The Differential Geometry of
Landmark Shape Manifolds:

Metrics, (Geodesics, and Curvature

by
Mario Micheli
Laurea, Universita di Padova, Italy, 1999
M. S., University of California at Berkeley, 2001
Sc. M., Brown University, 2003

A Dissertation submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

in the Division of Applied Mathematics at Brown University

Providence, Rhode Island
May 2008



(© Copyright 2008 by Mario Micheli



This dissertation by Mario Micheli is accepted in its present form
by the Division of Applied Mathematics as satisfying the

dissertation requirement for the degree of Doctor of Philosophy.

Date
David B. Mumford, Director
Recommended to the Graduate Council

Date

Stuart A. Geman, Reader
Date

Peter W. Michor, Reader

Approved by the Graduate Council

Date

Sheila Bonde, Dean of the Graduate School

iii



Curriculum Vitae

Mario Micheli was born in Rovereto (Trento), Italy, on August 27, 1973. He
received the laurea degree in Telecommunications Engineering from the University
of Padova, Italy, in 1999; as an undergraduate, he was an exchange student at the
Université Bordeaux I, France, during the Fall semester of 1997 and at the University
of California at Berkeley during the academic year 1998-1999. While at Berkeley
he wrote a thesis for his laurea degree with the title A Probabilistic Approach to
Three-dimensional Autonomous Navigation.

In the Fall of 2000 he enrolled into a graduate program at UC Berkeley and
received Masters of Science degree in Electrical Engineering in May 2001; while at
Berkeley he worked under the supervision of Professors Shankar S. Sastry and Michael
I. Jordan, both from the Department of Electrical Engineering and Computer Sci-
ences, and wrote a thesis with the title Random Sampling of Continuous-time Sto-
chastic Dynamical Systems: Analysis, State Estimation, and Applications..

In September of 2001 he began his doctoral work in the field of Applied Mathe-
matics at Brown University, where he was supervised by Professor David B. Mumford.
While at Brown he was supported by research assistantships, a teaching fellowship,
a Florence Harnish Fellowship, and a dissertation fellowship. He received a Masters
of Science degree from Brown University in Applied Mathematics in May 2003.

In September 2008 he will join the Department of Mathematics of the University

of California at Los Angeles, as a postdoctoral scholar.

iv



Dedicated to my parents, Margherita and Giuseppe Micheli



Acknowledgements

First and foremost I wish to thank my thesis advisor, David Mumford, for having
given me the honor of working with him and for having introduced me to the wonderful
topic of shape spaces; his precious teachings will help me for many years to come.
Stuart Geman has also been an invaluable resource, and I am very grateful for all
of our many helpful discussions. I must add that both David Mumford and Stuart
Geman have given me, during my years at Brown University, advice and support that
often times went beyond the academic realm; their graciousness and wholeheartedness
are truly rare. I also wish to give my special thanks to Peter Michor of the University
of Vienna for his remarkable patience and flexibility as reader of this thesis.

I had initially promised myself that I would not attempt to make a list of all
the people and friends who have made these many years at Brown University the
life-changing experience that it has been—although it would have been an excellent
excuse to add a few pages to this thesis. However, I finally decided to (partially)
break my promise: some of them have been so caring and supportive in different
ways during the very last part of my stay here at Brown that I would have probably
not been able to complete my work without them. They are Dzigbodi Agbenyadzie,
Yi Cai, Indrek Kulaots, Akil Narayan, Anish Shah, Vito Stella, and Wei-Ying Wong.
They truly deserve my gratitude.

Last, but certainly not least, I would like to thank my parents, Margherita and
Giuseppe Micheli, for their unconditional support, selfless love, and continuous advice;
despite the physical distance separating us they have always been the harbor where

to seek refuge in case of need. This work is dedicated to them.

vi



Contents

Curriculum Vite

Dedication

Acknowledgements

List of Tables

List of Figures

Chapter 1. Introduction

Chapter 2. The Riemannian Manifold of Landmarks

1.

2
3
4.
)

General framework
Riemannian formulation
Numerical Examples
More on Kernels

Further Generalizations

Chapter 3. Momenta and Conservation Laws

1.
2.

Hamilton’s equations

Conservation laws

Chapter 4. Curvature in terms of the Cometric Tensor

1.

2
3
4.
)

Motivation

Generalities on the Riemannian Curvature Tensor
The dual Riemannian Curvature Tensor

Sectional Curvature in terms of the cometric tensor

Bounds on Sectional Curvature

vii

v

vi

1X

20
23
25

29
29
34

40
40
41
45
52
o8



Chapter 5. Curvature of the Landmarks Manifold

—_

SEEER A S

The dual curvature tensor for one-dimensional landmarks
Sectional curvature for two one-dimensional landmarks
Sectional curvature for three one-dimensional landmarks
Sectional curvature for N one-dimensional landmarks
Sectional curvature for N D-dimensional landmarks

Conclusions

Chapter 6. The Qualitative Dynamics of Landmarks

1.

2
3.
4

Introduction
Dynamics of two one-dimensional landmarks
Dynamics of three one-dimensional landmarks

Dynamics of two two-dimensional landmarks

Chapter 7. Conclusions

1.
2.

Appendix A. Admissible Hilbert Spaces and Reproducing Kernels

Results

Applications and Future Work

Appendix B. Properties of Bessel Kernels

1.
2.
3.

Introduction
Differential equation

Asymptotic behavior at zero

Bibliography

viii

66
66
7
85
91
96
103

105
105
106
133
137

144
144
145

148

155
155
156
158

161



5.1

5.2

6.1

List of Tables

Eigenvalues and pairs (X,Y’) that achieve them, along o'? = ¢%3;

e denotes a very small (but nonzero) number. 90

Eigenvalues and pairs (X,Y) that achieve them, in selected
locations of along the ridge of scalar curvature, shown in

Figure 5.8; € denotes a very small (but nonzero) number. 91

The nine cases of initial momenta (pi(0), p2(0)). 108

ix



2.1

2.2

2.3

5.1

5.2

5.3

5.4

9.5

0.6

List of Figures

Geodesic curve for landmarks traveling in opposite directions;
black dots and circles represent initial and final positions,

respectively. The corresponding diffeomorphism ¢f); is also shown.

Geodesic curve for landmarks traveling in the same direction;
black dots and circles represent initial and final positions,

respectively. The corresponding diffeomorphism ¢y, is also shown.

Deformation of a square; black dots and circles represent
initial and final positions, respectively. The corresponding

diffeomorphism ¢y, is also shown.
Typical shape of function f: R — R.
Sectional curvature (o'?) for the Gaussian kernel.

Maximum generalized eigenvalue (i.e. maximum sectional
curvature) for three landmarks in one dimension, as a function of

distances o' and ¢%.

Minimum generalized eigenvalue (i.e. minimum sectional
curvature) for three landmarks in one dimension, as a function of

distances p'? and ¢%3.

Median generalized eigenvalue for three landmarks in one

dimension, as a function of distances ¢'? and .

Trace (i.e. % times scalar curvature) for three landmarks in one

dimension, as a function of distances p'? and p?.

X

21

22

23

70

81

86

87

88

38



5.7

0.8

5.9

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Generalized eigenvalues of (—R, G) for three landmarks in one

dimension of the quadratic form along the line o' = p?3. 89
Locations along the “ridge” of scalar curvature for Table 5.2. 92
Typical shape of function f(z), z = (v,u), for D = 2; 99

Sectional curvature x(g'?) for the Gaussian kernel. 109

Six trajectories in Case 1: (¢1(0),¢2(0)) = (0,1),(0,2),...,(0,6)
and, in all six cases, (p1(0),p2(0)) = (10,0). 111

Trajectory in Case 2: (¢1(0),¢2(0)) = (0,1), (p1(0), p2(0)) = (9,1).
The top and bottom graphs represent, respectively, the evolution
of positions and momenta versus time. Note that the second

landmark (dashed line) bounces off the first one (continuous line)

and eventually the two momenta are swapped. 113
The same trajectory of Figure 6.3 drawn in the (¢, g2) plane. 114

Conjugate points for trajectories that originate at a common

point in the region of positive curvature (Case 2). 117

Trajectories that originate at the same point in the region of

negative curvature (Case 2). 118

Trajectories that originate at the same point in the region of
negative curvature and meet again in the region of positive
curvature (Case 2). Dashed trajectory: (g1(0),¢2(0)) = (0,1.3),
(p1(0),p2(0)) = (7,3). Continuous trajectory: (g:(0),g2(0)) =
(0,1.3), (p1(0),p2(0)) = (5.01,4.99). 119

Trajectories with initial momenta (pi(0), p2(0)) = (5,5) but
different initial positions (Case 3). 120

Two sets of trajectories for Case 4, which share common initial

momenta but have two different starting positions. 122

Xi



6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

Trajectories for Case 5, all with initial momenta (p;(0),p2(0)) =
(0,10) but different initial positions.

Evolution of positions (top) and momenta (bottom) versus time
in Case 6. The continuous lines represent ¢;(t) and p;(t), while

the dashed lines represent go(t) and po(t).

A typical trajectory for Case 7, plotted against time. Top:
positions; bottom: momenta. Continuous line: first landmark;

dashed line: second landmark.
Three sets of trajectories in Case 7.

A typical trajectory for Case 8, plotted against time. Top:
positions; bottom: momenta. Continuous line: first landmark;
dashed line: second landmark. Note the exchange of momentum
that occurs in the first part of the trajectory, when the two

landmarks are relatively close.

A typical trajectory for Case 9, plotted against time. Top:
positions; bottom: momenta. Continuous line: first landmark;

dashed line: second landmark.
Three sets of trajectories for Case 9.

Positions and momenta versus time for Example 1 (p;(0) > 0,
p2(0) = p3(0) = 0). Landmark 1: thin line; Landmark 2: thick
line; Landmark 3: thick dashed line.

Positions and momenta versus time for Example 2 (p(0) >
p2(0) = p3(0) > 0); large initial mutual distances. Landmark 1:
thin line; Landmark 2: thick line; Landmark 3: dashed line.

Positions and momenta versus time for Example 2 (p;(0) >
p2(0) = p3(0) > 0); small initial mutual distances. Landmark 1:
thin line; Landmark 2: thick line; Landmark 3: dashed line.

xii

122

124

127

128

130

131

133

134

135

136



6.20

6.21

6.22

6.23

6.24

6.25

6.26

Positions and momenta versus time for Example 3 (p;(0) > 0,
p2(0) < 0, p3(0) < 0, with py(0) > [p2(0) 4+ p3(0)|). Landmark 1:
thin line; Landmark 2: thick line; Landmark 3: dashed line.

Converging trajectories for two landmarks in 2D.
Converging trajectories for two landmarks in 2D—detail.
Diverging trajectories for two landmarks in 2D.
Converging trajectories for two landmarks in 2D.
Diverging trajectories for two landmarks in 2D.

Existence of conjugate points for two landmarks in 2D.

xiii

137
139
139
140
141
142

142



CHAPTER 1

Introduction

The study of shapes and their similarities is central in computer vision, in that
it allows to recognize and classify objects from their representation. One has the
interest of defining a distance function between shapes, which both expresses the
meaning of similarity between shapes for the application and task that one has in
mind, and at the same time is mathematically sound and treatable. In recent years
the use of differential-geometric techniques for the study of shape deformation has
rapidly spread to broad applied fields such as Pattern Analysis and Statistical Meth-
ods (e.g. for object recognition, target detection and tracking, classification of bio-
metric data, and automated medical diagnostics).

One of the main ideas in this area has been to use fluid flow notions [8, 9], which
lead to Riemannian metrics on many deformation related spaces (“shape spaces”) [22,
24, 36, 42, 43, 47]; the aforementioned distance function is, in these cases, precisely
the geodesic distance with respect to such metrics. However, the geometry of these
Riemannian manifolds has remained terra incognita until very recently, when certain
fundamental questions started being addressed [31, 32, 33, 48|: for example, the
curvature of such manifolds has remained completely unknown in most cases. This
thesis focuses on the computation of sectional curvature and its implications in one
of the simplest shape spaces, which is that of landmark points.

The knowledge of curvature on a Riemannian manifold is essential in that it
allows one to infer about the existence of conjugate points, the well-posedness of
the problem of computing the implicit mean (and higher statistical moments) of
samples on the manifold, and more. Such issues are of fundamental importance since
they allow to build templates, i.e. shape classes that represent typical situations in

certain applications like the emerging field of computational anatomy [10, 14, 15,



18, 22, 34, 35, 46]. For example, templates can used for the identification of
structures in Magnetic Resonance Images (MRI) of brains. A template can represent
the prototypical structure of a healthy person’s brain, or the structure of the brain
of someone developing Alzheimer’s disease: such templates are matched to the MRI
scan of an individual patient, and the geodesic distances between the data and the
templates can then be used to formulate a diagnosis on the patient’s health. In
Medical Imaging statistical analysis is normally performed on the tangent space at the
implicit mean (or Karcher mean [38]), but the differential-geometric issues mentioned
above are too often ignored, which can lead to conspicuous inaccuracies. We will
briefly return on these motivating issues in the concluding chapter of this thesis, after
the geometric structure of the shape manifold of landmark points has been explored.

The thesis is organized as follows. Chapter 2 formally introduces the energy
functional that has to be minimized in order to compute the distance between between
two sets (landmarks configurations); most of the chapter is dedicated to proving that
such functional can be written as the energy of a path with respect to a Riemannian
metric tensor, so that the square root of the minimized energy is, in fact, a geodesic
distance. Once the Riemannian structure is established, the geodesic equations are
developed (in the Hamiltonian formalism) in Chapter 3, where conservation laws
deriving from the translation-invariance and the rotation-invariance of the metric
tensor are also explored.

It turns out that the cometric tensor (i.e. the inverse of the metric tensor) for the
Riemannian manifold of N landmarks in D dimensions can be written as a matrix
whose elements depend only on 2D of all the N D coordinates of the manifold, mak-
ing the matrix of partial derivatives of the cometric tensor very sparse. This suggests
finding a general formula for the Riemannian curvature tensor and for sectional cur-
vature in terms of the first and second partial derivatives of the cometric instead of
the metric; Chapter 4 is dedicated precisely to solving this highly nontrivial problem,
for a generic n-dimensional Riemannian manifold. In Chapter 5, which is central

in this thesis, we apply the formulas developed in the previous one precisely to the



Riemannian metric for the manifold of landmarks; special attention is dedicated to
the simple but informative examples of one-dimensional landmarks. In Chapter 6
we study the qualitative dynamics of landmarks, i.e. the geodesic trajectories that
solve the equations developed in Chapter 3; in particular, we study the effect of cur-
vature on said dynamics by verifying, for example, the existence of conjugate points
in regions of the manifold of positive curvature. Finally, Chapter 7 summarizes our
results, discusses the their potential application to the statistical analysis of medical

images, and draws the future plans of our research.



CHAPTER 2

The Riemannian Manifold of Landmarks

In this chapter we illustrate how the shape space of landmarks can be endowed
with the structure of a Riemannian manifold. The treatment is rigorous, however
we skip some technicalities in the mathematical preliminaries section regarding the
regularity of diffeomorphisms, limiting ourselves to citing and later using results that
the reader can find, for example, in [43, 47]. We formulate the distance between two
shapes in terms of the average kinetic energy of a velocity field that transports one
shape into the other; we then show that such energy can be expressed in the form
of the energy of a path with respect to a Riemannian metric tensor. At the end of
the chapter we briefly discuss ways of extending the approach to generic shapes, by

formulating it in terms of Lie groups of diffeomorphisms acting on shape manifolds.

1. General framework

Let Z be the space of N landmark points in D dimensions, that is, the generic
element of Z is given by I = (2%, 22,...,2Y), 2* € RP, with 2 # 27 for i # j. Our
objective is to endow Z with a distance function d : 7T x T — R™ that will turn out to
be the geodesic distance [11, 23, 27] with respect to a Riemannian metric. The idea
is to find, among the diffeomorphisms of the plane that map a shape into another,
the one that is generated by the velocity field of minimal average “kinetic energy” (to
be defined): the distance between the two shapes will be given by the square root of

such average energy.

1.1. Mathematical preliminaries. We will start with some definitions and

preliminary notions. Let Q be the set of differentiable landmarks paths, that is:

Q4 {{q’ :10,1] — RD}i]\il ‘ q'(+) is differentiable, for all i };

4



we shall indicate the generic element of such set simply with ¢, so that ¢(t) =
{¢*(t),...,q" (1)}, t € [0,1]. Let V be a set of functions RP — R that has the struc-
ture of an admissible Hilbert space (V, (-, )V) (see [17, 43, 47|, or Appendix A for
an essential treatment of such spaces); the most salient property of admissible Hilbert
spaces is that V is embedded in C}(RP, RP) (the subscript 0 denotes functions that
vanish at infinity [16]), i.e. such that for some constant C' we have ||ul|; 00 < Cllully,
for all u € V. For example, V can be chosen to be Sobolev space H*(R”, RP) with

its norm [13]:

2.) 2 [ (), u(o)y, de

in the above expression L = (id — a?A)* is a self-adjoint spatial differential operator
(a € R, k € N and A is the Laplacian) that is applied to each of the D components
of the vector field' u. By the Sobolev Embedding Theorem [16] we have in fact that
if k > £ 41 then V is embedded in Cj(R”,R”). Space L'([0,1],V) is defined as the

set of functions v : [0,1] — V : ¢t — v; such that:

1
o] ] 210,13, £ / lloelly dt < oo,
0

while space L*([0, 1], V) is the set of functions v : [0,1] — V : ¢ — v; such that:

1
(R A— / lnll? dt < oo

1f we write v = (u',u?,...,uP) the following holds when L = (id — a2A)*:
D k k )
Lu(x), u(x) dx = / ( )a2m Dut|” dx,
X o e = [, 23 () X o]

where we have used the multi-index notation introduced in [13, 16]. In particular for k = 2 the

above expression becomes:

D
- <Lu(x),u(a;)>RD dr = /]RD [z:; {|uz|2 + QaQHVuZH;D + a4||Hue||H1DxD} dz,

where Vu! and Hu’ are, respectively, the gradient and the Hessian matrix of scalar function uf.

We can see that the Sobolev norm is a linear combination of the L2 norms of a function and of its

derivatives; parameter a is just a scaling factor.



Set L%([0,1],V) is a subset of L!([0,1],V) and is in fact a Hilbert space with inner
product (u, v) 20,1, fo u,v)y dt; we will write the generic element of L([0, 1], V)
or L?([0,1],V) exphcltly as vy(z), t € 0,1], x € RP.

It is well known from the theory of ordinary differential equations [7] that, given
a generic vector field v = v(z), t € [0, 1], z € RP, under some regularity assumptions

on v the D-dimensional non-autonomous dynamical system

(22) 2 = w(2)

2(tg) = =
has a unique solution of the type z(t) = ¥(t,tp,z). Let V be an admissible Hilbert
space; for any v € L'([0,1], V') we shall define ¢%(z) £ (¢, s, z); fixing ¢t = 1 and
s = 0 we get ¢'(z) = @y, (r), which is the diffeomorphism generated (or induced)

by v. Given an admissible Hilbert space V' we will call the set
Gy £ {go” v e LY([o, 1],V)}

the group of diffeomorphisms generated by V' its name is justified by the result
that for any v € L'([0,1],V) the map ¢” : R” — R” is indeed a diffeomorphism
and the set Gy is a group with respect to the operation of composition between
functions [43, 47]. In the language of manifolds it turns out that Gy is an infinite-

dimensional Lie group and V is its Lie algebra.

1.2. Definition of the distance function. For generic velocity v € L? ([O, 1], V)

and landmark trajectories ¢ € Q define the energy

— (g (t))‘ dt.

