” along a geodesic curve into datum Ji in unit time). At this point statistical

analysis is done on the tangent space, for example by performing Principal Component

Analysis (PCA, see [5]) on vectors (w1, . . . , wm) in the linear space TmI; equivalently,

PCA can be performed on the cotangent vectors (w[1, . . . , w
[
m). in T ∗mI. Note that

statistical analysis should be ideally performed on the manifold itself using Principal

Geodesic Analysis (PGA, see [14, 15]), which is however computationally unfeasible,

whence such analysis is approximated with linear PCA on the tangent space at m.

Several remarks are in order. First of all, when the manifold is non-negatively

curved and the data is not localized enough Karcher’s mean (7.1) may not be unique
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(for example, the sphere has constant positive curvature and if the “data” happen to

be precisely two opposite poles then any point on the corresponding equator solves

the above minimization problem).

Also, conjugate points may exist in regions of positive curvature: in fact in the

previous chapter we verified that this is precisely the case for landmark manifolds

eve in low-dimensional settings. A consequence is that if the data points in B are

not localized enough the vectors wi ∈ TmI such that expm(wi) = Ji may not be well

defined themselves (non-uniqueness).

Last, but not least, even when the Karcher mean is unique and the tangent vec-

tors wi ∈ TmI are well defined, curvature causes distortion in the statistical anal-

ysis. For example geodesics that originate at the Karcher mean m with initial ve-

locities X, Y ∈ TmI locally diverge if K(X,Y ) < 0, whereas they locally converge

if K(X,Y ) > 0. In any case, distortion is generated by the process of representing

the data points on the tangent space at m: that is, in case of negative curvature two

data points J1 and J2, whose corresponding vectors, respectively w1 and w2, appear

close on TmI, may be far on the manifold I in terms of actual geodesic distance; on

the other hand, in case of positive curvature the tangent vectors w1 and w2 could

appear far on TmI when in reality J1 and J2 are close on the manifold. Situations

like these can potentially lead to inaccuracies in the statistical analysis.

Our current and future work aims precisely at estimating this distortion in the case

of landmark shapes deriving from MRI databases of left and right hippocampi of three

groups of patients: healthy patients, patients with Mild Cognitive Impairment (MCI,

that corresponds to a Clinical Dementia Rating, or CDR, of approximately 0.5), and

patients with Alzheimer’s disease1 (AD). For each of the three classes of patients the

Karcher mean m is computed together with the tangent vectors wi ∈ TmI that corre-

spond to the data, and PCA is performed on the tangent space. Now that a formula

1The three-dimensional landmark sets, which are hand-picked and hand-labeled from MRI im-

ages of the brain, are provided by the Center for Imaging Science at Johns Hopkins University.

146



for the sectional curvature of landmarks manifolds is known (see Chapter 5), we in-

tend to compute sectional curvature for each pair of tangent vectors wi, wj ∈ TmI and

perform a study of the local distortion. Also, since the whole computation depends

on the choice of the kernel (i.e. of the admissible Hilbert space V ), quantifying how

the choice of the kernel’s parameters (e.g. the scaling factor) influence the distortion

in the statistical analysis will certainly be of interest.
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APPENDIX A

Admissible Hilbert Spaces and Reproducing Kernels

In this Appendix we will concisely summarize the properties of admissible Hilbert

spaces and their reproducing kernels. We refer the reader to [47] for more details; we

should note that Reproducing Kernel Hilbert Spaces (RKHS) were first introduced

in [3], while [45] provides a modern and concise introduction.

We denote with C0
0(RD,RD) or simply with C0(RD,RD) the linear space of contin-

uous functions u : RD → RD that vanish at infinity (that is, such that for every ε > 0

the set
{
x : ‖u(x)‖RD ≥ ε

}
is compact; see [16]) which is Banach with the norm:

‖u‖∞ , max
x∈RD

‖u(x)‖RD .

Also, we define

Ck
0 (RD,RD) ,

{
u ∈ Ck(RD,RD) : ∂αu ∈ C0(RD,RD) for |α| ≤ k

}
,

where Ck(RD,RD) is the linear space of functions RD → RD which are continuously

differentiable k times; in the above definition we have used the multi-index notation

for partial derivatives [13, 16]. Ck
0 is a Banach space with the Ck (or W k,∞) norm

‖u‖k,∞ ,
∑

|α|≤k
max
x∈RD

∥∥∂αu(x)
∥∥
RD .