(2.3) Elv,q / <Lvt ), (%)) pp ddt+ A

We claim that a distance function d on Z between two landmark sets (or shapes)

I= (2422, .., 2N)and I’ = (y', 92, ...,y") can be defined as

(2.4) d(I,I') 2 inf{ Elv,q :ve L2([0,1],V), ¢ € Q with ¢(0) = I, (1) = 1’};

’U7q
the main objective of this chapter is in fact to show that the above function is in fact

a geodesic distance with respect to a Riemannian metric.
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The above infimum is computed over all differentiable landmark paths ¢ € O
that satisfy the boundary conditions, and vector fields v € L2([0, 1], V). Such fields
more or less exactly “transport” (i.e. generate diffeomorphisms that map) the first
set of landmarks I into the second one [I’, depending on the value of smoothing
parameter A € (0,00]. Such paramenter is a weight between the first term (the
aforementioned “kinetic energy”, averaged over a unit of time), that measures the
smoothness of the vector field that generates the diffeomorphism, and the second term,
which measures the exactness of the matching. When A\ = oo we have ezact matching,
i.e. the landmark trajectories exactly satisfy the ordinary differential equations ¢* =
vi(q"), i =1,..., N which are obtained by setting the integrands of the second term
in the right-hand side of (2.3) equal to zero. When A\ < oo we have regularized (or
approzimate) matching, i.e. the landmark trajectories “almost” satisfy such ODE;, so
that the diffeomorphism generated by v;(x) does not transport I exactly into I’; this
allows for the time varying vector field to be smoother, thus resulting in a smaller
distance between the two given landmark configurations. For this reason the second
term in (2.3) is often referred to as smoothing term; its function is to make distance d
tolerant of small diffeomorphisms, so that object variations due to noise in data are
neglected. For the rest of the chapter we shall consider generic values of smoothing
parameter A.

Note that the smaller X is, the smoother will be the vector field and the less
exact will be the matching. In fact for A ~ 0 the minimizer (v,q) of energy (2.3)
(if it actually exists) has velocity v is close to zero, so that the diffeomorphism ¢V it
generates is close to the identity map. This makes the second integral in (2.3) large,
but its contribution to Efv,q| is small since A is almost zero. The corresponding
minimizing trajectories ¢ will be (almost) straight lines. We shall return to this
discussion further on the chapter, when the dependance on A\ of the Riemannian

metric tensor of landmarks manifold Z will be clear.



2. Riemannian formulation

We remind the reader that our objective is to show that d defined in (2.4) is a
geodesic distance on Z with respect to some Riemannian metric, which in fact will

depend on the chosen differential operator L and on smoothing parameter .

2.1. Minimizing velocity fields and momenta. The following result holds.

PROPOSITION 2.1. For a fized § = {q_’ 2 [0,1] — RD}ZI € Q there exists a
minimizer with respect to v € L*([0,1],V) of E[v, q| and it belongs to the set of vector
fields of the general form:

(2.5) w(@) =D i) G(x.d' (1)),

where G : RP x RP — R is the Green’s function (or fundamental solution) of op-
erator L in (2.3) and coefficients o; : [0,1] — R, ¢ = 1,..., N are continuous

functions.

Note that typically G(z,y) = ’y(Hx—yHRD) for some bell-shaped scalar function ~ :
[0,00) — R; function G is sometimes called the kernel of space V' (in section 4
of this chapter we will briefly return on the topic of kernels). Therefore, for fixed
differentiable trajectories ¢'(+), i = 1,..., N, energy E[v,q] can be minimized with
respect to functions «;(+), ¢ = 1,..., N. We shall indicate with p;(-),7=1,..., N the
minimizing values of coeflicients «; in expression (2.5) and with v* = v} (z), t € [0, 1],
x € RP the resulting minimizing velocity field; the coefficients p; are called momenta
(once the Riemannian formulation is proven, it will turn that such vectors will be the

actual momenta for landmark points, as defined in Hamiltonian mechanics).

REMARK. We would like to argue that it makes sense, from a physical point of
view, that the minimum-energy velocity field that transports the landmarks along
trajectories ¢ must be of the form (2.5). In fact what the formula expresses is that
the N landmarks are moved around space R” by “lumps” of velocity fields centered

around each one of the landmarks themselves; such lumps cannot be point-supported,

8



since the global velocity field v;(z) must minimize a norm of the Sobolev type and

therefore be smooth to a certain degree.

Before proving the above proposition and computing the momenta in func-
tion of trajectories ¢ and their time derivatives, we shall introduce some nota-
tion that will allow us to express the results in terms of matrix and vector sum-

mations/multiplications. The scalar components of the N landmark trajectories

g = (qi’l, e ,qi’D), t=1,..., N can be ordered in an N X D matrix:

gt g ¢-P

P2l 2 P

q3,1 q3,2 q3,D ,

I ABE: NP |

where the coordinates of the first, second, ..., N*" landmarks lie on the first, first,
second, ..., N'*" rows of the above matrix. In order to keep notation consistent, from
now on we shall consider trajectories ¢*(-), i = 1,..., N as 1 x N row vectors. Instead

we will indicate with ¢*) the N x 1 column vector of the k™ components of the set

of labeled landmarks:

g
2.k
RO I
ks
for k =1,...,D, while with an abuse of notation we will indicate with ¢ the super-
position of the above defined ¢®’s, i.e.:
_ o -
2
q
(2.6) g= | |,
e




which is a DN X 1 column vector (the abuse of notation consists in the fact that we
are using the symbol ¢ for both the above vector and the generic element of Q, but
the context in which such symbol is used should clarify its meaning).

As far as the scalar components momenta p; = (pi,l, e ,pLD), 1 =1,...,N are

concerned we can order them in a matrix in the same way that we ordered the ¢"*’s:

P11 P12 - DP1,D
P21 P22 - DP2D
(2.7) P31 P32 ' DP3D |
| PN1 PN2 " PND |

similarly to what we did before, we will define:

D1,k b
D(k) = p%’k , fork=1,...,D and p= p(_2) ,
| PNk | P(D) |

which are column vectors of size N x 1 and DN x 1, respectively?. In fact, we will
also need to order in a matrix the generic coefficients that appear in (2.5) in the same

way that the momenta are ordered:

Q11 Q12 -+ 01D
Qg1 Qg2 -+ Q2D
Q31 Q32 -+ Q3D |>
| N1 GN2 ct OND |
and vectors a(), k = 1,..., D and o (which are column vectors of size N x1 and DN x

1, respectively) are defined in an analogous manner. Consistently with the above

2We chose superscript indices for landmark coordinates and subscript indices for momenta be-
cause it will turn out that the derivatives of landmark coordinates ¢ and momenta p live, repectively,
on tangent bundle 77 and on cotangent bundle T*Z of the Riemannian manifold [28].
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notation we shall consider velocity fields of the type (2.5) to be row vectors. Also, we

will define the following N x N matrix:

[ Gl q') Gl ) Glg',qY) |
G 2 1 G 2 2 G 2’ N
2.8) S(g) 2 (%, q") (q‘,q) (¢* ™)
| GV q") G(@Y ) - GV, dY) |

A

where G is the kernel of V; its generic element will be S¥ = G(q¢',¢’), with i,j =
1,...,N. Matrix S(q) is definite positive, whence invertible, by Corollary A.5 in

Appendix A. Given the above machinery we can proceed to the following proof.

PROOF OF PROPOSITION 2.1. We will use variational calculus techniques. Ne-
glecting the bar above the symbol ¢ and some of the time arguments for notational
compactness, for two time-dependent vector fields v, w € LQ([O, 1],V) and for an

arbitrary € € R we have

1 1 N
Elv + cw, g 2/ (v + ewy, v, + ewy), d“”/ > lld" = (ve + 2we) (6)|5o dt,
0 0 =1

that is:
1
E[U+gw7q] = / {<’Ut,’0t>v+2€ <Ut71Ut>V+52<wt7wt>V} dt
0

o / Z{@ () ) go — 22 (0" — 0@, wi (@) go

+(wi(q"), wi i)>RD}dt;

therefore the first variation of the functional is

= 2/ {<vt,wt>v — )\Z <q — u(q wt(qi)>RD} dt

By the reproducing property described in Corollary A.4 we have that

0
§FE = 5% Ev + cw, q]

<qi - Ut(qi>a wt>]RD <G [C] - Ut(q )}7wt(qi)>v
11



fori=1,..., N, so that

5E:2/ <vt )\ZG )G — vi(q")], wt>v dt.

Setting the 6E = 0 for all w € L2([0,1], V) yields:

v(z) =A@ (t) = v(d'()]G(x.¢'(t),  te[0,1], z € RP
which is precisely of the form (2.5), having set a;(t) = A[¢*(t) — v (¢'(2))]. O
The momenta may be computed in the following manner.

PROPOSITION 2.2. For a fited ¢ = {q" : [0,1] — RD}Z\; € Q the minimizer with

respect to v € L*([0,1],V) of Elv,q] is

(2.9) v (x) = Zpi(t) Gz, @(t)),

(2.10) P (1) = (S(aw) + 5
k=1,...,D, whereid is the N x N identity matrix.
In order to prove the above result we will need two lemmas.

LEMMA 2.3. When the velocity field has the form (2.5), its squared norm ||vs||3

at a given time t can be expressed as:

. (Luy(z),ve(x) ) dz = Z oza) (t) S(q(t)) agy ().

Proor. We are going to use some of the notation and terminology introduced in

Appendix A. When the velocity field in form (2.5), i.e. vi(z) = Zfil a; G(z,q"), we
12



have:

D<Lvt(x),vt(x)>RD dr = <Ut($)7vt($)>v

N N
= Z <G(-,qi)ai,G( q )aj v Z a;, G(¢',q )a3>
i,j=1 ,j=1
N D N
= ZGq q’ <042,04] ZZ q q Qi kO = Z@ (k)
ij=1 k=1 1,j=1
where in step (x) we have used Corollary A 4. O

LEMMA 2.4. When the velocity field has the form (2.5) the integrand of the smooth-

ing term in energy (2.3) can be written as:
N
> li — w(a'@)
i=1
7

PROOF. We will write the components of the velocity field as vy = (v}, ..., v}

2

=3 (S(alt)) a0~ 490 (5(a) aw () i),

RD

Neglecting the time argument for notational compactness, we have that

N N N
k x) = Z a;jr Gz, qj), whence Uf(qi) = Z(Xj,k G(q", qj) = Z Sij@j,ka
j=1 J=1 J=1

so that we can write the N x 1 column vector ¢ — S(q)a ) as

N - .
P SV agy ¢"* —vf(q")
k_ZN 5%y, 2k k(2
. i—1 ik q v (q°)
i — S(q)aw = g = :
N - .
M= SMag | | @Y (e

Therefore the integrand of the smoothing term in (2.3) can be expressed as:

N D 2
S — (k) _
> ¢ - ua = >l - s@aw|,,
=1 k=1
9 D

i HS(C]) (k) — d(k)HRN = > (5(61) (k) — Q(k)>T(S(Q) (k) — C}(k)>>
k=1

k=1

which precisely is what we wanted to prove. 0]

13



PrROOF OF PROPOSITION 2.2. We will omit the bar above the symbol ¢ and some
arguments for notational compactness. For a velocity field of the type (2.5) Lem-
mas 2.3 and 2.4 imply that, for a velocity field of the type (2.5), the energy (2.3) can

be written in the form:

Ev,q| /Z oz(kSa +)\(Soz(k—q ) (Soz(k—q )}dt
0 e

In fact, we will indicate the above functional with Ulq, ¢g| since it is now a function
of the a coefficients and the landmark trajectories. Once again, we will be using
variational principles. For arbitrary functions aq, B : [0,1] = RY*1 k=1,...,D

and any € € R we have

Ula+¢B,q /0 o) +Bw) " S (aw + 8u)

k= 1

A [S (o +eBuy) — d®) " [S(ag +8w) — ] } dt,
that is:

1 D
Ula+eb.q /0 > { Oy Saxr) + 22 xS By + €° By S By

k=1
+A [(Sa k)—q )T(Sa k)—q( ))—i—QE(Sa(k — ' ) S Bk +€2ﬂ )STSﬂ }}

Therefore the first variation of functional U with respect to « is given by:

_2/2 a(kS+)\ Soz(k—q ) }ﬁ(k

which is equal to zero for any choice of functions B4, k¥ = 1,..., D if and only if

9]
29
U = 86U[oz—l—esﬁ

alyS+ A(Sag —d*®)'S=0, k=1,....D.

Matrix S is positive definite, whence invertible, therefore the above equations are
equivalent to

(k) + )\(Sa(k) - q(k)) = 0, k= 1, ce ,D

which immediately yield:

-1
Oé(k):<S+_> q(k) k=1,...,D,



that are precisely equations (2.10). O
2.2. Main result. It is convenient, at this point, to introduce the N x N matrix:
idy\ -1
R(q) & (S(CI> + X)

where S(gq) was defined in (2.8) and also the DN x DN, block-diagonal matrix

[ R(g) 0 0
ey gl 2 | 0 MO0
. 0 0 R(q) |
[ S(q)+4 0 0o | -
_ 0 S(q)+4 0
0 0 - S+ ]

where the N x N block R(q) is repeated exactly D times (the zeroes above repre-
sent N x N blocks of zeroes); the choice of symbol g in the definition above is justified,
as we shall see in Theorem 2.7, by the fact that (2.11) is precisely the metric ten-
sor of Riemannian manifold Z, and ¢ is the classic symbol used for such tensor in

Differential Geometry. We will need the following technical result.

LEMMA 2.5. Given two generic sets S and W, consider a function f : SxW — R
and assume that, for any fired w € W, function f(s,w) has a unique minimizer with

respect to s € S: we shall define h(w) £ arg minges f(s,w). Under these hypotheses,

inf = inf f(h .
(s’w;relswf(&w) Jdnf f(h(w),w)

PROOF. Let vy £ inf(s p)esxw f(s,w) and v = inf,ep f(h(w), w). It is obvious
that 11 < vy: in fact we have that v, = inf (s u)egrapn(n) (S, w) > 11, since graph(h) C
U x V. We now want to prove that 11 > 5. But if 1y < vy then by the definition
of v1 (a number p is the infumum of a set 7 C R if: (a) for all z € 7, we have

x > v; (b) for any choice of ' > p, 3y € T such that y < p’) there would exist a
15



pair (s*,w*) € § x W such that f(s*, w*) < v5. By the definition of h we would have

f(h(w*),w*) < f(s*,w*) < vy, which is a contradiction of the definition of vs,. O

For a fixed pair of landmark sets I = {xy,...,xy} and I’ = {y1,...,yn} we can

apply the above Lemma to sets
S=L*[0,1,V) and W=0y2 {qeQ:q(0)=1q(1)=1},

and to function f = FE[v,q|. Velocity v* provided by expression (2.9) in Proposi-
tion 2.2 minimizes E|v, g] for a fixed trajectory ¢, so that v* = h(q); in fact, with an

abuse of notation, we shall write v* = v*(¢). The following consequence holds.

COROLLARY 2.6. Fiz landmark sets [ = (z',...,2") and I' = (y',...,y"). For
an arbitrary ¢ € Qg let velocity v* = v*(q) be the minimizer of Ev,q] provided by
Proposition 2.2. Then the function d defined in (2.4) is such that

d]7],2é inf E'U,izinfEU*77*‘
( ) (v,§)€L2([0,1],V)x Qo [ q] €00 [ () Q]

If there exists a unique q* € Q such that ¢* = arg mingeo, E[v*(q),q] then
ar min Efv.q] = (v*(¢"), q"),
g(v@)eL?([o,n,v)XQO [ q} ( (q"),q )

where v*(q*) is the minimizer with respect to v of energy Ev, ¢*], again provided by

Proposition 2.2; under these conditions, d(I,1") = E[v*(q*), q*}.

PrOOF. First note that the square root and the “inf” can be exchanged since
the square root is a monotone increasing function. The first part of the corollary

follows directly from Lemma 2.5. If ¢* = argmingeo, F[v(q),q] is well defined then

infzeo, E[U*(Q)7 éﬂ = E[U*(q*), q*}, so that

(v*(¢%),q") = arg (v,q)eLz(lﬁﬁ],V)XgoE[v’ﬂ

and d(I,I') = y/E[v*(¢*), ¢*]. Note that the above infimum is actually achieved by

a pair in L*([0,1],V) x Qy, and therefore is a minimum. O

16



Inserting v*(q) into E[v, g yields a new energy expression that only depends on g,
which we shall indicate with E[g]. In fact, given the arbitrariness of the choice of

trajectory ¢ from now on we will drop the bar above symbol ¢ so that we can write:

Elq) £ E[v*(q),q], q€Q

where v*(¢q) is the minimizer of E|v,q] with respect to v, given by Proposition 2.2.
By the above corollary, d(I,I') = inf,eq, \/ Elq]. We are not ready to prove the main

result of this chapter; a discussion will follow.

THEOREM 2.7. For an arbitrary landmark trajectory q € Q it turns out that E[q]

has the form:

(2.12) Bl = / Q09 (qt)) a(t) dt,

where q is the derivative of the DN x 1 column vector q defined by (2.6) and g is
the DN x DN matrixz defined by (2.11).

PROOF. Let ¢ € Q be an arbitrary set of landmark trajectories, and v*(¢q) be
the minimizer with respect to v of E[v, |, provided by Proposition 2.2. Applying

Lemmas 2.3 and 2.4 to formula (2.9) rather than to formula (2.5) allows one to write:

2
dt

RD

_ /01 /RD (Lo (2), 0} () ) o dmdt+)\/oliHC;—(§(t)—Uf(qi(t))’
= /OZpa)S(q)p(k) dt+/\/o 2

= /0 Z {pa) S(q) pawy + A <S(q)p(k) _ q(k)>T<S(q)p(k) B q-(k))} dt

17
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N1
Inserting the formula for the momenta p;) = (S(q)—l—%) ¢, provided by (2.10),

into the above expression yields?
= [ ) e
oafs(s+3) o [s(s+ ) 4000

which we may rewrite as

)
k
(2.13) +a[s(s+ %)_1 - id]T[S(S + %)4 ~id| }(q<k>) dt.
It is the case that
[ld S<S+1§) } A<s+§) - [(S+§)—S}A —id,

whence

d-s(s+) " =2 (s+ )
Inserting the above expression into (2.13) yields:
=% §> s(s+5) +§<s+%>*<s+%>ﬂq-w
id
/W Sl
/O T ;d) / 9(q) ¢ dt,

k=1

H
v

which is precisely the statement of the theorem. 0

3We are using the notation A~T £ (A_l)T; if A is symmetric then A=7 = A~1.
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2.3. Discussion. First and foremost, since matrix g : RPN — RPNVxDN

is posi-
tive definite for any landmark set we have that expression (2.12) provides a Riemann-
ian energy function [11, 23, 27]. Therefore the set of landmarks Z is endowed with a
Riemannian structure, where g is the metric tensor, geodesic curves are the extrema
of energy functional (2.12), and the geodesic distance between two shapes I,I' € T is
given by d(I,1') = inf co, \/ﬁ, where Qg = {q € Q:q(0)=1,q(1) = [’}. Note
that the (infinite-dimensional) diffeomorphism group Gy and its Lie algebra V have
formally “disappeared” from the energy, their information being incorporated into
the metric tensor of the Riemannian shape manifold 7, of finite dimension n = DN;
the metric tensor in fact depends on the kernel G of space V', and on smoothing pa-
rameter . In following chapters we will investigate the geometry of the Riemannian
structure of Z, namely its curvature.

Since metric tensor ¢ is block diagonal with D blocks and the DN x 1 vector ¢
can be partitioned in precisely the D vectors of the components of the landmarks
set, at a first look it may seem that the D dimensions of ¢ could be treated in an

independent manner from one another, i.e. that we could split enargy (2.12) into D

“uncoupled” integrals

Elq) = Zi): /01 (q(k))T<S(Q) + %)14(’” dt,

and minimize them separately. In fact (while the above formula is correct) this is
not the case since all the components appear in the argument of matrix S(q) =
[G(qi’ @)+ 6%} 1<i,j<N"

We should note that for small values of parameter A the metric tensor g gets
close (up to a multiplicative constant) to the DN x DN identity matrix, i.e. the
diagonal elements become far larger than the off-diagonal elements, and they are all
approximately given by 1/A. This means that the metric converges to the Euclidean
metric in RPY for A — 0 and the geodesic curves converge to straight lines, as we

anticipated at the end of section 1 of this chapter.
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It is well known from the theory of Riemannian manifolds that energies of the
type (2.12) may not have a unique minimizer. However, if such length-minimizing
geodesic path ¢* exists and is numerically computable, by Corollary 2.6 one can also
compute the “other half” of the minimizer of energy (2.3), i.e. the velocity field v*
such that (v*,¢*) = argmin, , E[v,q| by applying formula (2.9) of Proposition 2.2
to trajectory ¢*. Consequently, one can also (numerically) compute the correspond-
ing diffeomorphism ¢¥" by implementing the system of ordinary differential equa-
tions (2.2).

Last, but not least we should remark that the Lagrangian function that corre-

sponds to energy (2.12) is:

Q1) Lad) = 2dSWi = 53 @) (@) + ) d:

1

N | —

D
/=

it is easy to see that the momenta, which we defined as the coefficients of the velocity
field of the form (2.5) that minimizes energy E[v, ¢] with respect to v, actually coincide

with the momenta of landmark points in the sense of classical mechanics [2]. In fact in

the Hamiltonian formalism the momenta are defined as p; , = %(q, q),i=1,...,N,
k =1,...,D; that is, in vector notation, py) = %, k=1,...,D. Applying such

definition to (2.14) yields

idy -1
P(k)Z(S(Q)JrX) ¢,  k=1,...,D

which coincide with equations (2.10) of Proposition 2.2. Whence the use of the term
momenta is justified. Chapter 3 is dedicated to momenta for landmarks, Hamilton’s

equations (cogeodesic flow), and conservation laws.

3. Numerical Examples

In this section we briefly illustrate the qualitative behavior of geodesics connecting
pairs of landmark shapes I = (z!,...,2) and I’ = (y*,...,y") on the plane (D = 2).

In the figures that follow black dots and circles are, respectively, the initial and final
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F1GURE 2.1. Geodesic curve for landmarks traveling in opposite di-
rections; black dots and circles represent initial and final positions,

respectively. The corresponding diffeomorphism ¢f; is also shown.

landmark sets I and I’; the curves represent, in principle?, the length minimizing
(2N-dimensional) geodesic between the initial and final configurations. In each of
the figures that follow the diffeomorphism ¢f, (induced by the velocity (2.9) that
corresponds to the depicted landmark trajectories) is also shown. In all the examples
smoothing parameter \ is set to a high (but finite) value.

Figure 2.1 shows a case with N = 2 where one landmark must travel from the
left to the right and the other must do the opposite. The qualitative behavior of the
geodesic ¢(t) = (¢'(t),¢*(t)), ¢t € [0,1] is such that the two arcs “repel” each other:
in fact if the two landmarks traveled too close to each other the vertical derivative of

the horizontal component of the velocity field v;(z) would be large in a neighborhood

4The curves were computed a conjugate gradient 6, 39] descent algorithm on the energy for
fixed boundary conditions and it may well be the case that the curves are, in fact, points of local
minimum of the functional. An alternative method for solving the boundary value problem is the
geodesic shooting method [35], which we did not implement here.
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FIGURE 2.2. Geodesic curve for landmarks traveling in the same di-
rection; black dots and circles represent initial and final positions, re-

spectively. The corresponding diffeomorphism ¢, is also shown.

of the origin z = (0,0) and time t = %, thus giving a strong contribution to the second
term fol Joe 71 [[Vf(2)||22 d dt of the Sobolev norm® of the velocity.

On the other hand, the opposite happens when the two landmarks must travel
in the same direction, as shown in Figure 2.2: the two arcs of the geodesic “attract”
each other. The two landmarks tend to “carpool”, i.e. to use a velocity field with the
smallest possible support in order to minimize the first term fol Joe S0, [0f ()2 da dt
of the Sobolev norm of the velocity field.

Finally, Figure 2.3 depicts a somewhat more complex situation where four corners
of a square are moved (in this case, N = 4). We shall limit ourselves to note that
the shape of the four arcs of the (8-dimensional) geodesic curve are mostly deter-
mined by the fact that the bottom-right landmark must take the longest journey in a
unit of time, whence traveling the fastest and causing the top-right and bottom-left

landmarks to initially “pull away” from it. This sudden evasive maneuver causes the

5See footnote 1.
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phism ¢y, is also shown.

remaining (top-left) landmark to initially travel towards the center of the square, but

eventually turning back so to be able to reach its designed destination.

4. More on Kernels

The Green’s function of differential operator L = (id — a®?A)* in R” has the form

G(z,y) =7(||z = yllgp), with v : (0,00) — R given by the bell-shaped function [20]:

2 B (2
(2.15) (0) = Dl ma 2 Kk_g( )

where K, is a modified Bessel function [1, Ch. 9]; v can be extended to 0 by continuity.
Such functions are referred to as Bessel kernels or Sobolev kernels (since they are the
inverse of the differential operators that define the Sobolev norms). One can prove

(see Appendix B) that (2.15) is a solution to the ordinary differential equation

2v—1 1
(2.16) v = v+ =57,
0 a
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where v = k — 2

5, with the appropriate choice of boundary conditions that can be

directly derived from (2.15); Propositions B.4 and B.5 describe the behavior of (o)
in a neighborhood of zero.

We should however note that the whole theory we have presented so far would still
hold if, instead of starting from an admissible Hilbert space V' of the Sobolev kind and
then building its kernel G (as the Green’s function of the differential operator L that
defines the norm on V'), we started from a generic continuous, positive definite scalar
kernel G € L*(RP x R”,R); the Mercer-Hilbert-Schmidt theorem [40, 45, 47] would
then allow us to reconstruct the Hilbert space V' (which, in general, will not be of the
Sobolev kind) that has G as its reproducing kernel, i.e. such that <G(-,x)a,v>v =
<a,v(x)>RD for any point x € RP, vector a € RP, and function v € V (as it is
the case for kernels for Sobolev-type admissible Hilbert spaces, see Corollary A.4).
The energy to be minimized with respect to v € LQ([O, 1], V) and ¢ € Q (with the

appropriate boundary conditions) would the general form:

Bl ® [ ol e+ x / é\\‘;—f@) —ud'(1)

which of course coincides with (2.3) when the norm on space V is of the Sobolev

2

dt,

RD

type (2.1). Proposition 2.2 and Theorem 2.7 would still hold. The discussion on how
to construct an admissible space from a kernel goes well beyond the scope of this
introductory chapter, and the reader is referred to [47] for further details. However,
in the future we will use functions 7 not given by (2.15) but that are of a form which
is easier to manipulate both analytically and numerically, such as Gaussians

1 2

(2.17) o) = = e { - 5 5)

or heavy-tailed Cauchy-type functions

1

2.18 = ——.
(2.18) v(0) = 7 Y
We will see in Chapter 5 that the Riemannian curvature tensor and sectional
curvature for the landmarks manifold can be expresses in terms of function v and its

first and second derivatives 7' and ~"”; therefore, for a specific choice of the kernel,
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from a computational point of view it is convenient to know how v and its derivatives
are related to each other. In the case of kernels of the Sobolev form, i.e. deriving from
an admissible Hilbert space with norm (2.1), such relationship is precisely provided
by (2.16); in the case of Gaussian type kernels (2.17) the first and second derivatives
are related to v simply by

(219) V()= -2 md (o) =5(Z% 1))

02 \o?
respectively; on the other hand, in the case of Cauchy kernels (2.18) it is easy to get

equations

(2.20) v (0) = —2a°07*(0) and  "(0) = 8a’0®y*(0) — 2a*¥*(0).

We will use these relationships later on in Chapter 5.

5. Further Generalizations

In this final section we shall briefly illustrate how the theory of landmark manifolds
that we have presented so far may be thought of as a particular case of a more general
approach to shape analysis, based on Lie groups of diffeomorphisms acting on shape
manifolds. Such general approach is presented in [36, 47| and here we shall limit
ourselves to summarizing it, noting that it is applicable to landmarks, images, planar

curves, surfaces, and currents [17].

5.1. Extensions to generic Shapes. Given a manifold Z of “objects” (e.g. land-
mark configurations, images, curves, etc.) consider a Lie group G that actson Z, i.e. a
map G XxZ — 7 :(g,I)— g-1. The group also acts on A = G x Z by the operation
GxA— A:(g9,(h, 1)) — (gh,g-I). Assuming we are given a left-invariant dis-
tance D(-,-) on A (i.e. D(g-a,g-a’) = D(a,d’), for alla,a’ € Aand g € G) this induces
a (pseudo-)distance on Z by defining: d(I,1") = inf {D((g,1),(9,1")) : 9.9’ € G}.

This simple idea can be applied to groups G of diffcomorphisms R” — RP
(with group operation @i = 1 o ¢) acting on shape manifolds Z, such as sets of
D-dimensional landmarks or images (described as scalar functions  : RP — R, with

D =2). In fact we can construct a left-invariant metric (-, ).y on A =G x Z, that
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keeps into account both the magnitude of the diffeomorphism generated by vector
fields on G and variations in the structure of objects in Z. There are several advan-
tages in designing a left-invariant metric on G x A (and not just on G): for example,
the resulting distance d on Z is tolerant to small group actions, so that object varia-
tions due to “noise” are neglected; also, we shall see later that in the case of image
matching the approach allows to variations in the image values themselves, and not
just in the geometry via a diffeomorphism of the domain. We should also note that,
from a purely mathematical point of view, left-invariance is a conditio sine qua non
for d to be a distance on 7.

The energy of a smooth path a : [0,1] — A : ¢+ a; = (g4, I;), IS

/ H dgt dlt

it turns out that since the metric (-, )¢, was constructed to be left-invariant, the

geodesic distance on A: D(b,b') = {\/E[a] : a(0) = b,a(1) = b'} is left-invariant

Eld] = dat

dt ;

0 (9¢,1¢)

with respect to G actions. By the simple construction above, we have that d(/,1") =
inf {D((g7 1), (g, ]’)) 19,9 € Q} is in fact a distance on Z. Using the left-invariance

of the metric it is often convenient to rewrite the above energy as follows:
1
dg; dl
Eld] = L ( )
[ ] /0 ( 9t ) dt’ dt ( gt7Lgt_1(It))

dg, FIANE
(dtt gtl’(Lgfl)*d_;)‘

(e:07"1)
ARl

1
(2.21) :/ <vt, (g7' 1) dt =: Elv, J],

0 dt
where we have set v, == % o gt € T.G and J; := g; - I; € T (we have indicated

dt

dt

2

(eth)

with L, both the left action on G x T and on Z, and with (Lgp)* the corresponding
pushforward map [28] on the corresponding tangent spaces). It turns out that the
pair of functions (g, I;) is uniquely determined by (v, J;), whence with an abuse of
notation we can indicate the above energy as E[v, J]. The induced distance on Z is
d(1,1") = inf {\/m v € T.G,Jo =1, Jy = I'}. We will now illustrate how this

general approach applies to the manifold of images and the manifold of landmarks.
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5.2. Examples. Depending on how the object space I is defined, on how the
diffeomorphism group G acts on it and on how the left-invariant metricon A =G x 7T
is constructed, the energy (to be minimized) takes different forms. For example, first
assume that manifold Z is the set of scalar images I : [0,1]> — R, that G is a group of
diffeomorphisms on [0, 1]* (that leave the boundary unchanged), and that the group
action is given by composition: g-1 = [ o g. Let V be the Lie algebra T.G of Lie
group G; we will assume that V' is an admissible Hilbert space (which is obviously also
a constraint on the group of diffeomorphisms G that V' generates). If the left-invariant

metric is such that

2 2 2
(2.22) lw. &)1, = ol + A /[ e

forall T € Z,v eV =T,G C C°(R?* R?), and £ € T;Z, then energy (2.21) takes the

Elv,J] = /Hvt}|vdt+)\//[l

which in the case of a Sobolev-type admissible Hilbert space V' looks like:

Elv, J| = / / Lvt ), ve(x >R2 dxdt+)\/ /
[0,1]2 [0,1]2

Note that the integrand in the second term on the right-hand side is the well-known

form

cn (V0| de dt,

a‘]t (VT )| de

optical flow constraint equation [19], or transport equation for J, so that the first
integral penalizes large variations due to the diffeomorphism of the domain, while the
second one penalizes violations of the optical flow constraint equation, i.e. variations
of pixel intensity along the flow. This also allows for matching two images with
different luminance values. The induced distance on Z between two images I and I’
is given by d(I, 1) mf{\/TJ v €T.G, Jy=1, J1—I’}

Assume now that Z is the space of landmark points, that is, the generic element
is given by I = (z1,22,...,2n), i € RP, with z; # z; for i # j. If G is a group
of diffeomorphisms R” — RP that leave the point at infinity unchanged, the group

actionis g- I = g7 1(I) = (97 (x1),...,9 (xy)) and the left-invariant metric is such
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that
2 2 al 2
10, ey = ol + 2D Nlillgo
i=1

forall I € Z,v eV =T,G C C®(RP,RP), and ¢ € T;Z = RPYN | then energy (2.21)

takes the form

dz
Elv,q] = //RD<LUt , ve( >RD da?dt+)\/ Z” d ) — v ))‘

where we have assumed that the admissible Hilbert space is of the Sobolev type;

2

dt,

R4

in the above equation we have indicated with ¢(t) = (q1(t),...,qn(t)) the set J; =
9" Iy = (g:(z1(1)), ..., g:(zn(t))). Once again, the induced distance on Z is given
by d(I,1") = 1nf{\/Tq v € T.G, q(0) = 1, q(1) = I’}. Incidentally, note
that the above energy coincides with (2.3) and the induced distance d(7, I’) coincides
with (2.4); that is, this was precisely our starting point at the beginning of this
chapter.
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CHAPTER 3

Momenta and Conservation Laws

In this chapter we will explore the structure of Hamilton’s equations for the Rie-

mannian manifold of landmarks and discuss the corresponding conserved quantities.

1. Hamilton’s equations

1.1. Generalities. It is well known from the theories of classical mechanics and
variational calculus [2, 4, 37] that for a system with n degrees of freedom the n

second order Euler-Lagrange equations for an energy of the type

Flq] = /01 L(q,q) dt,

namely

doL oL

Nl — — =
8-1) 1193, g,

1=1,...,n,

are equivalent to 2n first order differential equations, known as Hamilton’s equa-

tions, where the variables are positions ¢ = (¢',...,¢") € R™ and momenta p =
(p1,...,pn) € R™. The momenta are in fact defined as the variables
oL
i = N 7‘7 7‘2177n7
Pi= g (¢,4)

oL }
047047 1i,j=1

if the determinant of matrix [ is nonzero then the above system of equations
is (locally) invertible and we can write ¢; = ¢;(p,q), i = 1,...,n, or just ¢ = 4(p, q)

in a more compact notation. The Hamiltonian is the scalar function

. . )
4=4(p,q)

H(p,q) = [zn:]?z ¢ — L(q, Q)]
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as anticipated above, the Euler-Lagrange equations (3.1) turn out to be are equivalent

to Hamilton’s Equations:

OH

¢ = 8—pi(p,q),
. oOH
b = % - (p,9)

The flow determined by Hamilton’s equations is known as the cogeodesic flow [23].
The Hamiltonian function is always an integral of motion, i.e. it is conserved along

the cogeodesic flow, since

e =g i} =3 { - G ) =

This approach is very convenient when the variables live on a Riemannian man-
ifold M with metric tensor g(-), since in this case the Lagrangian and Hamiltonian

functions have a particularly simple form. In fact the Lagrangian is given by:

. 1 .
L(g,q9) = 54" 9(a ng q) ¢i 4j;

3,j=1

momenta are scalar variables

oL - ,
(3.2) p; = o7 = Zgij(q) ¢, i=1,...,n, ie. p=g(q)¢ in vector form,
i=1

and the Hamiltonian function is

1

(3.3) H(p.q) = 50" 9(a Z 9" (q) pi p;
,j=1
where we have indicated with ¢, 7,5 = 1,...,n the elements of the inverse of the

1

metric tensor, g(q)~", also known as the cometric tensor; in other words, it is such

that >, 9 (q) gjx(q) = 0}, (Krnonecker’s symbol). Hamilton’s equations are

. OH LI
i o — — ij )
(3.4) q . ;g (q) py
. OH 1 "L Oglk
(3.5) pi = g 2jk:1 o (9) pj i



for i = 1,...,n. Note that equation (3.5) is in fact equivalent to definition (3.2).
The geodesic flow on the tangent bundle 7'M is obtained from the cogeodesic flow by
the first of Hamilton’s equations. Being the Hamiltonian an integral of motion the
cogeodesic flow maps the set F, = {(q,p) eT*M: H(p,q) = c} onto itself for ¢ > 0,
so that the cotangent bundle T*M is partitioned into the level sets E., ¢ > 0. In
the following we will compute Hamilton’s equations in the case of the Riemannian

manifold of landmarks and explore the corresponding conservation laws.

1.2. The landmarks manifold case. The metric tensor (2.11) of the Riemann-
ian manifold of landmarks is, in fact, the inverse of a matrix (whose non-zero elements
are given by the Green’s function of a differential operator) which makes the Hamil-
tonian approach especially convenient since the Hamiltonian function itself (3.3) is
expressed in terms of the cometric tensor. A slight complication comes from to the fact
that the variables ¢"* introduced in Chapter 2 have in fact two indices, i = 1,..., N
and k£ =1,...,D, the former indicating the landmark label while the latter refers to
the dimensional component of the single landmark; the dimension of the Riemannian
manifold Z is n = DN.

Equation (2.10) of Chapter 2 can be rewritten as

d® () = (S(q(t)) n %) pw(), k=1,....D

so that (omitting the time argument) the single components are

T 6 .
(3.6) ql’:Z<G(ql,q])+7)pj,k, i=1,...N, k=1,....D:

j=1
they can also be expressed in the convenient compact form

N N
(37) qz = Z(G(qz>q])+7>pjv izlv"'aN7

j=1
where both the left-hand and the right-hand sides are 1 x D row vectors. Before

proceeding to the derivation of the second set of equations (3.5) we will introduce

some useful notation.
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Given the block-diagonal nature of the DN x DN metric tensor g, defined in (2.11),

it is convenient to write its generic element as gjqj, with 4,7 = 1,..., N and a,b =
1,..., D, where:

1 = row index within a N x N block; a = index of row block;

7 = column index within a N x N block; b = index of column block.

For example, with the above convention in the simple case N = 3, D = 2 the elements

of a tensor ¢ would be ordered as follows:

g1111 G1121 g1131 | 91112 G1122 91132
92111 92121 92131 | 92112 g2122 G2132

g3111 93121 93131 | 93112 g3122 G3132

(3.8) 9=

g1211 Y1221 91231 | 91212 G1222 G1232
92211 G2221  G2231 | 92212 G2222 §2232

93211 93221 g3231 | 93212 g3222 §3232

In general, by Theorem 2.7 the metric tensor for the landmarks manifold is

g(q) = diag{ R(q),...,R(q) }

D times

where R(g) is the N x N matrix (S(q) + %)71 (so that in the above example only
the two 3 x 3 diagonal blocks of matrix (3.8) would be non-zero). Therefore, if we
indicate the generic element of R(q) with with R;;(q), ¢,7 = 1,... N, we have that

the elements of metric tensor g can be expressed as
giajb(q):Rl-j(q)(Sab, i,jzl,...,N, a,bzl,...,D

where d,, is Kronecker’s delta. We can employ analogous notational conventions for

the inverse of the metric tensor, namely the elements of g(q)~! can be written as

giajb(q):Rij(Q)(saby i)j:]-)"'vNa avbzlﬂ"’7D’
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where R(q) is the generic element of the inverse of R(q). Since R(¢q)™" = S(q) + 4

we have that RY(q) = G(¢*,¢’) + ‘%j, so that the cometric tensor becomes:
iajb i g 5ij b .o
9" (q) = (G(qz,q])+7> & ij=1,...,N, ab=1,....D.

With this notation we may rewrite the first set of differential equations (3.6) as

N D
ZZQZ‘”I’ q) Dib i=1,....N, a=1,...,D,

7j=1 b=1

which are formally consistent with (3.4), so that (3.6) are precisely the first set of
Hamilton’s equations, with n = DN.

The notation introduced above will be especially useful in the computation of
curvature for landmarks manifolds, which will be done in Chapter 5. In any case we

have that the Hamiltonian function of the system can be expressed as:

N D

1 T -1 1 iajb
Hpa) = 5p79@7'p = 520 > ¢ (@) piapis
1,7=1 a,b=1
N D N D ;s
1 i g idy 1 i g 0"
- 3 DS <G<q q') + X) 0" piapis = 3 > (G(q q') + 7) PiaPja
1,7=1a,b=1 4,j=1 a=1
that is:
N
1 (5’
(39) 5 Z ( )\ ) <plapj>]RD .

Note that G : RP? x RP? — R : (§,n) — G(&,n), the chosen Green’s function

(i.e. the kernel of space V'), is a function of 2D real arguments:

G(f?”) = G(€17£27 ctt 7€D7/’71?7727 R 7/'7D);

from now on we shall indicate with ggGé its derivative with respect to the /' component

of vector £ € RP. Also, we will indicate with V¢G : RP? x R” — RP the row vector:

VeG(E,n) = 351(5 ) 852(5 ) (%D(é“ )
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As we said in Chapter 2, Green’s function G is of the form G(&, 1) = v(|[¢ — nl|rp),
for some v : [0,00) — R; if this is the case, then:

¢ —n'

3.10 >
(3.10) =l

(5 n) ="(I1€ = nllrp) ¢(=1,...,D.

agf

We now have all the machinery to state and prove the following result.