In particular C1
0(RD,RD) is the linear space of continuously differentiable functions

u : RD → RD that vanish at infinity with their first partial derivatives, which is

Banach with the norm:

‖u‖1,∞ = max
x∈RD

‖u(x)‖RD +
D∑
i=1

max
x∈RD

∥∥∥ ∂u
∂xi

(x)
∥∥∥
RD
.

Admissible Hilbert spaces are defined as follows.
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Definition A.1. A Hilbert space (V, 〈·, ·〉V ) of functions RD → RD is said to be

admissible if the following conditions hold:

(1) V is continuously embedded in C1
0(RD,RD), i.e. there exists a positive con-

stant C such that ‖u‖1,∞ ≤ C‖u‖V , for all u ∈ V ;

(2) for any positive integer M , if x1, . . . , xN ∈ RD and α1, . . . , αN ∈ RD are such

that, for all u ∈ V ,
∑N

i=1

〈
αi, u(xi)

〉
RD = 0, then α1 = . . . = αN = 0.

We should note that property (2) establishes a certain “richness” of functions in

space V . In fact it can be rewritten as follows: for fixed points x1, . . . , xN ∈ RD,

if there exist vectors α1, . . . , αN ∈ RD of which at least one is non-zero, then there

exists at least a function v ∈ V such that
∑N

i=1

〈
αi, u(xi)

〉
RD 6= 0.

Example. As we do in Chapter 2, V can be chosen to be Sobolev spaceHk(RD,RD)

with its norm:

||u||2V ,
∫

RD

〈
Lu(x), u(x)

〉
RD dx;

in the above expression L = (id− a2∆)k is a self-adjoint spatial differential operator

(a ∈ R, k ∈ N and ∆ is the Laplacian) that is applied to each of the D components

of vector field u. By the Sobolev Embedding Theorem [16] we have in fact that if

k > D
2

+ 1 then V is embedded in C1
0(RD,RD). Property (2) of Definition A.1 is also

satisfied by Hk(RD,RD) (in fact, for any value of k).

We will now prove the existence of so-called reproducing kernels for admissible

Hilbert spaces, which is a consequence of property (1) of Definition A.1. For a fixed

point x ∈ RD and a fixed vector α ∈ RD consider the evaluation functional

(A.1) δαx : V → R : u 7→ 〈
α, u(x)

〉
RD .

Note that:

• functional δαx is linear, since for all u, v ∈ V ,

δαx (u+ v) =
〈
α, (u+ v)(x)

〉
RD =

〈
α, u(x) + v(x)

〉
RD

=
〈
α, u(x)

〉
RD +

〈
α, v(x)

〉
RD = δαx (u) + δαx (v);
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• functional δαx is also bounded, since for all u ∈ V ,

|δαx (u)| =
∣∣〈α, u(x)〉RD

∣∣ ≤ ‖α‖RD‖u(x)‖RD

≤ ‖α‖RD‖u‖1,∞ ≤ C‖α‖RD‖u‖V ,

where we have used the Schwartz inequality, the definition of ‖ · ‖∞ and

property (1) of Definition A.1.

Therefore, by the Riesz Representation Theorem for Hilbert Spaces [16] there exists

a unique function Kα
x (·) ∈ V such that

(A.2)
〈
Kα
x , u

〉
V

=
〈
α, u(x)

〉
RD ,

for all u ∈ V . Such function is called the representer of evaluation functional (A.1),

and relation (A.2) is referred to the reproducing property of function Kα
x (·).

Remark. In order for V to have a reproducing kernel we could loosen the re-

quirements in the definition of admissible Hilbert space. In fact the existence of a

constant C such that ‖u‖∞ ≤ C‖u‖V , for all u ∈ V would imply the boundedness of

functional δαx ; in other words, the continuous embedding of V in C0
0(RD,RD) would

be sufficient. However we require that V is continuously embedded in C1
0(RD,RD)

so that the flow generated by time dependent vector fields v ∈ L1
(
[0, 1], V

)
, used in

Chapter 2, are actually diffeomorphism from RD to RD, i.e. continuously differentiable

and invertible with continuously differentiable inverse.