PROPOSITION 3.1. The DN first order ordinary differential equations hold:
N
. oG, |
(3.11) ka:—jE:l —agk(q,qjﬂpi,pj)RD, i=1,....N, k=1,...,D.

Therefore Hamilton’s equations for the Riemannian manifold of landmarks are

. N Y
¢ = Z(G(Q’,q])JrT)pj

(3.12) = i=1,...,N.
b= =) VeG(d'. @) (pip)mo

j=1
PrOOF. The first of equations (3.12) is simply given by (3.7), which derives di-

rectly from the definition of momenta. The second of Hamilton’s equations is:

. OH 1 &
Pir = azk:p’ ——52

( ")+ %) (p; pe>RD

= Zagk ¢, @) {pip;)go

fori=1,...,N and k = 1,..., D, which coincides with (3.11). Such equations can

be written in the compact form given by the second of equations (3.12). O

2. Conservation laws

As we mentioned above the flow determined by equations (3.12) is called the co-
geodesic flow: the geodesic flow on the manifold Z is determined by the solutions ¢‘(-),
1 =1,..., N of the above equations. The Hamiltonian function is constant along the
solutions of (3.12), so that the cogeodesic flow partitions the cotangent bundle into

the level sets of H(p, q).
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The structure of the system of equations (3.12) is such that, in fact, other
quantities are conserved along the flow. Before describing such integrals of mo-

N

tion we will quickly introduce some more notation. If (pi(~),qi(-)), i =1,...,

are solutions of (3.12), let ¢; : RP” — RP be the time-dependent diffeomor-

phism ¢, (€) £ @8, (€) induced by velocity field v,(€) = SN | pi(t) G(& ¢ (1), t €[0,1],
¢ € R”. We will denote the components of such diffeomorphism and the velocity field

as @i(&) = (¢1(€),-.., 9P () and v,(&) = (v} (§),...,vP(€)), respectively. Let Dy,

be the Jacobian matrix of the diffeomorphism, i.e.

dp;  Opp o0}
o 2
A o€l 0€2 l6}
(3.13) Dg(§) & | = = %
ey Opp dep
T N

Note that Dipg(€) = id (the D x D identity matrix) for all £ € R, since ¢(€) = £.

The following important result holds.

PROPOSITION 3.2 (Strong Conservation Law). Assume A = oo (exact matching

problem). Then it is the case that

(3.14) szk agg (¢:(0)) = pie(0), i=1,...,N, (=1,....,D

for all t € [0, 1], which may be written in terms of (row) vector and matriz multipli-

cation, as'

(3'15) pi(t) 'Dgpt(Qi(O)) :pi(o)’ i=1...,N
for all t €0, 1].

'In differential-geometric, coordinate-free notation the conservation law (3.15) may be written
as [got (qz(O))] “p; (t) = p:(0), where the upper star denotes the pullback map [28] applied to cotangent

vector p;(t) € T\ Z.

qi(t)
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PRrROOF. Since D¢y = id the proposition holds for ¢ = 0. We claim that the time
derivative of the left-hand side of (3.14) is zero. In fact,
(3.16)

89075 ; - a@t j 9 agpt j
i Z 0 = i ‘(0 “(0 ;

dt{zpk et 0O | =3 () 52 (610) +2is) e 5 410)
we now want to compute the last term on the right-hand side of the above expression.
Since ¢(+) is the diffeomorphism induced by the velocity field v,(-) we have that

%(f) = v (p1(€)), k=1,..., D, for all £ € RP. Whence by the chain rule

9 O¢; 9 D vy o
age (r;Ot (&) = ge Ut (@t(@) = mZ:1 ?U(got(g)) 8(25 (), £ R,
since vf () = ] 1P] g ( G(x, ¢ (t ) x € RP, the above expression becomes
0 890'5 -\ j oy D
pj, —(@u(6), ¢ () (&), E£eR”
88 375 mzjl; (t 85 ) O’

In the case of exact matching ¢;(¢*(0)) = ¢*(t), so for £ = ¢*(0) we get:

3((2@ 8;;: i( Z ij,k(t) gg—i(qi(t), I(t)) ag;tf (4'(0)).

m=1 j:l

(3.17)
On the other hand, by Proposition 3.1,

D N 5o '
(3.18) pialt) == 22D~ 5 (a0, 0 () i) Pin(t),

fori=1,...,N and k =1,..., D. Inserting equations (3.17) and (3.18) into expres-
sion (3.16) finally yields:

d [ & Dk
{0 5 o) }
k=1
D DN ooa Dk
- Z{—Z 2 (0(0), (1)) Pian(8) Pian () S (0 (0)
k=1 m=1 j=1 5 86
b oG R
1 — (¢ ) - (0 = 07
el 303l g 000 G )}
where we have implicitly relabeled some summation indices. 0
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Since ¢; is a diffeomorphism for all time ¢ € [0,1] we have that its Jacobian

matrix Dy, is invertible for all ¢, which immediately implies the following result.

COROLLARY 3.3. Assume A\ = oo. If p;(0) = 0 for some index (landmark) i €

{1,..., N}, then the corresponding momentum is such that p;(t) =0 for all t € [0, 1].

We should also note the strong conservation law for momenta and the system
of differential equations (3.12) are, in fact, equivalent; more precisely, the following

proposition holds.

PROPOSITION 3.4. Assume A\ = oo. If differential equations (3.7), which are
equivalent to the definition of momenta, and conservation laws (3.15) hold for allt €

[0, 1], then so do differential equations (3.11).

ProoF. Differentiating equations (3.14) with respect to time yields:

N

Y

N T 9 opk i=1,...,
- Z{pi,m)a—g(q 0) +11alt) e (000 | e

Inserting equation (3.17) from the proof of Proposition 3.2 into the right-hand side

of the above expression yields the equations:

me%ﬁz(i(o» Dm0 3 an) i (00 4'0) G (60)
-3 S 00 S 0 0) 0

fori=1,...,Nand ¢ =1,...,D. Indicating with g?; the ¢-th column of Jacobian

matrix (3.13) the above equations may be written in terms of vector multiplications:

pit) - g—?ﬁ(qi@)) == (pi(1),0;(1))p VG (' (1), (1)) - g—(gﬁ(q"(O)),

j=1
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which again hold for ¢ =1,..., N and £ =1,..., D. Whence:

N

pilt) - Dey(¢'(0)) = — Z (i), pi(t))gp VG (d'(1), ¢ (1)) - Doy (q'(0)),

7j=1
for i = 1,..., N; such equations imply the second set of (3.12), and whence (3.11),
by the invertibility of the Jacobian matrix D¢y, (ql(O)) OJ

At this point one could employ Emmy Noether’s Theorem [2, 4, 37] and use the
symmetries of the metric tensor (specifically, translation- and rotation-invariance) to
prove the conservation of linear momentum and angular momentum. We will prove
such conservation laws directly, simply by manipulating differential equations (3.12)

and the general form of the kernel G and its partial derivatives (3.10).

PRrROPOSITION 3.5 (Conservation of Linear Momentum, or First Weak Conserva-

tion Law). For any choice of smoothing parameter A, the quantity

N
(3.19) Pp) 2 i,

i=1
which is a D-dimensional vector, is conserved in time.

PROOF. Summing the set of equations (3.11) over index i yields:

N N

, G
> Pk = — —8§k(q,q])<pi,pj>u@
i=1

ij=1
N N N
(3.20) = _Za_gk@ ) pillio =D agr (4 @) e pi)eo.
i=1 i=1 j=1
2
for any £ = 1,...,D. Since %(z,x) = 0 for all x € RP the first summation

in the above expression is identically equal to zero. On the other hand, by (3.10)

oG

we have that a—gk(m,y) = —g—g(y,x) for all x,y € RP with  # v, therefore the

second summation in (3.20) is also zero since all the terms are pairwise opposite. In

conclusion, Zfilpi,k = 0, so that

N N

S i)=Y pin(0),  k=1,....D, telo1].

i=1 i=1
Writing the above equalities in vector form proves the proposition. 0
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PROPOSITION 3.6 (Conservation of Angular Momentum, or Second Weak Conser-

vation Law). For any choice of smoothing parameter X\, if D > 2 the scalar quantities

N

(3.21) La(p.q) 2 ) (0" piv — ¢""pia) = (4 0w))gn — (47 P(@) g
i=1

defined for a,b=1,..., D, with a < b, are conserved in time.

PROOF. Let RY(q) = G(q', qj)—f—%j. Differentiating (3.21) and using (3.12) yields:

N
ELab B ZZI {d"pip — @""Pia + " “Pip — ¢""Pia }

= Z { Z RY (pj,apz’,b - pj,bpi,a) +q" " Pip — ql’bpi,a} = Z {qz’apz',b - qz’bpz',a}7
i=1

i=1 ~ j=1

where we have used the symmetry of RY. Whence

d Yoo Xoag .. - Xoog .
TLa = ) {qz’“za—g,(q’,q])@i,pﬁw — gy 5 (ql,qf)<pi,pj>RD}
i=1 j=1 =1
N
8G . . 06 .
— . . D L,a ~ T 2 J\ Z,b_ ) 7
i;ﬂ(pz,pgm {q agb(q"” q afa(q,q)},

and by (3.10):

d N "(g* = ¢ - . o .
_Lab — Z <pi7pj>Rny (Hq q HRD) {qz,a <q1,b _ q],b> _ qz,b(ql,a _ qj,a)}

dt — g = ¢/llro
N / i j
7 (lg" — &[lro ha ib | b o
= > (pipjwo ( — >{—q’ 7"+ }
Pyt l¢" = @ llre
which is identically equal to zero by the symmetries of the first two factors. O

Note that the linear momentum and angular momentum conservation laws consist,

D

respectively, of D and D(% scalar conservation laws; taking into the account the

fact that the Hamiltonian (which is a scalar) is also conserved, the cogeodesic flow,

D(D-1)

i.e. the dynamics of (p, ¢), takes place on a space of dimension 2DN —1—D — =5—.
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CHAPTER 4

Curvature in terms of the Cometric Tensor

In this chapter we compute a formula for the Riemannian curvature tensor and
the sectional curvature for a generic n-dimensional Riemannian manifold M in terms
of the elements of the cometric tensor (i.e. the inverse of metric tensor); also, we
will show how sectional curvature can be written as a ratio of quadratic forms on
the space of alternating 2-forms on 7, M, which may also be expressed in terms of
the cometric. An accessible text on alternating forms is [21]. Classic references
for differential geometry are, for example, [11] and [27] (we shall use the notation

introduced in the latter); a modern, more advanced text on the topic is [23].

1. Motivation

We saw in Chapter 2 that when shape is modeled as a labeled N-tuple of land-
marks in D dimensions the corresponding metric tensor, when written as a ma-
trix g, turns out to be the inverse of a positive definite matrix: that is, we may
write g(q) = (diag{S(q) + 4,80 + %})1, where the elements of S(q) are
computed by evaluating a given Green’s function at different locations.

Under these circumstances calculating sectional curvature in the traditional way,
i.e. by computing Christoffel symbols and their partial derivatives, turns out to be
a formidable task since it involves computing successive derivatives of the inverse of
a tensor. Therefore it would be convenient to have access to a formula expressing
sectional curvature (and, more in general, the Riemannian curvature tensor) in terms
of the derivatives of the inverse of g, that are more easily computed.

The spirit of the current chapter is precisely to express geometric quantities for a
generic Riemannian manifold M of dimension n in as functions of the cometic tensor.

In particular, we will solve the highly non-trivial problem to provide a formula for
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the Riemannian curvature tensor and the numerator of sectional curvature (see next
section) in terms of g%, 32 ¢, and 52— g%, with i,7,k,¢ = 1,...,n. In the last
part of this chapter we will express sectional curvature as the ratio of quadratic forms
on the space of alternating 2-tensors A?*(7,M), which will allow usa to formulate
the problem of finding bounds for sectional curvature as a generalized eigenvalue
problem. In the next chapter we will apply these formulas to the metric tensor of
the landmarks manifolds. For the sake of notational compactness, from now on we

shall use the simple symbol 0; in lieu of

b . .
57 ¢ =1,...,n. Moreover we will employ
Einstein’s summation convention: that is, an index occurring twice in a product is to

be summed from 1 to n; for example, X*9; is an abbreviation for > | X*d;.

2. Generalities on the Riemannian Curvature Tensor

Suppose that M is an n-dimensional Riemannian manifold with metric tensor g.
If we consider a local chart (U, ) on the manifold with coordinates (z',...,z") the

metric is represented by a positive definite, symmetric matrix

[gz'j(f)]i,j:L...,n

where the coefficients depend smoothly on x € ¢(U) C R". The product of two
tangent vectors X,Y € T,M, with X = X'0; and Y = Y9, is

(X,Y)p = g5 (2(p)) XY
in particular, g;;(z(p)) = (0, 0;)p-

NoOTATION. We shall denote the partial derivatives of the elements of tensor g as

. A 0 A H? .o .
follows: Gij ke = Wgzj and Gij ke = ngjﬁ for 7, l{?,g = 1, oo, n.

Indicating with 7 (M) the space of smooth vector fields on the manifold M, let
V:TWM)xT(M) — T(M) be the Levi-Civita connection of the Riemannian
manifold. The Christoffel symbols are defined by V5,0, = rfjak. It is well known

that they have the form: Ff"j = %g“(gie,j + gjei — Gije)- The Riemannian curvature
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endomorphism is the map R : T (M) x T (M) x T(M) — T (M) defined by
(4.1) R(X,Y)Z =VxVyZ — VyVxZ — Vixy Z.
In local coordinates R(0;,0;)0k = Rfjk(?g, and
Rijim = (R(8;,0;)0k, On) = gmeRijp-
The Riemannian curvature tensor acts on vector fields as follows:
(4.2) R(X,Y,Z,W) = (R(X,Y)Z,W)

and in coordinates it is written as R = Rl-jkmdxi ® dr? @ dz* @ dz™. The Riemannian

curvature tensor has a number of symmetries:

(4.3) Rijie = —Rjine, Rijie = —Riju,
Rijke = Ryeij, Rijke + Rjkie + Riije = 0,
the last of which is known as the first Bianchi identity.

With the above conventions, the sectional curvature associated to a pair of non-

parallel tangent vectors X and Y is given by:!

R(X,Y,Y.X) (R(X,Y)Y,X)
(4.4) K(X)Y) = =
X2 = (X, )2 XTI = (X, )2
Rijm XYIYEX™

IXIPIY]]? = (X, Y)?

!The notation described above is the one adopted by Lee [27]. Other authors use different
sign conventions, however in a way that the definition of sectional curvature eventually agrees in
sign with (4.4). For example, Jost [23] defines R(X,Y)Z in the same way as above, but then
defines the coefficients of the Riemannian curvature tensor as follows: R;jkm = (R(0;,0;)0m, k),
i.e. with a sign that is opposite to Lee’s convention; however, Jost eventually defines the numerator
of sectional curvature as RijkainXkY"”, so that it agrees in sign with (4.4). On the other
hand Do Carmo [11] defines the Riemannian curvature endomorphism as follows: R(X,Y)Z =
VyVxZ — VxVyZ + Vxy)Z, that is, with a sign that is opposite to (4.1); the coefficients are
then defined formally as in (4.2), R;jkm = (R(0;,0;)0k, Om) so that their sign is in fact opposite
to our convention (they coincide with Jost’s); but then the numerator of K(X,Y) is set to be
equal to R;jrm X' Y7 X kY™ so Do Carmo’s definition of sectional curvature is eventually consistent
with (4.4).
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note that the denominator is always positive by the Cauchy-Schwarz inequality.
There are different ways of expressing the Riemannian curvature tensor in terms of

the metric tensor g; the following proposition turns out to be useful for our purposes

since it provides an expression that does not require to compute derivatives of the

Christoffel symbols. The proof that follows is an adaptation from one found in [29].
PROPOSITION 4.1. The following expression holds:
(4.5) 2Rijkm = Gikjm + Gjmik — Gikim — Gimgk + 21550 9rs — 21515, Grs.
PRrOOF. From the definition of the Christoffel symbols, Vp,0; = Ffjak,
2(V5,05,0m) = 2050k, 0m) = 2U50me = Gmed" (giej + Giei — Gijie)
= 01,(Giej + Giei — Gije) = Gimg + Gimi — Gijm ;
an appropriate rearrangement of the indices yields the following expression:
(4.6) 2(Vo,0k, Om) = Gjmk + Gkmj — Gjkim -
By the metric compatibility of the connection we have that
0i{Va,0k, Om) = (Va,Va, 0k, Om) + (V,0k, Via,0m),
whence, by (4.6),
2(Va, Vi, 0k, Om) + 2(Va,0k, Vo,0m) = 20;(Va, 0k, Op)
(4.7) = 0i(Gjmpk + Gkmj — Gikm) = Gimki + Gkmji — Gikmi -
By switching ¢ and j we also have that
(4-8) 2<v8j Vaiaka am) + 2<V6i3k;, Vaj am> = Gim,kj T Gkm,ij — Gikmj -
Combining (4.7) and (4.8) yields

2(Va,Va, 0, Om) — 2(Va; Va,0k, Om)

Gimki = Gjkmi — Jimkj + Jikomj — 2(Va,0k, Vio,0m) + 2(V, 0k, Vo, 0m).
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But by definition R(0;,0;)0k = Va,Va,0r — Vi, Vi, 0k, whence
2Rijrm = 2(R(0;, 0j) Ok, Om) = 2(Va,Va, 0k, Om) — 2(Va, Vo, 0k, Om),
so we have proven that
(4.9) 2Rijkm = Gjmki — Gjkmi — Jimkj + Jikmj — 2{Vo,0k, Vg,0m) + 2(V,0k, Vo,0).
By the definition of the Christoffels,

<v8iak7vaj8m> = <F:ka I3 8) = sz]-—‘;mgrsa

T Jm S

(Vajak,%i@m) = <F§k8r,1“fm88) = F;kl—‘fmgrs.

Inserting the above expressions into the right-hand side of (4.9) finally yields (4.5). O

NOTATION. For any pair of tangent vectors X,Y € T, M we shall denote

with I'(X,Y') the following vector in T}, M:
I(X,Y)£T5XY0,,
where the Ffj are the Christoffel symbols for metric tensor g.

Given the above notation the numerator (and the sign) of sectional curva-

ture K (X,Y) may be computed using the following result.

PROPOSITION 4.2. The following expressions hold for any pair X,Y € T,M:
2R(X,Y,Y, X) = —(XV7 —Y'XI) gy jm( XY™ — YEX™)
+ 2|D(X, V)| = 2(D(X, X), (Y, Y)).

Proor. We have that
—(XYT =Y X)) gige i (XFY™ — YEX™)
= — X' XYY" gt im + XYEYIX g i + Y IXEXTY g i — YYEXTX Mgy o,
= 2X'YEYIX " gip jon — X XYY " Gige o — Y Y P XTI X i
= XY*YIX™ g + XYY X i — X XYY F G i — YIVEX X ™ Gk im

= X'YyExm (gik,jm + Gjm,ik — Gim,jk — gjk,im)-
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As far as the Christoffel symbols are concerned,
grs X YIYPXT LTS = (X'Y*TL0,, Y/ X™T%, 0,)
= (N(X,Y),I(X,Y)) = [FX, V)|
and
grs X YIYPX™ T TS = (X'X7T5,0,,YYM,0,) = (D(X,X),D(Y,Y)).
This completes the proof. 0

3. The dual Riemannian Curvature Tensor

One of the purposes of the current chapter is to provide a formula for the nu-
merator of sectional curvature (4.4) in terms the elements of the cometric tensor and
their derivatives g, ¢s | and ¢, , i,7,k,£ = 1,...,n. The key idea is to define
a “dual” curvature tensor by raising the indices of the Riemannian curvature tensor
defined and described in the previous section. That is, if we define the coefficients
of the dual Riemannian curvature tensor as R“*’ £ Rijem g™ ¢’"g" g™ and for an
arbitrary pair of tangent vectors X = X'9; and Y = Y'0; we consider the cotangent
vectors X” = X;dr' and Y’ = Yd2', with X; = g;X’ and Y; = g,;Y7 (the “fat”
perator b : T,M — T;M lowers the indices of a tangent vector [21, 28]), then the

numerator of K(X,Y) may be rewritten as:

(RXY)Y,X) = RiyunX'YY'X™ = Rijng"¢" 99" XY, Y. X,
(4.10) = R"'X, Y, Y, X,.
In this section we shall factorize the tensor coefficients R;jx,, in the following way:

(411) Rijkm = Giu 9jr ks Gmo Rursv’

and express RY*Y in terms of ¢¥ and its first and second partial derivatives. In
the section that follows we will compute the action of the dual tensor on the cotan-
gent vectors (X°,Y”, Y’ X°), which will cause drastic simplifications and provide a

surprisingly simple formula for the numerator of sectional curvature.
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In Proposition 4.1 we proved the following general formula:

(4.12) 2Rijkm = Gikjm + Gjmiik — jkim — Gim,jk + QFﬁgrfmgw - 2F§’kffmgw :

The key idea is to try to factorize each term of the above formula in the way that is
suggested by (4.11). We will start with the terms that involve the first derivatives of
the metric tensor, i.e. the Christoffel symbols on the right-hand side of (4.12).