Remark. The Hilbert space L2(R,R) of square integrable functions, with inner

product 〈f, g〉 =
∫
R fg dx, does not have a reproducing kernel (indeed, it is not

embedded in C0
0(R,R)); formally, only the Dirac delta function, which is not an

element of the space, has the reproducing property.

Let V be an admissible Hilbert space. Note that the map RD → V : α 7→ Kα
x (·)

is linear in α; in fact, for all x ∈ RD, α, β ∈ RD, and u ∈ V ,

〈
Kα+β
x , u

〉
V

=
〈
α+ β, u(x)

〉
RD =

〈
α, u(x)

〉
RD +

〈
β, u(x)

〉
RD

=
〈
Kα
x , u

〉
V

+
〈
Kβ
x , u

〉
V

=
〈
Kα
x +Kβ

x , u
〉
V
;
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whence Kα+β
x = Kα

x + Kβ
x by the uniqueness of the representer. In particular, for

any point y ∈ RD we have that Kα+β
x (y) = Kα

x (y) +Kβ
x (y); so for an arpitrary pair

of points x, y ∈ RD there exists a D × D matrix K(y, x) ∈ RD×D such that, for

all α ∈ RD, Kα
x (y) = K(y, x)α (here we are treating α as a column vector). Such

matrix-valued function K : RD×RD → RD is called the reproducing kernel of Hilbert

space V (whence the name of reproducing kernel Hilbert spaces).

By the reproducing property (A.2) we have that, for any pair of points x, y ∈ RD

and any pair of vectors α, β ∈ RD,

〈
Kα
x , K

β
y

〉
V

=
〈
α,Kβ

y (x)
〉
RD =

〈
α,K(x, y)β

〉
RD = αTK(x, y)β,

but also

〈
Kβ
y , K

α
x

〉
V

=
〈
β,Kα

x (y)
〉
RD =

〈
β,K(y, x)α

〉
RD = βTK(y, x)α = αTK(y, x)Tβ ,

so that by the arbitrariness of α and β we have the symmetry: K(x, y) = K(y, x)T .

We will now use property (2) in Definition A.1 of admissible Hilbert spaces to prove

positive-definiteness of the kernel.

Proposition A.2. For any positive integer M , any points x1, . . . , xN ∈ RD and

vectors α1, . . . , αN ∈ RD the following holds:

M∑
i,j=1

αTi K(xi, xj)αj ≥ 0

with equality if and only if α1 = . . . = αM = 0.

Proof. By the reproducing property of the representer function:

∥∥∥
M∑
i=1

Kαi
xi

∥∥∥
2

V
=

〈 M∑
i=1

Kαi
xi
,

M∑
j=1

Kαj
xj

〉

V

=
M∑
i,j=1

〈
Kαi
xi
, Kαj

xj

〉
V

=
M∑
i,j=1

〈
αi, K

αj
xj

(xi)
〉
RD =

M∑
i,j=1

〈
αi, K(xi, xj)αj

〉
RD

=
M∑
i,j=1

αTi K(xi, xj)αj ,

151



so that
∑M

i,j=1 α
T
i K(xi, xj)αj ≥ 0, with equality if and only if

∑M
i=1K

αi
xi

= 0, that is

when, for all v ∈ V ,

〈 M∑
i=1

Kαi
xi
, v

〉

V

= 0 , i.e.
M∑
i=1

〈
αi, v(xi)

〉
RD = 0 ;

but by condition (2) in Definition A.1 the above relations holds if and only if αi = 0

for all i = 1, . . . , N . ¤

Proposition A.3. When the admissible Hilbert space is of the Sobolev type, V =

Hk(RD,RD), with inner product:

〈
u, v

〉
V

=

∫

RD

〈
Lu(x), v(x)

〉
RD dx

where L is a self-adjoint differential operator that acts on each of the components

of u, the reproducing kernel has the form:

K(x, y) = G(x, y) · id =




G(x, y) 0 · · · 0

0 G(x, y) · · · 0
...

...
. . .

...

0 0 · · · G(x, y)



,

where id is the D ×D identity matrix and G(x, y) is the (scalar) Green’s function1,

or fundamental solution, of differential operator L.

Proof. For any point x ∈ RD, vector α ∈ RD, and function u ∈ V , by the

reproducing property (A.2) we have that

〈
α, u(x)

〉
RD =

〈
Kα
x , u

〉
V

=

∫

RD

〈
Kα
x (y), Lu(y)

〉
RD dy

=

∫

RD

〈
K(y, x)α,Lu(y)

〉
RD dy =

∫

RD

αTK(y, x)TLu(y) dy

= αT
∫

RD

K(x, y)Lu(y) dy =

〈
α,

∫

RD

K(x, y)Lu(y) dy

〉

RD

,

1By definition, the Green’s function of a differential operator L is the solution of partial differ-

ential equation Lu = δ, where δ is Dirac’s delta function. The solution to equation Lv = f is v(x) =
∫
G(x, y)f(y) dy, therefore the Green’s function has the property that v(x) =

∫
G(x, y)Lv(y) dy for

any function v in the appropriate function space. See [13] for more details.
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where we have treated Lu(y) as a column vector. By the arbitrariness of α ∈ RD we

have that

(A.3) u(x) =

∫

RD

K(x, y)Lu(y) dy .

So if we indicate with ui the i-th component of vector u and with K ij the element of

matrix (reproducing kernel) K in position (i, j), expression (A.3) can be written as

ui(x) =

∫

RD

D∑
j=1

K ij(x, y)Luj(y) dy , i = 1, . . . , D;

function u ∈ V is also arbitrary, so if we choose a function whose only nonzero

component is u1 the above integral yields

u1(x) =

∫

RD

K11(x, y)Lu1(y) dy ,

so we may conclude, by the arbitrariness of u1, that K11(x, y) = G(x, y), i.e. the

Green’s function, or fundamental solution, of differential operator L. In the same way

we can prove that all the remaining diagonal elements Kii(x, y) are equal to G(x, y),

for i = 2, . . . , D. On the other hand, if we choose again a function u ∈ V whose only

nonzero component is u1 we also get

uk(x) = 0 =

∫

RD

Kk1(x, y)Lu1(y) dy , k = 2, . . . , D,

so that, by the arbitrariness of u1, it must be the case that Kk1(x, y) ≡ 0. In a

completely similar way one can prove that all the remaining off-diagonal elements of

the reproducing kernel K are identically equal to zero. ¤

In the case of admissible Hilbert spaces of the Sobolev type we sometimes say,

with abuse of terminology, that scalar function G is the kernel of V .

Corollary A.4. Under the hypotheses of Proposition A.3,

〈
G(·, x)α, v〉

V
=

〈
α, v(x)

〉
RD

for any point x ∈ RD, any vector x ∈ RD, and any function v ∈ V .
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Proof. In fact, by the reproducing property:

〈
α, v(x)

〉
RD =

〈
Kα
x , v

〉
V

=
〈
K(·, x)α, v〉

V
=

〈
G(·, x) idα, v

〉
V

=
〈
G(·, x)α, v〉

V
. ¤

Corollary A.5. Under the hypotheses of Proposition A.3, for any choice of

points x1, . . . , xM ∈ RD and for any vector (a1, . . . , aM) ∈ RM it is the case that

M∑
i,j=1

G(xi, xj) aiaj ≥ 0 ,

with equality if and only if a1 = . . . = aM = 0.