3.1. First derivatives. If we write the metric tensor as a matrix we have
that ¢ = Q7!, so that? 0,g = —Q'-9,Q - Q~'. In index notation the first par-

tial derivative is given by
rs,
9imk = —G9jr9 1 Gsm -

By the above formula we may rewrite the Christoffel symbols in (4.12) in a way that

is suitable for our purposes.

2This expression generalizes the fact that for a scalar differentiable function f : R — R of

the form f(z) = ﬁ its derivative is given by f'(z) = —g;(é)) In general, recall the definition

of differential: if € is an open set in R™, ¢ maps 2 into R™, x is in 2 and there exists a linear
transformation A € L(R™,R™) such that |¢p(x + h) — ¢(x) — Ah| = o(|h|), then we say that ¢
is differentiable at z and we write d¢(x) = A (see [41] for details). The definition can be easily
extended to matrix-valued functions (and in fact to maps between Banach spaces). If a function f
is defined as f : GL,(R) — GL,(R) : A— A~! (note that GL,(R) is an open subset of R"*") then
its differential computed at a point A € GL,(R) is the linear operator df (A) € L(GL,(R), GL,(R))
defined as df (A)B = —A~'BA~!, for all B € GL,(R); in fact it can be proven that ||f(A+ H) —
f(A)+ ATTHATY|/||H|| — 0 as |[H| — 0, for example by using the matrix inversion lemma [25].
If f is composed with a differentiable function h : R — GL,(R), i.e. if we define 1) = f o h, then the
differential of 1 computed at a generic point z € R is a linear operator diy € ,C(]R, GLH(R)) (simply
representable as a matrix) that can be calculated via the chain rule, i.e. di(z) = df (h(2))dh(z). In
the case of f(A) = A~! this yields di(z) = —(h(z))flh’(z)(h(z))fl.
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For example,

Iy, = %gd (g5ek + Gons — Gjne)
= % 97 (= 950 9% 9t — 900 9™ 9ok + 9ir 9 Gsk)
- %(gjr 979" 9ok — 950 9% 67 =67 975 gar)
- %(gjr 97 9" g — 9ir 975 — 97 Jsk)-

We can extract factor g, g5, from the first of the three terms above, but we need to
manipulate the other two in order to be able to do the same with them. We have
that g™, = ¢'%, 0% = g"%, g% gs and similarly 97 =97 05 = ¢%°, 9" gjr, whence

the above may be expressed as

1 rs st 7 r S
(4.13) Do = 50r(0”9" —0d"0 = 9" 9% g

As far as the remaining three Christoffel symbols in (4.12) are concerned, by appro-

priately relabeling the indices we obtain the following:

1 uv (3 U U v

rv = §giu(gwg s =" 9" — 9" 6% ) gom
1 us S U U S

re = 5%(9“’“9 s =9 — 9" 9% ) gsn s
1 rv (3 T T v

I, = 5%(9“9 s =39 —a" 6" ) Gom -

It is convenient, at this point, to define “anti-Christoffel” symbols, or dual

Christoffel symbols, in the following manner:3

(4.14) fzs iy %gw}(gscpé gf,r _i_grcpé gés . grs,g g&@)_
NoOTATION. If we also define:

(4.15) gk égij,5 g% and gkt & gij%n gEk gt

3Given the form of expression (4.13), perhaps it would make more sense to add a minus sign
in front of definition (4.14). In any case this is rather irrelevant for our purposes, since on the
right-hand side of (4.12) we have the products of pairs of Christoffel symbols so that, in substituting
the definition of the dual Christoffels in such products, opposite signs would cancel.
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then the dual symbols assume an aspect that is formally analogous to the traditional
definition of Christoffel symbols:

~ 1
FZS — §gu¢ (gsgo,r + grcp,s . grs,tp)‘

With the above notation and using the obvious fact that g,y = g,y 9”7 g5y We may

rewrite the last term of the right-hand side of equation (4.12) as follows:

1 rs r s s ,
_2ka F;pm oy = — égjr Gks Giu Gmo (g é gé“" —q Saé g£ —g Sﬁé gf )gcpp

9" 9oy (9" 9 — 9" 6% — 9" g*)

= — Giu gj?“ ks 9mo 2 F;s F;w gpa’

whereas the second-to-last of the same formula becomes
2 F;pk F;pm g<,01/1 = Giu 9jr Gks Gmo 2 FZS ng gpo.
Note that we have precisely achieved the desired factorization, as in (4.11).

3.2. Second derivatives. If we write the metric tensor as a matrix g = Q! its
second partial derivative is 0,0,9 = Q‘1~(8yQ-Q_1~8$Q+8$Q-Q_1-3yQ—8y8$Q) Q7

or, in index notation,

T\, v, T, v, TV, .
Gimri = 9ir(07% D g™ + 9% 9w — 0w ) Gom

some manipulation is in order so to achieve the factorization that we desire.

We have that:

rA, v, TA, v, T,
Gim,ik = GirImo 55515 (9 ¢ 9 gu ¢ +g € 9 g“ ¢ 9 ¢ )

) T, v, A, v, T,
= GjrGmo Giuhs 99 (97 9" + 9% g™ — 9" )

= giuTjrGusgmo [(97% 9 9o (0" %) + (97 9%) 9n (0" 5°) — 9" 9°"9%°]

AU R rv,su)

= GiuGjrGrsmo (979 9+ TV o ¢ — g

I
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where we have used definitions (4.15). Note that this is exactly the factorization (4.11)
we needed. So the first four terms on the right-hand side of (4.12) may be rewritten,

respectively, as follows:

rAU r\,S LU,

D"+ 9o g

rv,su)

9imki = GiuGjrIksGmo \g —4g

)

U U, T JTERY)

D9+ 9w g — g

su,rv)
;

Gik,jm =  YGiuGjrGksdmo \g

usv

— Mo " + g

TS, uv)

(

(
—Gikim = GiulirGrsGmo (— 97

(-

—Gimjk = GiuGjrGksGmo g g)\# g,tws QUA’SQ)\;L g;w,r + guvms),

where the last three are obtained just by appropriately rearranging the indices. Again,

we have achieved exactly the factorization that we wanted.

3.3. Expressions for the dual Riemannian Curvature Tensor. Inserting
the formulas we have computed in the above subsections into the right-hand side

of (4.12) and comparing the result with (4.11) yields the following formula:

(416) 2R’U/f‘81} I grv,us _ gus,rv + gT‘S,’U/U _|_ guv,rs + QFZUfgSng _ 2f;$fg/{}gp0

U, T JERY

+ M 0" = I 9+ 9N G 9 — 9N g

U,V gp,s,r S, u UA,S po,r

+ Mo 9"+ Mg — g9 9" = "M g g

In other words the structure of R**" is formally analogous to the one of Rk, ex-
pressed by formula (4.5), except for the eight “correction terms” that appear in the
last two lines of (4.16). Note, in particular, that the last four terms could be combined
with the products of dual Christoffel symbols that appear in the first line. However,
inserting the definitions of the Christoffel symbols so that they can be combined with
the last four terms above is not that convenient, since the last four terms in (4.16)
do not include any of the derivatives of the type g%, ¢“*¥, ¢"%% or g**¥, therefore
doing so does not yield any significant simplification: in fact the two products of
Christoffel symbols correspond to eighteen more elementary terms, only four of which

can be combined with the four terms in the third line of the above expression. Also
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note that the terms in the second line of (4.16) do not combine with anything else
but stand by themselves.

We will now introduce some useful notation which will later ease the computation
of sectional curvature in terms of the cometric tensor and its partial derivatives.
Define B £ gy ¥ and consider the cotangent vectors B“ = Bgrda¥ € TyM,
in such expressions indices v and v do not commute. The cometric, i.e. the inner
product of cotangent vectors of this type in the cotangent space T;M is given by
(B**, B¥") = B&' By (dx?,dx?) = BLUB)"g#¥ = g™ gne g°>". Similarly, let I =
f};” dx? € T; M so that (Twv Tsry = fzvffﬂd:c@, dz¥) = f;”ff[g‘w. Note that with an
abuse of notation we have indicated the cometric with (-, -), i.e. using the same symbol
that we had used for the metric in previous sections. Also, for any pair of tangent
vectors and the corresponding cotangent vectors X’ = X, dz?, Y? = Y;da' in T » M
define a new vector B(X" Y”) € Ty M as follows: B(X*Y") £ X,)Y, By dx¥; again,
note that in such definition X” and Y? do not commute. For a given set of dual
Christoffel symbols, in an analogous fashion we define: f(X " Y?) £ XY, fg” dz¥, in
which case X” and Y’ do commute.

With the above conventions we have that (4.16) can be rewritten as follows:

(417) QRUrSV — _grv,us . gus,rv + grs,uv + guv,rs + 2<frv’fus> . 2<’f7"s’fuv>
+ <BT7U,BU’S> o <Br,u’ Bs,v) + <Bu’T,BS7U> o <Bu,r’ Bv,s)

+ <BT’S,BU’U> 4 <BU’U,BS’T> . <BT’U,BS’U> o <Bu’S,BU’T>.

Using the above expression one can easily verify that the dual tensor satisfies identi-
ties R4SV — — Rursv Rurvs — _ Rursv Rsvur — Qursv and Rursv L Quser 4 Ruvrs — ()
for any choice of the indices u, 7, s and v, which are analogous to symmetries (4.3)
for the regular Riemannian curvature tensor. Equation (4.17) can be manipulated
fairly easily to compute the numerator of sectional curvature (4.4). In fact in the next
section we will multiply it by the components of cotangent vectors (X, Y’ Y?, X?),
many simplifications will occur and the numerator of (4.4) will finally take a sur-

prisingly simple and elegant form (in terms of the cometric tensor and its partial
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derivatives). However, it is actually convenient to have a “full blown” expression for
the dual tensor: the reason why this is the case will be made evident is section 5 of
the current chapter, where we will find bounds on sectional curvature as the solution

of a generalized eigenvalue problem.

PROPOSITION 4.3. The Riemannian curvature tensor with raised indices R""Y

may be written in function of the cometric tensor and its derivatives as follows:

(T1> QRUTSY — _ grv,su + grs,uv o gus,rv + guu,rs

(T5) _ % { G GG — g (g 4 gty — g (g gw)}
(T) n % { G TG — g (g7 + ) — g (g7 + ggps,u>}
(T4) — %(g“‘””s — 9%7) gy (977 — g**)

(Ts) + %(g‘”“’s = 97"") g (67 — g7"")

(To) + (7" = g7") g (67" — 97),

where, as usual, g% £ g7, g% and gkt £ g gk gnt,

REMARK. From now on, we shall refer to the six terms in the above proposition
as Ty, ..., Ts. Before proceeding to the proof we should note that we have achieved
expressing the dual Riemannian curvature tensor in terms of the cometric tensor; the
metric tensor (with “dummy” lower indices ¢ and 1)) still appears in terms Ty, Ts

and Tg, which will later reduce to only one in the formula for sectional curvature.

PrROOF. We will expand and recombine the terms in expression (4.17). Clearly
the terms involving second derivatives need no manipulation. We can expand the
Christoffel symbols as follows:

2<fus’ frv> — [(gcpu,s 4 ggos,u) . gus,cp} gcpn g'r]a gcn/) [(g'gbr,v + ggov,r) - grv,@b},
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that is:

2<fus7 fr'u> — {gus;7 gnagrv& o gus;b (91/”":7) 4 ng,r) _ grvép (ggou,s + ggos,u)}

N | —

\(gcpu,s + ggps,u)gwﬁ (gd;r,fu + gdw,'r)/'
<Bu,s + Bs,u:'B'r',U + B'U,T‘>

N | —

+

We can now combine the inner product on the right-hand side of the above formula

with the last two terms of (4.17) to get:

1 1
§<Bu,s + BS’U,BT’U + Bv,r) _ <BT’U,BS’U> _ <Bu,s7Bv,r> _ §<Bu,s _ Bs,u’ B — Bv,r)

1

— 5 (ggau,s o gws,u)gwd) (gd}r,v o ng,r),

whence we may conclude that

2(T", T™) — (B™, B*") — (B"*, B"") = T3 + Tj.
In a completely similar fashion one can prove that:

—2(I"*, ") + (B"*, B"") + (B"", B*") = Ty + T4

As far as the remaining four correction terms in the second line of formula (4.17)
it is the case that:
<BT’U,BU’S> . <Br,u’ Bs,v> + <Bu,r,Bs,v> . <Bu,r’ Bv,s) _ <Br,u . Bu,r’ BYS — Bs,v)

= (gwn’u - g@um)ggow (gdllhs - gws,v) - T67

and this concludes the proof. O

4. Sectional Curvature in terms of the cometric tensor

The numerator of sectional curvature may be computed from the dual Riemannian
curvature tensor by employing (4.10). Instead of using the “full-blown” expression

provided by Proposition 4.3 we will work on the more compact formula (4.17), which
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will make the procedure somewhat smoother and more elegant. Multiplying by the

components of cotangent vectors (X’ Y, Y? X”) yields:

SRV YK, — —
N
N
i
i
i

_|_

that is,

Y, Xog""" XY — XYY X,

VY. XX 4 XX g VY,

2, X, (I"", T") XY, — 2Y,Y,(I"*, ") X, X,

Y, X, (B™, B*)X,Y, — Y, X, (B™, B*")Y,X,
XY, (BY, B*)Y, X, — X,Y,(B"“", B*)X,Y,
Y,Y,(B™, BY X, X, — Y X,(B™, B*")Y, X,

X, X (B, B*\Y,Y, — X,Y,(B"*, B"") X, Y,,

2RTIXYY X, = VYag XX, 4 X XYY, - 2X, Y0 Y X,

T2V, X, (I, T*) X, Y, — 2V,Y,(I"* ") X, X,

+2X,X,(B"Y, B*)Y,Y, + 2X,Y,(B"", B*)Y,X,

— 2X,Y,(B"*, B®")X,Y, — 2Y, X, (B*"*, B"")Y, X, .

Proceeding in a way that is completely analogous to the the proof of Proposition 4.2

we may rewrite the above expression as follows:

2R¥s' X V.Y, X, =

(4.19)

so that the “correction terms”

(XY, — Y, X,) ¢** (XY, — V. X
+ 2T(X°, V)| - 2(T(X°, X°),

+ 2X, X, (B"Y, BsY,Y, + 2X,Y,
— 2X,Y,(B*“*, B"")X,Y, — 2Y, X,

v)
L(Y?,y?)
(B"", B™")Y. X,
(B, B"")Y, X,

have been reduced in number, with respect to expres-

sions (4.16) and (4.17), from eight to four. No further simplification is possible, unless

we insert the definition of dual Christoffel symbols into the above equation. That is

exactly what we are going to do next; now that the number of terms has almost been

halved, the computation is not

going to be unbearably complicated.
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THEOREM 4.4. For an arbitrary pair of vectors X = X'0; and Y = Y0, in T,M

the numerator of sectional curvature (4.4) at point p may be written as:

2RurstuY;'}/sXv

1 3
= (XY, = YaX,) (977 = 9% 97 + 9", 97 = 59" gue g ) (XY — YViX,),

where X; = ginj, Y, = ginj and, as usual, g* £ gij’é ¢*F and gk £ gij’g77 gk gt

PROOF. We shall split the right-hand side of (4.19) into three terms,

(I)l é (Xuy; - YuXT) QSU7TU<XSKJ - Y;Xv)a

0y £ 2|T(X°, V7)[|? — 2(T(X", X*), T(Y",Y")),
and

By £ 2X, X, (B, B)Y.Y, + 2X,Y,(B"", B*")Y, X,

- 2XuY:9<BU7sa BU’T>XUY;" - 2YTqu<BS7u7 Br7v>K“XU )

so that the second derivatives of the inverse of the metric tensor are in term @,
the terms that concern the Christoffel symbols are contained in term ®,, whereas
term ®3 consists of the “correction” previously discussed. Obviously we have that
2RV XY, Y. X, = & + Oy + 3. Term ®; is in a form that cannot be further
simplified. We shall manipulate the other two terms, ®; and ®3, and then combine
them; this will yield the surprisingly simple final form for the numerator of sectional
curvature as a function of the derivatives of the inverse of the metric tensor reported
in the statement of the theorem.

Inserting the definition of the dual Christoffel symbols into ®, yields:

1
By = SX.Y, (57 g7 = 07| gug 97 gne | (95 + 9°) = g¢| Vo,
1

_ §XuXu [(guw,v + ng,u) . guv,w} G gﬂongnf [(gir,s + gfs,r) o grs,g} }/T)/S’
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that is

(4.200) @y — +%XuYr [gurép g™ — g (657 + g) — ", (9% + gwr,u):|Y'SXv
(4200)  — % X, X, [ G g7g™ — g (g + g&T) — g7 (g7 + ng,u)} Y.V,
(4.20c)  + %XuYr(g”’“’r + 9" gue (95 + 957 ) X, Y,

(420d) - %XUXU (97" 4+ %) gye (¢°° + ¢*°") Y, Y.

The last two terms of (4.20a) may be written (following the multiplication by
XYY, X,) as

XuYeg"e (95" + ¢°°) Yo Xy + Yo Xog™s (6% + g°) XoY,
= 2X,Y.0" (97" + g7) Vi Xy,

whereas the second term of (4.20b) may be manipulated as follows:

XuXo g™ (67 + g = 2X,X, g™ YL,
and analogously for the third term of (4.20b):

YYog™ (6 + ) XuXy = 2Y,Y, g™ 6™ XX,
Furthermore, the multiplication in line (4.20c) can be restated in the following terms:

XuYo (97" + 9") gue (95" + ) X Ys
= (XY 4+ YoXo) g7 gue g (KoY + Y0 X,
and the one in line (4.20d) can be simplified as:
Xu Xy (977 + %) gue (9°7° + %7 VoY = 4 X, X, g7 gye g*° Y, Y

So @5 can be re-expressed as follows:

1 ur S,V v,S
= XY, |59 9797 — 9" (67 + ) VX,

1 uv TS uv r,8 rs u,v
—Xuvag R R ggg’}YTYs

+ S (XY, + Y X, ) gV gge 95 (X Ys 4+ Yo X)) — 2 X, X, ¢V gye g°° VY

N —
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Further simplifications are actually possible as far as the first two terms of the

above expression are concerned. In fact, first note that:

(Y = YX,)g", 075 (XY, - YiX,) =

= (KW, g7 XY~ VX, g 075 X,
—XuYr 9", 979" Yo Xy + VX, g™, 97097 VX))

= (KX, 75T VY, VX g 075 X,
—X.Y, 9", 97" Yo X, + V.Y 0", 9759 X X)

1 ur sU 1 uv TS
= S XYeg", 070 XoYs = o XX g, 67007 VoY

On the other hand,

(XY, = Vo X,) g™, g7 (XY, — YiX,)
= X.Y.9"%, g7 XY, = V. X,g", g*"' XY,
—X.Yog", Y X, 4 YU X g", g7UY X,
= XuX.g", g*"YY, = YV, Xg", g7 X, Y,
—X.Ysg", 7Y X, + YY", g7 X X

= XuYa| = 0" (60 g VX, - XX | g g - g g v
so that ®, can finally be written as

1
guszp grv,ga + QUSZp ggm‘,v> (XSK} o Y;Xv)

;= (XY, — Yo X,) (- 5

1
+ 3 (XUS/T 4 Y’u‘)(r)gd’r,ugw5 gﬁs,v (va*s + }/va) —2X,X, gwu,vgw£ gﬁr,s Y.Y,.
As far as term ®3 is concerned, we shall simply rewrite it as

Dy = 2X,X,0""" gye ¢V, + 2X, Y, 0" gye 65UV X,

— 2X,Y.0""  gue 6" X Yr — 2V X0 gye 97V, X,
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Combining such formula with the latest expression for ®, gives:

1
gus;O grv,cp + gusgo ggm",v> (XSY;) _ Y;Xv)

Ot = (XY, VX)) (-

1
+ 5 (XuYy + VX0 ) g7 gye g5 (X Y5 + Y0 X))
+ 2Xu}/'r'guw’rgq/)£ ggs,vYSXv
— 2X,Y,g"" gue g XY, = 2V Xug™ gy 7Y X
Performing the multiplication on the second line of the right-hand side and recom-

bining the resulting terms yields:

1
O @ = (XY= VX)) (=7 9", 970 4 g, 07 ) (XY - VoK)
+ 3X, Y, 0" gye Y X,

3 uY,s ve,T 3 SY,u re,U
= SXYag" gy 7T XYs = DY Xug™ gy 7YX
But we have that

2 (Y~ VX, g™ g 05 (XYs — YiXo)

3 3
= 3XuYog" gye Y Xy — SXLYig" gye g7 XY — DY Xug™ gy Y0 X
therefore:

2R XY, Y X, = P14+ Dy +P3 =

1 3
= (XuY;’ - YuXr) (gsu,rv - Z guséo g'rv,<p + gusgo gcp'r‘,v - 5 guwrgiﬁﬁ gﬁs,v) (XSY;) - Y:sXv)u

which is precisely what we wanted to prove. 0]

REMARK. We have expressed the numerator of sectional curvature in terms of the
cometric tensor and its derivatives; in the formula provided by Theorem 4.4 the only
term in the middle factor that depends on the metric tensor (with lower indices) is
the fourth one. We should note that the formula was later verified by professor Peter
W. Michor of the University of Vienna, who provided an alternative proof [30] with

index-free notation.
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5. Bounds on Sectional Curvature

In this section we show how sectional curvature for an n-dimensional mani-
fold M can be written as the ratio of quadratic forms on the space of alternating
2-forms A?(T,M). This allows to formulate the the problem of finding bounds for sec-
tional curvature as a generalized eigenvalue problem. In the case of three-dimensional
manifolds (such as the manifold of three landmarks in one dimension) these bounds
are actually achieved by computable pairs of tangent vectors. Following the spirit of
the chapter we will express the results and formulas in terms of the cometric tensor
and the dual Riemannian curvature tensor. These results, as well as those achieved
in the previous sections, will be used in the next chapter to compute and plot the
sectional curvature of landmark manifolds. We will indicate with A*(V') the linear
space of alternating k-forms on a linear space V (e.g. AY(V) = V*), and with X*(V)
the set of symmetric k-tensors on space V; for reference, see [21] and [28].

The following proposition holds:

PROPOSITION 4.5. For an arbitrary pair X,Y € T,M define w = X*AY €
A(TM), e w=>",_(X,Y, =Y, X,)dz" Adz". We can write sectional curvature

at point p € M as follows:

where:

e 0 is a symmetric bilinear form on A*(T,M), i.e. o € S*(A*(T,M)), defined

as follows:*

ursv

Q(ﬁaﬁ) = _nurTfsv

for any pair n,& € A*(T,M). In the above definition we intend the following:

Nur = n(%, 8%), B.e. M= yer Nur Az A dx”, and similarly for &.

4The minus signs follows from the sign conventions for the Riemannian curvature tensor that
we adopted, following Lee’s notation [27]; see footnote 1 of this chapter.
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e v is a symmetric bilinear form on A*(T,M), i.e. v € £*(A*(T,M)), defined

as follows:

G’LLT‘S’U

Y(1,8) = Nur 0

Es
for any pair n,& € A*(T,M), with G*"* = g“sg"™ — g"g"*. Note that G*""

has the same symmetries as the dual Riemannian curvature tensor R“*".

PROOF. Sectional curvature associated to the 2-plane spanned by tangent vec-

tors X and Y may be written as (4.4): K(X,Y) = ”;(‘Z‘E’H’}fngkjf;ﬁ; We have

that X’ = X,dz" and Y’ = Y,dz", so that w = XPAY? = X, Y. dx¥ A da" =

Youer (XY = X0Y,) da™ A dx”, by the skew-symmetry of the wedge product. By

definition, o(n, &) = — 31w R*"*" €y, whence:

1
Q(W7 w) = _Z(Xu)/r - XrYu)Rursv(Xs}/v - X'UYS)

1
= _Z(XuY;PLWSUXsY;J — XY, R"*"X,Y, — X,Y,R"*"X.Y, + XrYuRurstst)

_ —}1 A XY RTUXY, = XY.RUYX,,

where we have used the well-knows symmetries of R*"*” multiple times. As far as

us v

the denominator is concerned, first note that G*"*" = ¢"“*¢™ — g¢

“g" has the same

symmetries as the dual Riemannian curvature tensor R*"*", since
TUSvV — Ts UV TV ,US —_ ursv
G = ghtg" =gyt = =G,

GUTUS — gngTS _ gusgrv — _Gurm)’
GS’UUT — gsugvr _ gSTg’U’lL — GUTS’U .

By definition (1, £) = 17, G""**€,,, whence:

1
’V(W,UJ) = Z(Xuy;‘ - XrYu)Gursv(XsYU - X’UYS) = XuYTGuTSUXSY;J
_ Xuy;(gusgrv . guvgrs)XSK] _ XugusXS Y;ngrvY;} - Xuguvy; Y;agTSXS
= I XY = (X, Y)?,

since we have, for example, that X,g"* X, = X, 9" gepg¥* Xs = X¢g:p XY = || X]|2. O
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PROPOSITION 4.6. Bilinear forms ¢ and v may be expressed as:

o(n,§) = — Z Tur Z Ry and (0, &) = Z Tur Z G &

u<r s<v u<r s<v

for any n, & € A*(T,M).

Proor. It follows from 1., = —Nur, & = —&ur and the symmetries the two

tensors of G¥SV and RY"*Y. OJ

COROLLARY 4.7. Sectional curvature may be expressed as follows:

_ B Zu<r War Zs<v RUTSU Wsy
ZE<F War Z§<f; Gurse Wsp ’

where wy,, = XY, — X,.Y, for any pair of indices u,r.

(4.21) K(X,Y)

We also introduce the linear operators:
(4.22)  R:AXT,M) — AXTM)

: Zwsv dx® N dx’ — Z w"" 82“ A %, with w"" = Z R wg, ,

s<v u<lr s<v

and
(4.23) G : A(T,M) — AX(T; M)

: Zwsv dx® N dx’ — Z w"” 32“ A %, with w"" = Z G wg, .

s<v u<r s<v

PROPOSITION 4.8. Linear operator G is invertible. In fact, if w = Gw for some

arbitrary w € N*(T,M) then wg, =, < Hepur ", with Hepur = gsuGor — GsrGou-
PRrROOF. The proof consists of the following straightforward computation:

Z Héf)urwur = 1 H@T)ur w" = % HET)uT Z Gt Wsy

2
u<r s<v
1 ursv 1 us rv uv . rs
- Z HEﬁur G Wey = Z (g§ug17r - g§rgl7u) (g g —g9g g )wsv
1 us . rv uv . rs us rv uv s
= 5 9509509"9"" = 95u9or 9™ 9" = 95r90ug"9"" + 95rGoug"'9"") wse
1 S SV VS vV S S SV 1 S SV UV SS 1
= Z<5§56 — 5551—) — 55617 + 55517)(,030 = 5(5561—) — (55(51—))0181, = §(W§{) — wqjg) = Wsyp,
which, by the arbitrariness of w, proves the proposition. 0

60



With the above machinery, we can formulate the problem of finding bounds on

sectional curvature as follows:

if: =3 _ R we, =0) G w,, for some o € R, ie. if —Rw = aéw,
i.c.if o € R is a generalized eigenvalue [26] of the pair (—R, G) with gener-
alized eigenvector w,

then: K(X,Y) =o0.

REMARK. Since G is invertible by Proposition 4.8 the generalized spectrum of
the pair (—}NQ, CNJ) coincides with the ordinary spectrum of the linear transformation

AN (T,M) — A(TM) :w — ~G'Ruw.

Given a chart around a point p a basis for A*(T,M) is {da:s ANdz’ @ s < v}, while a
basis for A2(T;M) is {%/\% 18 < v}; both spaces have, in fact, dimension (Z) We
may express linear transformations R and G with respect to such bases with matrices,

whose elements are given precisely by coefficients R**V and G*"*", respectively. A

way to write down matrix G £ [G“’”SU}“Q is the following:

s<v
G1212 G1213 . G121n G1223 . G122n
G1312 G1313 . G131n G1323 . G132n
G1n12 G1n13 - Glnln G1n23 . G1n2n N N
G = c R(z) X (2);
G2312 G2313 . G231n G2323 . G232n
G2n12 GQn13 . G2n1n G2n23 .. G2n2n

for example when n = dim M = 3 we get:

G1212 G1213 G1223
G = G1312 G1313 G1323

G2312 G2313 G2323
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Similar arguments hold for matrix —R £ [—R“’"S’“] u<r. Note that the generic diagonal
s<v
element of —R is —R"™" = R""™.
For completeness, we will state and prove the following fairly obvious fact, on the

relationship between operators E, G and the elements of the corresponding tensors.

PROPOSITION 4.9. It is the case that
Rkt — [é(d:pk A dz")](da', da?)
and G = [é(d:r;k A dz')](da', da?),
for any choice of indices 1, j, k and £.

PRrOOF. We shall prove the above proposition for G¥**. For the sake of compu-
tation, it is convenient to write éw, with w € A*(T,M), as a summation over all

indices, as follows:

~ ursv 9 9 1 ursv 9 9
Gw = Z(ZG st)%/\alm = EZ(G st)@/\axr

u<r s<v u<r
1 0 0
4.24 = -G — N —,
( ) 4 ox*  Oz”
where we have used the symmetries of G""*V, the fact that w,s = —ws,, and the

skew-symmetry of the wedge product. For fixed indices k and ¢, if w = da* Adz* then

G T <dxkAdxe)<ais’%> - dxk<ais> CM(%) _d“’k(%> dﬂ(ais)

= okt — stok

sTv )

by the definition of the wedge product. Substituting such expression into (4.24) yields:

~ 1 1
Gilda* N o) = 5 G (340, — otof) % A air = (G- g % A air
_ 1 urkt a a
(4.25) = 2 N

where we have used the symmetries of G*"*". For arbitrary indices ¢ and j it turns

out that

(8/\8

T aﬂ) (da, da?) = 6859 — 5761 ;

u’r?
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combining the above expression with (4.25) finally yields:

~ ) . 1 o . 1 - . .
[G(dmk A dxz)} (da',dx’?) = 3 GUM (5167 — §967) = 3 (GIkE — QIR = Gkt
An analogous computation holds for R. O

We shall denote by > = {01, e ,am}, m = (Z), the generalized spectrum (the set
of generalized eigenvalues) of the pair (—E, é), i.e. of the pair of matrices (—-R, G).

An upper bound and a lower bound for sectional curvature are given by, respec-

. A A .
tively, 0max = max Y and o, = min 2.

REMARK. Once the set of generalized eigenvalues and eigenvectors is known, one
can consider, for example, the eigenvector w € A?(T,M) that corresponds to the
maximum eigenvalue oy,,,. Unfortunately since the set of simple (or decomposable®)
2-forms {77 NE:n€ € T;‘/\/l} is a proper subset A*(T,M) it is not necessarily the
case that w = X’ AY? for some X,Y € T, M. Therefore it may happen that K (X,Y)
is not equal to o,a, for any pair of tangent vectors, and o, and o, only provide,
respectively, an upper and a lower bound for sectional curvature. However in the
case of three-dimensional manifolds (such as the manifold of three landmarks in one
dimension) the maximum and minimum eigenvalues of the spectrum ¥ are achieved
by sectional curvature K (X,Y’) by appropriate choices of the tangent vectors, since

it is the case that every 2-form in A?(R?) is decomposable. In fact, if
w = wigdrt A da® + wos dz? A da® + wyy da® A dat,

e when wyy # 0 one can pick, for example, n = dv' — 22 do® and § = wip da® —
wsy dz?. Tt turns out that w =n A &.
e when wis = 0 one may instead choose n = —ws; da! + woz do? and € = da3.
Again, it is the case that w =n A &.
Therefore in the case of a three-dimensional manifold once the generalized eigenvec-
tor wWmax that corresponds to the maximum eigenvalue o, is known, the above formu-

las allow to compute the cotangent vectors X, Y" € Ty M such that Wy = X PAY?.

PA k-form w € A*V is decomposable if and only if it satisfies the Pliicker relations [12].
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The corresponding pair of tangent vectors X, Y are those for which sectional curvature
is maximal, i.e. K(X,Y) = opax. The same holds for the minimum eigenvalue o,

in the generalized spectrum.

We will conclude this section by showing how the generalized spectrum of the
pair (—}N%, CN;) is related to the scalar curvature of the manifold. We recall from Dif-

ferential Geometry [11, 23, 27| that the Ricci tensor
Ric = Rjj, d2’ @ da*

is the covariant 2-tensor field defined as the trace of the Riemannian curvature tensor

on its first and last indices; in other words its components are defined as:
Rjk = gwRijkf-
The scalar curvature is the function S defined as the trace of the Ricci tensor, i.e.:
S £ ¢* Ry,
so that we can express it in terms of the dual Riemannian curvature tensor as follows:

S = gizgijijk’ﬁ — gifgjk (gw Gir Gs Jeo Rursv)

= 51(1 61lf Gks G R = Guv Grs R""™Y.

The following proposition holds.

PROPOSITION 4.10. Let {o1,...,0n}, m = (g), be the generalized spectrum of the
pair of linear operators (—E, é), defined in (4.22) and (4.23). Then it is the case
that

- 1

PRrROOF. The generalized eigenvalues of the pair (—E, é) are the ordinary eigen-
values of the linear transformation —G~'R : ANT,M) — A(T,M), since by Propo-
sition 4.8 linear operator G is invertible; the components of inverse G are given

by Hspur = Gsu Gor — Jsr Jou- An arbitrary two-form w € A?*(T,M), which we can write
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asw = Y, _, sy dz®Adz?, gets mapped by Rto Rw =Y, _, w52 AL € N(TyM),

oxv ' 0x”

u<r

with w*" =3 _ R*“*'w,,. Therefore if we define two-form 1 € A*(T,M) as

n = é_lﬁw - Znyz dl‘y A dxz7

y<z

its components can be written as

§ ur § § : ursv _ § sv
MNyz = Hyzur w = Hyzur R Wsy = Lyz Wsy

u<r u<r s<v s<v

with:

sv UrSv 1 UrSv 1 ursv
Lyz 2 Z Hyzu'r R = 5 Hyzur R = 5 (gyugzr - gyrgzu)R

u<r

1

= 5 (gyugzr R — Gyr9zu Rursv) = GyuYzr R"™Y.

The summation of the ordinary eigenvalues of the linear transformation ~G 'R

is given by the ordinary trace of —L, * (intended as the summation of its diagonal

elements):
- z SvU z SvU 1 z SvU
o= 0% (-L.") ==Y 5L, = —5 000, Ly,
=1 y<z y<z
1 1 1 1
— _ 5y 6,2 w Oor Rursv = —= Gsu Gor Rursv = —— Geu ur Rurvs _ = S,
2 s v gy g 2 g g 2 g g 2
which completes the proof. 0
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CHAPTER 5

Curvature of the Landmarks Manifold

In the present chapter, which is central in this thesis, we apply the formulas that
we developed in Chapter 4 to the Riemannian manifold of landmarks Z introduced
in Chapter 2. From now on we make the simplifying assumption that the smoothing
parameter \ is equal to infinity, i.e. that we are dealing with the exact matching
problem. We start with analyzing the simplest but nonetheless very informative
case of two landmarks in one dimension, and then move on to the case of three or
more landmarks in one dimension. Finally we provide a general formula for sectional
curvature for N landmarks in D dimensions. As we did in the previous chapter
we adopt Einstein’s summation convention. In some computations the rules of such
convention are broken, e.g. the summation index may appear three times in the same
factor; in such cases we write the summation symbol explicitly. In any case in most of
the present chapter we denote summation symbols with Greek letters (o, 9, &, 1, . ..).
In the next chapter we will study the effect of curvature on the qualitative dynamics
of landmarks, for which we derived the differential equations in Chapter 3.

We start by computing the dual Riemannian curvature tensor for N one-dimensional
landmarks, and then use the result for calculating sectional curvature for two one-
dimensional and three one-dimensional landmarks. This is followed by the computa-
tion of the general expression for sectional curvature of N landmarks in D dimensions

by means of the formula provided by Theorem 4.4.

1. The dual curvature tensor for one-dimensional landmarks

We shall use Proposition 4.3 on the general form of the dual Riemannian curvature

tensor from the previous chapter, which we repeat here for our convenience.
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PROPOSITION 5.1. The Riemannian curvature tensor with raised indices R*™Y

may be written in function of the cometric tensor and its derivatives as follows:

(Tl) QRUTSV — _ grmsu + grs,uv o gus,rv + g“”’”

(T) B % { G GG g (6 4 g — g (g7 + g@s,r)}
(T) n % { g TG — g (g ) — g (g7 g@s,u)}
(T4) - %(g“”’s = 9°") 9 (97" — g7")

(Ts) + %(9“"“’8 = 97"") g (97 — g°"")

(Ts) + (97" = 97) gpu (97 — 97,

where, as usual, g% £ g g% and gkt £ gl - gShgnt

When D = 1, expression (2.15) and differential equation (2.16) provided in Chap-

ter 2 respectively take the forms:

(52) 10 = s (9) K (4)

and

53 /I: / .
(5.3) ot , Vta

where k and a? are the parameters of differential operator L = (id — a2A)*. We
should also note that the most remarkable difference between one-dimesional and D-
dimensional landmark manifolds is topological in nature, in that in the former case

the manifold is not connected since the ordering of landmarks cannot change.

1.1. Generic elements of the dual curvature tensor. In the case of one-
dimensional landmarks the cometric tensor g~!(q) is a N x N matrix whose generic
element ¢“(q) = G(¢',¢’) only depends on two of the N variables; the diagonal
elements are actually constant. Therefore, for a fixed index k, the matrix of partial
will have only one nonzero row and one nonzero column, namely

. 1N
derivatives [g"} |. j=1

the k-th ones. Similarly, for fixed k and m, with k # m, the the matrix of second
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partial derivatives [gij}m}?{.:l will have only two nonzero elements, namely those in
positions (k,m) and (m, k). We shall return on this after proving of the following

result.

LEMMA 5.2. Let v : [0,4+00) — R be the function such that G(z,y) = v(|z — y|)
s the kernel of admissible space V. Then the first and second partial derivatives of

the cometric tensor for N one-dimensional landmarks are respectively given by:

(5.4) 9% (q) = (6, — 61) 7' (0”) sen(q’ — ¢)
and
(5.5) 9% (@) = (6 — 67) (8%, — 7)1 (7)),

where 07 2 |¢' — ¢’| and sgn is the sign function.

PROOF. We have that ¢"/(q) = v(¢"), where ¢ = |¢' — ¢’|. Therefore

0 for k#£4,k#£j
9% (@) = a—qu”(Q) =9 a(e?) fork=i
am(07) for k=
Now choose k =i without loss of generality. By the chain rule we have that

0

y R R g —
(0 = Y |4t g — i
&Iﬂ(g ) 7' (o )aqilq ¢ = (")

\¢" — ¢/

= 7'(07)sgn(¢’ — ¢’).

Analogously, a—qﬂ(@”) =7'(0")sgu(¢’ —¢') = —7'(0”) sgn(¢’ — ¢’) . Combining the

above formulas we finally have that:
97 (@) = 07 (07) senld’ — ) — 617/ (e”) sgnld’ — ¢*) = (8, — 61)7' () sgmlq’ — ).