Proof. It is sufficient to apply Proposition A.2 to vectors αi =
(
ai√
D
, . . . , ai√

D

) ∈
RD, for i = 1, . . . ,M . ¤
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APPENDIX B

Properties of Bessel Kernels

1. Introduction

When performing regularized landmark matching between the two labeled sets

I = (x1, . . . , xN) and I ′ = (y1, . . . , yN), one’s objective is to minimize the functional:

E[v, q] ,
∫ 1

0

∫

RD

〈
Lvt, vt

〉
RD dx dt+ λ

∫ 1

0

N∑
i=1

∥∥∥dqi
dt

(t)− vt
(
qi(t)

)∥∥∥
2

dt

with respect to time-dependent velocity v ∈ L2([0, T ], V ), where V is an appropriate

Hilbert space embedded in C1
0(RD,RD), and to landmark trajectories qi : [0, T ] → RD

that satisfy the boundary conditions qi(0) = xi and qi(1) = yi, for i = 1, . . . , N . In

the first term of the right-hand side of the above equation L is a spatial differential

operator which typically has the form L = (id − a2∆)k, where ∆ is the Laplacian

operator and a2 is just a scaling factor; exponent k is generally a positive integer,

although the theory can be extended to the case of positive real values of k (pseudo-

differential operators).

It turns out that the Green’s function of operator L plays a fundamental role in

both the solution of the above minimization problem and in the study of the Rie-

mannian curvature tensor of landmark-based shape manifolds. When the differential

operator is in fact L = (id − a2∆)k such Green’s function G : RD × RD → R takes

the form G(x, y) = γ
(‖x− y‖RD

)
, with γ : [0,∞) → R given by:

(B.1) γ(%) =
1

2k+
D
2
−1π

D
2 Γ(k)

1

aD

(%
a

)k−D
2
Kk−D

2

(%
a

)
,

where Kν is a modified Bessel function [1, Chap. 9] whereas Γ is the gamma func-

tion [1, Chap. 6]. Note that γ and its derivatives are defined at zero by continuity.

Reference [20] provides a table of fundamental solutions for different differential op-

erators, from which (B.1) can be computed. Function (B.1) depends on both D, the

155



dimension of the ambient space for landmarks, and k, the exponent of differential

operator L. Function γ is C∞ in the open set (0,∞) while its regularity in the origin

depends on ν = k− D
2
: its smoothness at zero in fact increases with parameter ν. We

shall explore the asymptotic behavior of γ at zero later on in this appendix.

For notational convenience let us define, for a fixed value of scaling factor a:

ηk,D , 1

2k+
D
2
−1π

D
2 Γ(k)

1

ak+
D
2

,

so that (B.1) can simply be written as

(B.2) γ(%) = ηk,D %
νKν

(%
a

)
,

with ν = k − D
2
.

2. Differential equation

It is well known that modified Bessel function Kν(z) is a solution to the following

second order differential equation [1]:

(B.3) z2d
2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0 ;

note that Kν(z) is a holomorphic function of z throughout the complex plane cut

along the negative real axis, and for fixed z it is an entire function of ν. For our

purposes, we are interested in Kν(z) when z ∈ R+ and ν ∈ R.

Function γ(%), which is defined in terms of a modified Bessel function, also satisfies

a second order differential equation which will differ from (B.3) due to factor %k−D/2

in (B.1). In fact the following result holds.

Proposition B.1. Function γ defined in (B.1) satisfies the following second order

differential equation:

(B.4) γ′′ =
2ν − 1

%
γ′ +

1

a2
γ ,

where ν = k − D
2
.
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Proof. Perhaps the most straightforward way of proving the proposition is tak-

ing successive derivatives of the expression provided by (B.1), recombining the result-

ing terms and and then using differential equation (B.3). However we shall pursue a

different path, which will also yield a useful expression for the first derivative of γ(%).

Differentiation of (B.2) yields the following expression:

(B.5) γ′(%) = ηk,D

{
ν%ν−1Kν

(%
a

)
+

1

a
%νK ′

ν

(%
a

)}
.

We will use an important property of the modified Bessel functions of our interest.

Namely, the following formulas hold [1, §9.6.26] for any value of parameter µ:

Z ′
µ(z) = Zµ−1(z)− µ

z
Zµ+1(z) ,(B.6)

Z ′
µ(z) = Zµ+1(z) +

µ

z
Zµ(z) ,(B.7)

where Zµ(z) = eµπiKµ(z). Identity (B.6) implies that K ′
µ(z) = −Kµ−1(z) − µ

z
Kµ(z)

for all µ, so that, fixing µ = ν,

(B.8) K ′
ν

(%
a

)
= −Kν−1

(%
a

)
− aν

%
Kν

(%
a

)
;

the second one (B.7) implies that K ′
µ(z) = −Kµ+1(z)+ µ

z
Kµ(z), whence for µ = ν−1

(B.9) K ′
ν−1

(%
a

)
= −Kν

(%
a

)
+
a

%
(ν − 1)Kν−1

(%
a

)
.