Let us now compute the second derivatives:

i () = 5% @) = 5o (0, = 37/ (&) szl o)
= (6, — 5%){ [aqim 7’(@”)} sen(q’ — ¢’) +7'(07) 8% sgn(q’ — qj)}
(5.6 — 01— o) [ (e)]senla' — ).
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The derivative in square brackets above may be rewritten as:

0 for m #i,m # j
0 i y
(5.7) g™ "(07) = a?f’yl(@”) form =1

a7 (09)  form =
Again, without loss of generality choose m = i. By the chain rule,

0 . 0 . 0 . )
/ 1) — 1 (¥ Ly — 2 1] T
aqﬂ(@ ) 7" (o )—WQ 7" (0 )—qu 7|

//( ij) qi B qj

. " ij 7 J
- - = 7 \e7)sgnlg —¢q
=] (07) sgn( )

and analogously

g (@) =7"(e")senle’ — ') = —"(¢") senlq’ — ¢').
Therefore we may write (5.7) in the following compact form:
T i G\ A i i g
agr (%) = (O = 02)7"(e") senld’ — ¢').

Inserting such expression into (5.6) finally yields:
9% (0) = (0 = 8}) (8, — 82,)7"(¢") [sen(a’ — ¢')]",
that is:
9% (@) = (0 = 6]) (8, — 5,) 7" (0Y) ,

which is precisely what we wanted to prove. ([l

REMARK. Some comments about the expressions provided by the above lemma
are in order. Consider matrix S(g), whose generic element is given by ¢“. We have
that ¢“ depends only on two out of the N variables (¢, ..., ¢"), namely ¢* and ¢’.
Therefore in matrix %S (q) only the k-th row and the k-th column are nonzero (with
the notable exception of the element that lies on the diagonal, which must be zero).
This fact is reflected in the right-hand side of expression (5.4), where the presence
of factor (8% — 5%) implies that gij;C is nonzero only when i = k or j = k (again,
note that when ¢ = j then §; — (5i = 0 so that all the elements on the diagonal of

matrix 8%,98 (q) are zero, for all k). For a fixed value of index k, matrix a%kS (q) turns
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FiGURrE 5.1. Typical shape of function ]?: R — R.

out to be skew-symmetric. As far as the second partial derivatives are concerned,

since each of the “surviving” elements gij}c of matrix %S (¢) depends only on the

two variables ¢* and ¢’, the following holds:

e if m # k then matrix 8(]2—2&8 (¢) will have only two nonzero elements, namely
those in positions (k,m) and (m, k). This is reflected by the right-hand side
of (5.5), which is nonzero only when either i = k and j = m, or i = m and
j = k. If i = j (diagonal elements) the right-hand side of (5.5) is zero.

e if m = k then only the k-th row and the k-th column of matrix %;25 (q) are
nonzero (with the usual exception of the diagonal element). Note that when
m = k expression (5.5) takes the form: ¢", (¢) = (6, — 67)>~"(¢”), which

is nonzero when either ¢ = k or j = k, once again with the exception i = j.

In any case, matrix %g—qus (q) is symmetric for any choice of indices k and m.
DEFINITION 5.3. Let f : R — R be the map z — +/(|z|) sgn(z). Define:
flr,y) & flx—y) =7 (Jv —yl)sen(z —y),  for 2,y €R

The above function is such that f(z,y) = —f(y,z) and f(z,z) = 0. Also,
f(z,y) = [7’(|x — y|)}2. The typical shape of function f(x) is shown in Figure 5.1.

With the above definition we may write
9"k (@) = (0 — &) f(d". &)
by the first part of Lemma 5.2. The proposition that follows provides the expression

for the generic element of the dual Riemannian curvature tensor for one-dimensional

landmarks, as a function of v and its derivatives.
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PROPOSITION 5.4. In the case of one-dimensional landmarks, the siz terms of the

dual Riemannian curvature tensor listed in Proposition 5.1 take the following form:

To+ Ty = 5 (@) = 2(e™) = 2(e™) +2() 16" a) £ a")

— [y(@™) = (™) = (™) + ()] f(d", ) F(¢“, q")
+ (@) = e Flaa) a0 = @ ) [ a) + Fata)] }
+ (™) - 7(@“5)]{f(qv,qr)f(qr,qu) = fl¢",a")[f(a".d") + f(d",q") }
— [(e™) —7(@”“)}{f(q’“,qs)f(qs,q”) — f(d" ) [fd"a") + fa*. ") }
- [3(e™) ~ e { Flan ") £laa) — Fla"a) [Fa” “)}),

T, = —%Z;{h(@“) V()] f (" a%) = [1(™) = ()] (" q )}
9o {100 [1(0”) = 2(0")] = F(a*. 4" [Y(e™) = ("] }.

T5=% . {[(e™) = 1)) f(a".0%) = [¥(e™) = (")) (", 0% }

9o { @) (&™) = (™)) = Fla* 0 (™) = (e™)] |-

REMARK. As we anticipated at the beginning of the chapter we have written the
summation symbols (such as wa) explicitly where the rules of Einstein’s summation

conventions are broken, for example when the summation index appears more than
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twice in a product. In any case, in the above expressions and in the proof that follows

Greek letters are used for summation indices.

PrROOF OF PROPOSITION 5.4. We will compute the six terms one by one. We

have that
g = g g = (0= 00) (6= 537 () 16 1 (™)
— [,Y(er> _ ,Y(st>] [,V(Qur> - ,Y(qu)] ,Y//(Qrv);

by appropriately rearranging the labels one can get analogous expressions for ¢g"*"*

Y

g*m and ¢g"""®; the expression for T follows immediately. As far as terms Ty and T3

are concerned, it is the case that:
9% 979" = (05— 6,) f(d",¢°) (") (05 — 65) f(a*, q")
= (0,05 — 0,05 — 0,05+ 6,05) (") f(d",¢°) f(g", ¢")
= [v(@™) = (™) = (™) +7(e™)] fd". a") f(a",q")-
By appropriately relabeling the indices, we can use the above formula to express the
summation of the first terms of T; and Ts:

1 s g U U ag v
(5.8) —5{9479"9”;,—95;79"9%}

= %{gus777 gﬁagvr,a _ grs777 gnaguvé}
= % {[V(Qm) — (™) — (™) + ()] f(¢" a°) f(d". q")
— [v(e™) = 7(™) = (&™) +v(e™)] f(d . q") f(qu,qv)},

On the other hand,

grs;ﬂ (gwu,v +g1[)v,u>

=9 (9" 7 + 9" )

> (67— 05) F(q".q°) [(62 = 62) £(q¥, q") v(e7") + (6% — 62) £ (" q") v(e™)]
P

> @ =03 (@0 { [1(e"™) = 1(e)] Fa”.a) + (™) = v(e™)] fla*,a") },
Y
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so that we can finally write

gTS;/; (gz/;u,v + gdw,u)
= 1@ [re™) = (@) fla a*) + (™) = 7™ F(a" ")
— (™) = ()] f(@®, q") — [v(e™) — (")) f (¢, Q”)}-

We can use such expression to write the summation of the last two terms of both Ty

and Ty as follows (modulo the multiplication by %)

(*) A grsq,/} (gwu,v +g1/)v,u) _i_guvg,o (ggor,s +g<ps,r)

. gus;p (gdw,r _'_gwr,v) . gvrzp (gcpu,s + ggos,u)

(5.9a) =+ f(d",q") {h(@”’) — (") f(q",q") + [v(e™) — (™| f(d", ")
(5.90) = [v(e™) = (") f(a".q") = [7(e™) = (™)) f(a", (J”)}
(5.90) + fla"sa") {re™) = &) F (e a) + [3e™) = 7)) Fla",0°)
(5.9d) — [e™) = AN F@ @) = [Ae™) = e F (@' ") }
(5.9¢) — fla"a) { (@™ = @) @ ') + (™) = @] (e )
(5.90) — [Ae™) = 7™ fla.a") = [A(e™) = v(e™)] fla" a") }
(5.9g) ~ f(d",q") { [v(0") = (") f(d", ") + [v(e™) = (e™)] f(d". ¢")
(5.9) — [1e™) =A@ (" ") = [r(e™) =A™ F (@)

the underlined terms in the above expression cancel two by two: precisely, (5.9a)

cancels with (5.9¢g), (5.9b) with (5.9f), (5.9¢) with (5.9¢), and (5.9d) with (5.9h); in

some cases the antisymmetry of function f is used. By recombining the surviving
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terms in the square brackets two by two yields:

%) =+ £\ ) {[7(@’"”) = ("] f(q",q") = [v(e™) = v(e™)] f (", q")

(5.10a) — [v(@™) = v(e™)] f(¢*, q“)}

+ f(q",¢") { [v(0") = ()] f(a",q") = [v(e") = (™) f(¢", ")
(5.10b) = [1(0") = 7(™)] f(a", qr)}

= fla", @) { (@) = 1@ (e a") = [1(e™) = ()] (e a")
(5.10¢) + (") = (™) f(g", q”)}

— f(d",¢") { [v(™) = (")) f(d", ") = [7(™) = (™) f(¢", ¢)
(5.10d) + (@) — (&) (a4},

where we have underlined the terms deriving from the recombinations: term (5.10a)
derives from combining the surviving terms in the square brackets in (5.9b) and
in (5.9f), term (5.10b) from (5.9d) and (5.9h), term (5.10c) from (5.9¢) and (5.9¢),
and term (5.10d) from (5.9g) and (5.9a). Two terms in each pair of curly brackets

can be factorized as:

() =
+ flaa) { (@) = 1] [, a) + fla.a)] = [r(e™) = 1e™)] fla" ") }
+ f(q",¢") { [v(0") = ()] [f(d"q") + f(a", )] — [v(e"™) = ()] f(a", qs)}
= 1(a*,0) { [1(e™) = &™) fla", @) + [v(e™) = 3(e™)] [fa" a") + Fla".a7)] }
— f(d",q") {[V(Q’"s) = (")) f(d",q") + [v(0™) = v("™)] [f(d", @) + f(a°,q")] }
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so that we can finally write (x) as the summation of four terms:

(*) = +[v(") = ()]
+ [1(0"™) = (™))
— [7(6") = 1(e")]

— (") —(0"™)]

—

fla®q") f(@",q") — f(&*,d") [f(¢*. ¢) + f(d“. q") }
@ a) f(dq") = f(@.¢)[f(¢".d") + fld",q") }
) (@, ") = f(d",a) [ f(d",a°) + f(¢®. q") }

fla*, ") £(a°,¢°) — F(a“. a*) [ f(a", ") + f(d", ")

which coincide precisely with the last four terms of Ty + Ts.

Moving on to terms T4, T5, and Tg we have that, for example,

(5.11)  g#"* = g% g% = (62 — 1) f(a7.q") v(0™) = [v(e?*) — (")) f (4%, q"),

so that

(5.12) g¥"* —g#n = {[’V(Q‘”) —v(0")] f(q%,q") — [v(e7*) —v(™)] f(q?, qs)},

while

g =g = {[He") = ™) F(a",a) = 1) = ()] Fa*a") }.

The expression for Ty follows immediately from the antisymmetry of function f,

whereas those for T, and Tg are obtained in a completely similar manner. U

1.2. Diagonal elements of the tensor. One may be interested in the general
form of the diagonal elements of the dual Riemannian curvature tensor; for example,
in the simple case of two one-dimensional landmarks the Riemannian curvature tensor

consists of only one element. The following result holds.
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PROPOSITION 5.5. The diagonal elements of the Riemannian curvature tensor are

given by R"””|s:u = Rv™" = %Zle T;, with:

V=T

Ty = —2[v(0) — (™))" "(e"),
To+ Ty = [4(0)—~(™)] - [Y(e™)],
T, = 0,
Tt Ty = 53 { )~ 2@ i %)~ Bl — (0] f(aa7)}
Py

gou { [1(&™) =A@ fla"sa*) = [y(e™) = 7@ fla"a") }.

REMARK. Of the three nonzero terms in the expression for 2R*™" provided by
Proposition 5.5 the last two, Ty and T, + T, are always positive for any landmark

configuration, whereas the sign of T is determined by the sign of function —v”(0"").

PROOF OF PROPOSITION 5.5. Setting s = v and v = r in term T yields:

Tifs=u = = 0+ [v(¢™) = 7(0)] [(0) = 7(2")]7"(e")
— 04 [7(") = (O] [v(0) = v(e"™)]¥" (")

= —2[4(0) — v("™)]*¥" (™).

We now note that the first line of the expression for term Ty + T3 provided by
Proposition 5.4 is equal to zero when s = u and v = r; the remaining five lines of the

same term become:

( —2[4(0) = v(&™)] [y (e"™)]

N | —

(T2 + TB)‘ =u —

S
v=r

= [0 = @™ = @)} = [10) = 3] - V(™)



As far as terms Ty, T5 and Ty are concerned it is convenient to turn directly to the
expressions provided by Proposition 5.1; we have that:

1 1

Talsmu = =5 (97" = 677) g (67" = g") = S (9" = 9"") g (6" = ¢"™),

which, with the notation introduced in subsection 3.3 of Chapter 4, we may also write

as T4|s:u = %H (B“”’ - B""’”)ﬁH2 where the “sharp” operator f raises the indices of a
v=r

cotangent vector, ie. f : T/Z — T1Z : X;da' — (¢YX;)0;, and || - || is the norm

induced by the metric. It is easy to verify that T5‘5i“ = 0, while
Tolsu = (677 = 9779 (97" = 97) = || (B" = B")*|[",

so that (T4 + Ts)

S

u= %H (B — Br’“)ﬁ”Q; but by expression (5.12) we have

g7 = g7 = { [1(e") = A" S (0%, 0") = [1(0™) = ™)) S (%, 0") }.

so that
(Put Tl = (577 = 5
= > {le™) =] fa% 4" = [H(e™) = (™)) (e a) }
PP
gau{ [1(0™) = &™) F(a*, ") = [r(e™) = &™) F(a*,a) |,
which completes the proof. 0

2. Sectional curvature for two one-dimensional landmarks

In the case of just two one-dimensional landmarks (¢', ¢*) matrices G and —R
introduced in section 5 of Chapter 4 are just scalars, since A?(R?) ~ R. For example,

when the smoothing parameter X is set to be equal to infinity (exact matching):

— g11g22 _ g12g21

)] [7(0) —~(0")],

(513) G = G1212 — (gusgrv_guvgrs)

u=s
r=v

= 7%(0) =*(e") = [7(0) +(c'

N N

which is always positive since v(0) > (o). Similarly it is the case that —R =
—R™212 = R221 hose expression can be computed by means of Proposition 5.5;

more precisely the following result holds.
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PROPOSITION 5.6. In the case of two one-dimensional landmarks term Ty + Tg

of 2R''2 provided by Proposition 5.5 takes the following form, for a generic value of
smoothing parameter \:

o [V(O)_WQlQ)]Z' re 12\12
Tat To =3 0 ) V(@)

so that the only element of matriz —R = R'?' can be expressed as

R1221

1
_Ri212 _ _5(2?:1 Tz)|

= [7(0) = (")]*" (%) — [7(0) — ~('?)] 23((00)&77((@@1122)) [v(e")]".
REMARK

. Of the three terms in the expression for R'??! provided by the above

s=u=1
v=r=2

proposition the last two are always negative, whereas the sign of the first one is
determined by the sign of function " (o'?)

PROOF OF PROPOSITION 5.6. The first two terms of the expression for R'??! =

—R'™2 derive directly form terms Ty and Ty +Tj (multiplied by %) for R*™" provided

by Proposition 5.5. As far as the last term is concerned, we note that in the case of
two landmarks

. 7(0) (0™
v(e?)  ~(0)

B 1 7(0)  —(0")
(5.14) 97 200) = 2(01) —v(0'?)  ~(0)

By the proof of Proposition 5.5 we have that term T4 4+ T¢ can be written as

3
(T4 +T6)’Z3‘25 = §H(Bl,2 i Bz,l>ﬁH2
3

. (g¢1,2 . 9@2’1)9%& (gwm . g¢2,1),

which by the Einstein summation convention expands out to

1 =3

(T4 4 TG)’iz¢z2 v;{(911,2 _ 912,1)911 (911,2 _ 912,1) 4 (911,2 _ 912,1)9 (921,2 _ 922,1)

I

+ <gz1,2 . g22,1)g21 (911,2 B 912,1) + (921,2 . 922’1)92 (921,2 o 922,1)}
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but ¢g'%? =0, g% =0, g11 = g22 and gi2 = go1, so the above expression reduces to:
3 2 2
(515)  (Tat To)lmuy = 5{u (67 + (")) = 200(6'9) |

g
From equation (5.11) we have that

g%t = [7(0) = v(™)] f(d", ¢°)

? = [v(0) = v("™)] f(¢*. ¢")

_ _912,1’
so that:

(97)" = (5™1)? = [10) 1) [y (™))

2 2
and g2 = —[7(0) — 7(0")] [V (2] = — (¢"2")
on the other hand, by expression (5.14) we have

B ~(0) (@)
g11 = F2(0) = 2(012) g1z = Y2(0) —~v%(0'?)

I

Whence we may rewrite (5.15) as:

(T4 + Tﬁ) |szu

y =3 {gu + 91}

=300 - 1) @) S A

L DO @] e,
= Lo e

Summing the above to the other terms (and multiplying by —%) yields

R = [y(0) = 7(2')] 7" (2")

= [4(0) = 7(0'3)] 7" ()

B % [7(0) = 7(e")] 10+ 7€) +3[4(0) = (™)

0) + 7@ e
=112 = 10))7e) — [10) =21 ZEIE (@)
which completes the proof.

U
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The problem of computing the generalized eigenvalues of the pair (=R, G) is at
this point trivial: equation —Rw = ¢ Gw (with w = wadg® A da?) can simply be
written as —R'%w;5 = 0 G'*'2w,,, whose only solution is obviously o = %, which
is the sectional curvature of the two-dimentional landmarks manifold Z at the point
of coordinates (¢!, ¢?). In fact such result can also be obtained directly by applying

formula (4.21) of the previous chapter:

UrSsv 1212 1221
T Zu<r Wur Zs<v R Wsy  —Wi2 R Wiz R
- TFET - - )
Zﬁ<? Wy Z§<T1 Gursv Wsp W1o G1212 Wio G1212

(5.16) K(X,Y)

which is only a function of ¢'? = |¢' — ¢?|; we will denote it with x(0'?). By (5.13)
and Proposition 5.5 we can finally compute the expression for sectional curvature for

two one-dimensional landmarks.

COROLLARY 5.7. Sectional curvature for two landmarks in one dimension (5.16)

has the following expression for A = oo (exact matching):

(012 7(0) =v(e") 4/ 1 _ 29(0) = (") ), 19y12
(5.17) (@) =T Y e 20) 10 7'(0")]",

where we have merged the two terms with factor [7’(@12)}2 into one.

PRroOF. It suffices to divide R'??!, provided by Proposition 5.6, by G'?'2, given
by equation (5.13). O

We implemented the above equations in the case of a Gaussian kernel,

(5.18) V(o) = \/% eXp{ - %5—2}

with o2 = 1. The shape of sectional curvature k(p'?), provided by equation (5.17), is
plotted in Figure 5.2. It turns out that x has a minimum, a zero (other than the one

at 0'? = 0) and a maximum at points:

Om = 0.953, 0, = 1.534, om = 2.198,

K(om) = —0.1594, r(0,) =0, r(om) = 0.1786,
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k(™)

FIGURE 5.2. Sectional curvature x(0'?) for the Gaussian kernel.

respectively. So we see that when the two landmarks are close to each other curvature
is negative, it is positive for higher values of the mutual distance of the landmarks,
and finally converges to zero from above as o' — oco. Figure 5.2 refers to the Gaussian
kernel (5.18) but if fact it turns out that graph of sectional curvature k(o) is qualita-
tively similar to the one above for a wide class of Kernels. The following proposition

is an adaptation of a result by Frangois-Xavier Vialard [44].

PROPOSITION 5.8. Consider function k(p), o > 0, given by (5.17), i.e. the sec-

tional curvature for two one-dimensional landmarks in the case of exact matching.

If 4/(0) = 0 (which is verified when the kernel is bell-shaped) then:

(5.19) k(o) = —%%92 +0(0*) aso— 0,

so that k() is negative in a neighborhood of zero. Under the following condition on

the behavior of function v at infinity:

(5.20) [V (0)]" =0(v"(0)) as o— oo,

it 1s the case that

k(o) =7"(0)(1+0(1)) as o — oo,



therefore, since ~"(0) > 0 for large o, curvature r is “convezr at infinity”, i.e. it

converges to zero from above as p — 0.