Inserting (B.8) into the right-hand side of (B.5) yields:

γ′(%) = ηk,D

{
ν%ν−1Kν

(%
a

)
+

1

a
%ν

[
−Kν−1

(%
a

)
− aν

%
Kν

(%
a

)]}

= −ηk,D 1

a
%νKν−1

(%
a

)
.(B.10)
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Differentiating the above function gives:

γ′′(%) = −ηk,D
{1

a
ν%ν−1Kν−1

(%
a

)
+

1

a2
%νK ′

ν−1

(%
a

)}

(∗)
= −ηk,D

{1

a
ν%ν−1Kν−1

(%
a

)
+

1

a2
%ν

[
−Kν

(%
a

)
+
a

%
(ν − 1)Kν−1

(%
a

)]}

= −ηk,D
{2ν − 1

%

1

a
ν%ν−1Kν−1

(%
a

)
− 1

a2
%νKν

(%
a

)}

=
2ν − 1

%

{
− ηk,D

1

a
%νKν−1

(%
a

)}
+

1

a2
ηk,D %

νKν

(%
a

)

=
2ν − 1

%
γ′(%) +

1

a2
γ(%) ,

which is equation (B.4); note that we have used expression (B.9) in step (∗). ¤

A by-product of the above proof is the following result.

Corollary B.2. The first derivative of function γ may be expressed ad follows:

γ′(%) = − 1

2k+
D
2
−1π

D
2 Γ(k)

1

aD+1

(%
a

)k−D
2
Kk−D

2
−1

(%
a

)

= −ηk,D 1

a
%k−

D
2 Kk−D

2
−1

(%
a

)
.

Proof. The result follows immediately from expression (B.10). ¤

3. Asymptotic behavior at zero

We shall now study the behavior of function γ(%) in a neighborhood of zero.

We will need the following properties of modified Bessel functions [1, §9.6.8, §9.6.9]:

when z → 0, K0 ∼ − ln z, while for a fixed value of paramenter µ with <µ > 0 we

have that Kµ(z) ∼ 1
2
Γ(µ)

(
1
2
z
)−µ

. In other words,

lim
z→0

K0(z)

ln z
= −1

and

(B.11) lim
z→0

zµKµ(z) = 2µ−1Γ(µ)

for <µ > 0.
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Proposition B.3. It is the case that:

lim
%→0

γ(%) =
1(

2a
√
π
)D

Γ
(
k − D

2

)

Γ(k)
,

provided that k− D
2
> 0. Otherwise, when k− D

2
≤ 0 the above limit diverges to +∞.

Proof. The case k > D
2

follows directly from applying property (B.11) to ex-

pression (B.1). The other case follows form the facts that Kµ(x) → +∞ as x → 0+

for any value of parameter µ, and that xµ → +∞ as x→ 0+ for µ < 0. ¤

Proposition B.4. The first derivative of function γ is such that:

lim
%→0

γ′(%)
%

= − 1

2D+1aD+2π
D
2

Γ
(
k − D

2
− 1

)

Γ(k)
,

provided that k − D
2
− 1 > 0.

Proof. It follows from Corollary B.2 that

γ′(%)
%

= − 1

2k+
D
2
−1π

D
2 Γ(k)

1

aD+2

(%
a

)k−D
2
−1

Kk−D
2
−1

(%
a

)
,

which, provided that k − D
2
− 1 > 0, by (B.11) converges to

lim
%→0

γ′(%)
%

=− 1

2k+
D
2
−1π

D
2 Γ(k)

1

aD+2
2k−

D
2
−2 Γ

(
k − D

2
− 2

)

=− 1

2D+1aD+2π
D
2

Γ
(
k − D

2
− 1

)

Γ(k)
,

which is precisely what we wanted to prove. ¤

Proposition B.5. The second derivative of function γ is such that:

lim
%→0

γ′′(%) = − 1

2D+1aD+2π
D
2

Γ
(
k − D

2
− 1

)

Γ(k)
,

provided that k − D
2
− 1 > 0. If k − D

2
− 1 ≤ 0, the above limit diverges to +∞.

Proof. In order to compute the above limit we shall use differential equa-

tion (B.4) and the results provided by Propositions B.3 and B.4, which both hold

since k − D
2
− 1 > 0. By Proposition B.3 we have that

lim
%→0

1

a2
γ(%) =

k − D
2
− 1

2DaD+2π
D
2

Γ
(
k − D

2
− 1

)

Γ(k)
,
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where we have used the property of the gamma function: Γ(z + 1) = zΓ(z). On the

other hand by Proposition B.3 it is the case that

lim
%→0

2ν − 1

%
γ′(%) = − 2k −D − 1

2D+1aD+2π
D
2

Γ
(
k − D

2
− 1

)

Γ(k)
,

where we have fixed ν = k − D
2
. Combining the above limits with equation (B.4)

finally yields

lim
%→0

γ′′(%) = lim
%→0

[2ν − 1

%
γ′(%) +

1

a2
γ(%)

]

= − 2k −D − 1

2D+1aD+2π
D
2

Γ
(
k − D

2
− 1

)

Γ(k)
+

2k −D − 2

2D+1aD+2π
D
2

Γ
(
k − D

2
− 1

)

Γ(k)

= − 1

2D+1aD+2π
D
2

Γ
(
k − D

2
− 1

)

Γ(k)
,

as we wanted to prove. ¤

Remark. Out of curiosity, note that: lim
%→0

γ′′(%) = lim
%→0

γ′(%)
%

.
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2005.

[18] U. Grenander and M. I. Miller. Computational anatomy: an emerging discipline. Quarterly of

Applied Mathematics, 56(3):617–694, Sept. 1998.

[19] B. K. P. Horn. Robot vision. The MIT Press, Cambridge, Massachusetts, 1986.

[20] K. Itô, editor. Encyclopedic Dictionary of Mathematics. MIT Press, Cambridge, Massachusetts,

USA, second edition, 1993. Prepared by the Mathematical Society of Japan.

[21] K. Jänich. Vector Analysis. Undergraduate Texts in Mathematics. Springer-Verlag, New York,

2001.

[22] S. C. Joshi and M. I. Miller. Landmark matching via large deformation diffeomorphisms. IEEE

Transactions on Image Processing, 9(8):1357–1370, Aug. 2000.

[23] J. Jost. Riemannian Geometry and Geometric Analysis. Springer-Verlag, New York, third edi-

tion, 2002.

[24] E. Kalssen, A. Srivastava, W. Mio, and S. Joshi. Analysis of planar shapes using geodesic paths

on shape spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3):372–

383, Mar. 2004.

[25] P. R. Kumar and P. Varaiya. Stochastic Systems: Estimation, Identification, and Adaptive

Control. Prentice Hall, Englewood Cliffs, New Jersey, 1986.

[26] A. J. Laub. Matrix Analysis for Scientists and Engineers. SIAM, 2004.

[27] J. M. Lee. Riemannian Manifolds: an Introduction to Curvature, volume 176 of Graduate Texts

in Mathematics. Springer, New York, 1997.

[28] J. M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate Texts in Mathematics.

Springer, New York, 2003.

[29] P. W. Michor. Topics in Differential Geometry. Lecture Notes, University of Vienna, 2006.

162



[30] P. W. Michor. Curvature, covariantly expressed. Unpublished technical report, University of

Vienna, July 2007.

[31] P. W. Michor and D. B. Mumford. Vanishing geodesic distance on spaces of submanifolds and

diffeomorphisms. Documenta Mathematica, 10:217–245, 2005.

[32] P. W. Michor and D. B. Mumford. Riemannian geometries on spaces of plane curves. Journal

of the European Mathematical Society, 8:1–48, 2006.

[33] P. W. Michor and D. B. Mumford. An overview of the Riemannian metrics on spaces of curves

using the Hamiltonian approach. Applied and Computational Harmonic Analysis, 23:74–113,

2007.
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