PROOF. First of all note that function (5.17) can be written as follows:

k(o)

"= 0 ()

where

i\ a p 27(0) = v(0) 1/, 19172
k(o) = [7(0) - ’V(Q)h (0) — W [7 (0 )} .

Since [v(0) + v(g)]_l is strictly greater than zero for all o > 0 and it converges
to [27(0)] as 0 — 07, in order to prove (5.19) it is sufficient to study the properties
of k(o) in a neighborhood of zero. First note that since 4/(0) = 0 the Taylor expansion

of v near the origin is given by:

1(0) =1(0) + 57"(0)2 + o(e?);

therefore we may write the first term of k(o) as:
1(0) ~ A" (0) =[ ~ 57"(0)* + o(e?)] [1(0) + o(1)]

(5.21) = — —[y"(0)]"0* + o(2®)

N | —

in an neighborhood of zero. As far as the second term of k() is concerned, we first
note that v'(0) = 7"(0)o + o(0), whence [7’(@)]2 = [7"(0)}292 + 0(0?); consequently,

2

~[29(0) ~ 1] (@] =~ [1(0) ~ 5700 + o) { [0 + o(e") }

= —(0)[y"(0)]*¢* + o(e?),

whence
27<0) - 7(@) / 2 1 " ) )
_ 2(0) T (o) [”Y (Q)] [W + 0(1)} { —7(0) h (O)} 0° +o(p )}
(522 =3[ O)F + ole?)

as ¢ — 0. Summing (5.21) and (5.22) yields

(o) = —[7"(0)]*0* + o(?),
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so that we finally have

1 _ 1 I 2 2 2
K0 = 0 70 = |5 oW - DOT + o)}
_% [7’;585} QQ + 0(92)

which proves the first part of the proposition.
Now assume now that (5.20) holds. We may rewrite (5.17) in a neighborhood of

infinity as:

K0 7(0) =1(e"?)  29(0) —7(e") [7'(e"
( 7'(

7'(@'2)  3(0) +7(0™)  [(0) + v(e'2)]* V(")
_/_J N
1+o(1 . 1
o(1) 204 o(1) o(1)
as 0 — 00, which concludes the proof since 7”(9) > 0 for large values of p. O

We will now verify the validity of condition (5.20) for three families of kernels.

EXAMPLE 1 (Gaussian kernels). As we mentioned in Chapter (2) the Gaussian

kernel v(o) m exp{ — 5—2} is such that equations (2.19) hold, i.e.:

V(0= -2 md V()= 5(5-1),

o2\ g2

therefore
/ 2 2
0 0
hlf ) =7(0) 2 2
7"(0) -0

which converges to zero as ¢ — oo; whence (5.21) is satisfied.

ExAMPLE 2 (Sobolev kernels). With the notation introduced in Appendix B, i.e.:

N 1 1
Nk,D =

D

2T 15 (k) abte

function (2.15) may be rewritten as:

N|s]
/N
QIR
N—

_D
v(0) = mep 02K,

while its derivative is provided by Corollary B.2:

1 . b
v'(0) = —men ~ o

®
=

|
Nl|e]

L
N
QI
N——
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We will use the following property [1, §9.7.2] of modified Bessel functions in a neigh-
borhood of infinity:

T . —1 (p=D(p-=9) (p—1)(p—9)(n—25)
(5.23) KV(Z)N\/;e {1+“8Z 44 2!(82‘;2 £ §<82)3“ +}

for |arg z| < %ﬂ', where p(v) = 4% In our case D = 1 and we shall also assume for

simplicity a = 1; furthermore v £ k — % =k — % Function ~ satisfies differential

equation (5.3) with a = 1, which we rewrite for convenience:

kY
0

hence the second derivative of 7 can be written, in a neighborhood of infinity, as

V= (2k = 2)0y =~

= e (2k — 2)0" ' K,_1(0) + i1 0° K, (0)
a2k Q)Qu_l\/zfge—g{l N % + o(é)}
+ 71 Q”\/%eg{l + % * 0(?}
1\/§e—@{1 N [% — 2k — 2)] é + o(%) }

since pu(v) = 4(k—1)° = 2k —1)2 and p(v — 1) = 4(v — 1) = 4(k— 2)” = (2k - 3)2.
On the other hand,

[V

(5.24) =M1 0"~

T (2k—3)2—11 1
L I )

Comparing (5.24) with the above expression one concludes that

as o — oo; whence [7/(0)]” = 0(7"(0)), which is exactly (5.20).
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ExAMPLE 3 (Cauchy kernels). Again, as we mentioned in Chapter (2) the Cauchy-

type kernel v(p) = ﬁ is such that equations (2.20) hold, i.e.:

7V'(0) = —2a07*(0) and  4"(0) = 8a'¢*y*(0) — 2a*+*(0),
therefore [/(0)]* = 4a*0*y*(0) and

['(2))? @]l ) _2le 7(9)}
(o)~ 8a? [a20*7(0)]7?(0) — 20272 (o) 4[a?0*y(0)] —

which converges to zero as ¢ — oo since a®¢*y(g) — 1; whence (5.20) is satisfied.

3. Sectional curvature for three one-dimensional landmarks

In this section we analyze sectional curvature for different configurations of three
landmarks on the real line. We will use the techniques developed in section 5 of the
previous chapter, motivated by the fact that in this case the shape manifold Z has
dimension 3 and that A?(7;Z) ~ R? is indeed decomposable. That is, for any w €
A%(T;Z) there exists a pair (X,Y) € T;Z x T;Z such that w = X" A Y”; so the
maximum and minimum generalized eigenvalues of the pair of linear maps (—R, G)
indeed provide the maximum and minimum sectional curvatures over possible choice
of tangent 2-planes at the point I (landmark shape) under consideration.

Assuming the three one-dimensional landmarks are such that ¢ < ¢*> < ¢ at
all times, let o'2 = |¢! — ¢*| and 0** = |¢* — ¢®|]. We have computed numerically
the dual Riemannian curvature tensor R"*" and tensor G""*¥ using the formulas
provided by Proposition 5.4 and equation (5.13), respectively, for N = 3 using the
Gaussian kernel (5.18) with unit variance: maximum, median and minimum gener-
alized eigenvalues were also computed numerically for (0'%, 0*) € (0,5) x (0,5).

Figure 5.3 represents the maximum generalized eigenvalue: it is positive for any
choice of ¢'? and ¢?3; for (p'?, 0**) — 0 the maximum generalized eigenvalue con-
verges to some finite, positive limit. Figure 5.4 represents the minimum generalized
eigenvalue, for different values of o'? and p?3: it is negative for any choice of such
parameters; note that for (0'%, 0**) — 0 (i.e. when the three landmarks are close to

each other) the minimum generalized eigenvalue converges to some finite, negative
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FIGURE 5.3. Maximum generalized eigenvalue (i.e. maximum sectional
curvature) for three landmarks in one dimension, as a function of dis-

tances o'? and ¢%.

limit. Figure 5.5 represents the median generalized eigenvalue (out of three): it has
positive and negative values for different choices of ¢'? and ¢*; for (0'2, 0*3) — 0 the
median generalized eigenvalue converges to the same finite, positive limit to which
the maximum eigenvalue converges.

Finally, Figure 5.6 shows the generalized trace, i.e. the summation of the three
generalized generalized eigenvalues: we proved in Proposition 4.10 that this number
is actually equal to (% times) the scalar curvature of the manifold at a point; again,
it has positive and negative values for different choices of o2 and ¢**. Note, in
particular, that for small values of distances p'? and ¢? it is negative and it has
a positive maximum when o2 = ¢* ~ 2.2. Also, note that when one of the two
landmarks is “far away”—say, when ¢* is very large, the profile of the graph as a
function of 0*? only is the same one that we got in the case of two one-dimensional

landmarks (see Figure 5.2): curvature converges to zero as o'> — 0, then it has a
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FIGURE 5.4. Minimum generalized eigenvalue (i.e. minimum sectional
curvature) for three landmarks in one dimension, as a function of dis-

tances 02 and p?.

negative bump, followed by a positive bump, and finally flattens again to zero (from
above) as p'? diverges.

Figure 5.7 compares the generalized eigenvalues along the line ¢'? = p* (sym-
metric landmark configurations); as anticipated above, for ¢ — 0 along such line the
maximum and median eigenvalues converge to the same positive limit. Also, we may
note that the maximum and minimum eigenvalues are always, respectively, positive
and negative, the median one has both positive and negative values. Also, the trace
converges to zero from above as ¢ — 0o as it was the case for two one-dimensional
landmarks—see Figure 5.2.

Table 5.1 shows possible choices of tangent vectors X and Y that achieve max-
imum and minimum curvature along the line ¢'2 = 0%; they were computed us-
ing the techniques described at the end of the previous chapter. It is interesting
to note that along the line ¢'2 = ¢** the tangent plane of maximum curvature is

the same i.e. it is spanned by the same vectors. On the other hand, the tangent
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MEDIAN EIGENVALUE
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FI1GURE 5.5. Median generalized eigenvalue for three landmarks in one

dimension, as a function of distances o'? and .
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FIGURE 5.6. Trace (i.e. 1 times scalar curvature) for three landmarks

in one dimension, as a function of distances o2 and ¢%.
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EIGENVALUES ALONG THE DIAGONAL p'2=p?®
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p12=p23

FIGURE 5.7. Generalized eigenvalues of (—fi, CNJ) for three landmarks

in one dimension of the quadratic form along the line o'? = .

plane of minimum curvature changes; one of the two tangent vectors can actually be
fixed, Y = (—1,0, 1) while the other tangent vector can always be chosen to be of the
form X = (Xi(0),1,0), where X; is a decreasing function of ¢ £ o' = ¢,

Finally, Table 5.2 shows possible choices of tangent vectors that achieve maxi-
mum and minimum curvature along a “ridge” of the graph for scalar curvature (the
summation of the generalized eigenvalues, times %) the locations are shown in Fig-
ure 5.8 with different symbols, that also appear in Table 5.2. It is certainly interest-
ing to follow the “evolution” along the ridge of the tangent plane that corresponds,
for example, to the maximum eigenvalue (sectional curvature). In the position de-
noted by a square, that corresponds to the central local maximum of scalar curvature
(o' = o® = 2.225), the two tangent vectors that maximize sectional curvature

are X = (0,1,0) and Y = (1,0,1): moving along these directions makes the central
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Position Eigenvalues Eigenvectors are w = X* A Y?, with:
4 99 10_2 ® @&—> @ X = (07 17 O)
Omax = . :
12 _ 0095 O @ *— - Y =(1,0,1)
o =Uu
23 _
e~ =0.025 10 o~ ro»r @ X ~(2,1,0)
Omin =— —O. '
-~e L — *— - Y =(-1,0,1)
s 10 o o o X =(0,1,0)
Omax = 4- :
T O @ *— - Y =(1,0,1
o' ~1.
23
e” ~1.15 . *~+ o> @ - X = (1.03,1,0)
Omin — —2.94-10"
-0 @ *— Y =(-1,0,1)
012 =215 o —938%. 10_2 g *— & X = (0’ 1’ O)
0% =215 e *—> @ - *— Y =(1,0,1)
maximum of [ = O @ X =(0.198,1,0)
Tmax along | oy = —3.95 1073 s
012 = 23 DR @ *— Y =(-1,0,1)
Q12 =35 - —973. 10_3 L4 & @ X = (07 170)
0B =35 e o> o o Y =(1,0,1
large & @ —> @ X ~ (5, 0, —1)
distances Omin = —1.02- 1077
-—o @ *— - Y =(-1,0,1)

TABLE 5.1. Eigenvalues and pairs (X,Y’) that achieve them, along

o' = 0?3, € denotes a very small (but nonzero) number.

landmark closer to the other two, which on the other hand do not change their rel-
ative positions. On the other end of the path, in the position denoted by a circle
(we are close to the boundary of the manifold, when two landmarks almost coincide),
the two tangent vectors that maximize sectional curvature are close to X = (1,1,0)

and Y = (0,0,1), “as if” the two close landmarks were actually clustered into one.
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Position Eigenvalues Eigenvectors are w = X* A Y?, with:
) @o— @ X = 1
00 =222 o 997.107 L0
0* =2.225 o~ o - o—- YV =(1,0,1)
maximum of
trace along ) [ = O —> @ X =(0.168,1,0)
012 = % | Opin = —2.51-1073
5 -0 [ T— *— Y =(-1,0,1)
@ @ @ X - . 1 1
0 =152 o _879.107 0310, 1,0)
0% = 2.30 > @ *— - Y = (0.039,0,1)
o> 06— [ - X =(0.445,1,0)
> Opmin = —2.51-1072
o o o Y =(-2.12,0,1)
> @ @ X = . 2 1
912 = 0.825 Omax — 8.18 - 10_2 (0 X 07 ,0)
Q23 _ 245 -0 @ @o— - Y = (_0084, O, 1)
* >0 > [ X =(1.040,1,0)
& Opmin = —9.40 - 1072
o o .. o Y = (—1.519,0,1)
,,,,,,,, @ e .
ey oo » X = (0.807,1,0)
0% = 2.65 @@ *— Y =(-0.122,0,1)
o> @— @ X = (0318, 1, O)
< Opin = —7.00- 1072
o o . - Y = (—1.532,0,1)
[ SN N [ T— ~(1-—
0 =0025  _780.10 Xemeto
Q23 — 92.875 [ ] @ o— - Y ~ (O, g, 1)
>0 o X ~(1+4¢,1,0)
o) Omin = —H.75 - 1072
Y Y — *— - Y ~(—£,0,1)

TABLE 5.2. Eigenvalues and pairs (X, Y') that achieve them, in selected

locations of along the ridge of scalar curvature, shown in Figure 5.8;

e denotes a very small (but nonzero) number.

4. Sectional curvature for N one-dimensional landmarks

In the previous chapter we computed the following formula for the numerator of

sectional curvature of an n-dimensional Riemannian manifold in terms of the cometric
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N

.5

FIGURE 5.8. Locations along the “ridge” of scalar curvature for Table 5.2.
tensor g and its partial derivatives g and g”;, :

(5.25)
2RuTSUXuK"Y;Xv

Su,rv 1 us v us T,V 3 U T S, v
I(XuYr—YuXr)(g M=19" 9" 9, g —591”’91&595’)

. ro  Su, 1/;1;_1 us, oY TV, + us, @, ¢v_§ re up, &s, _mu
979 oy 9 190979 4 Y99 9 2979 & Gued 9

Our notation is such that the sign of the above quantity the same as the sign of
sectional curvature K(X,Y). Our objective in this section is to provide a formula
for sectional curvature in the case of N landmarks in one dimension; we will achieve
this be inserting the expression for the partial derivative of the cometric, which are
provided by Lemma 5.2, into the right-hand-side of expression (5.25). We will first

“process” separately the four terms in the middle factor of (5.25). We should note that
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the dimension of the shape manifold Z is in this case n = N; since A*(T;Z) ~ R(2)
is not decomposable for N > 3 the method illustrated in section 5 of the previous
chapter would only provide upper and lower bounds for sectional curvature at a point,

not necessarily achievable at a pair of tangent vectors.
4.1. First term. An appropriate relabeling of the indices in (5.5) yields
9"y = (05— 05) (67, — 64) 7" (™),
so that the first term in the middle factor of (5.25) can be expressed as

9", g7 = (65— 68) (65— 65) 7" (0™) (") v (")
= [v(e"™) —~(™)] [v(e™) = ()] V" (™).

Further simplifications can be derived after the multiplication by the components

of the cotangent vectors. In fact we have that

979" 9" = (@) = (™)) [v(e™) = v(e")] A" (¢™)

(5.26) = [v(@")v(e®) = (") (™) — 7(0" )7 (™) + ("™ )y (e™)] 7" (0"");

but appropriately relabeling the indices (v — s, s — u, r — v, v — r) yields:

D (XY, =YX, [y(@™)v (@) ()] (X.Y, — YaX,)

u

= Y (XY, =Y X)) (@ (e (0") (XY — Y Xo),

s
so that the first and fourth terms within the square brackets of (5.26) can be combined.
Note that we are summing over all four indices u,r, s and v; however, we write the
summation symbols ) and ) because indices v and s break the rules of Einstein’s
summation convention, since they appear three times within the same term. In
conclusion, we may write:

(XY, = Yo X,)g%g™,, g (XY, = VX)) = ) (XY, =Y. X,):

sSu

{2 ™) = 1(@™)e™) =™ )(e™)] 7 (e™) (XY, = YoX,).
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4.2. Second term. First note that following auxiliary identity holds:

Y(0?) (8% = 62) (07, — 65) = [v(7¥)d% — v(07)83] (], — 63))
= [v(0"") = v(0™)] (6}, — 03) = [v(0™) — v(e*")] 6} — [v(e™) — 7(™)] 6},

= 7(0"") — (") — (") +v(™),

so that the second term of the middle factor of (5.25) can be rewritten as:

1 us TV 1 u S u S T () T v
—7 9" 979", = =7 (00— 0,) £(a",a") 1 (™) (0, — 87) (4", ")

1) = (0 = Ae™) + 2@ £l a") 1 a)

Simplifications occur after multiplying by the cotangent vector components. Relabel-

ing the indices (u — s, s — u, r — v, v — r) yields:

D (XY =YX ) (@) (" a0 fq s ) (XY — Vi X,)

SV

= Y (XY, - Y X)) (") f (¢ 4 f(a", ") (XY, = YV X,)

ur

= D (XY, - Y X)) (@) (g% ) (a7 ¢") (XY, - YV.X,)

ur

(we have also used the antisymmetry of function f) and

> (XY =Y X)) v(@™) (g a) (a7 q") (XY, — Y X,)

uv

= > (XY, = YX,) 9 () f (@, a)f (@', d) (XuY, = VX))

ST

= > (XY, = YaX) () f(a% a) (g q") (XuYr = VuX,).

ST

In conclusion, we may write the second term as follows:

]' us TV,
(XY, =YX (= 7 9% 9797 ) (XYe - ViX,)
1

= > (XY, - YuXr){ ~3 [(e") = ()] f(¢", ¢°) (¢, Q”)}(XSYU - Y, X,).

urs
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4.3. Third term. The following holds (we’re summing over both ¢ and %):

9", g% g% = D (88— 63) F(q",q°) (65— 83) F(a?,q") v(e¥) = A" f(q",q"),
©

with:
AU £ N (8 = 63) (67— 67) f (%, a7) (™)
= > L0 (0, )y (e™) = 0% f(aFa) 1 (e”)
=Y 8500 f(a%,a") 1 (0") + 638 f(a® a") (™)
= fla", ") (™) = f(d",d") (") = F( a") (™) + f(¢ q") (™)
= fad",q") [7(e") = (™)) + f(g",a") [7 (™) = 7(e™)]-

Whence the third term takes the form:
9", 9% g* = {f(qu, q") [v(0") = v(&™)] + f(a*,q") [v(0™) — ()] } fa",q%).

3
4.4. Fourth term. We need to compute: —5 gwgw:p Gt 958;7 g™. Note that:

g°g", = (") (6% = 6%) f(q*, %) = [v(e™) — (™)) f(q",q"),
and analogously g””gﬁs;7 = [7(0") — v(0*)] f(¢*, ¢*). Therefore:

37" u S v

=53 D) — @] Tl 0 g S0 (@) = (@),
23

REMARK. Let Z¥ £ (X,Y, - Y, X,) g"?g"", . Then

3 3
T U, £s, _
(XaYy = VuXo) (=5 999", 9ue g™, 97 ) (X0 = YiX,) = =3 2% gy 25 < 0,
since the metric tensor gye is positive definite. Whence the fourth term provides
a negative contribution to the numerator of sectional curvature, for any choice of
tangent vectors X = ¢‘0; and Y = Y79, in T/Z.
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4.5. Summation of four terms. The above discussion boils down to the fol-

lowing way of rewriting formula (5.25):

2RX,Y, Y X, = ) (XY, —Y,X,)-

rsu

: ([27(@”)7(98”) — (") (0™) = y(" (™)) V" (¢*) + f(¢", ¢°)-

A a) e™) = ()] + flaa) [He™) = A(e™)] - %f(q’", ) [(e") = (™) }

N g > ™) = (@) f(a"aY) gue F(25,0°) [v(2™) — 7(@”)}) (XY, - Y. X,);
3

in the next section we will extend the above formula to the D-dimensional case.

5. Sectional curvature for N D-dimensional landmarks

As we discussed in Chapter 3 in the case of landmarks in D > 2 dimensions it is
convenient to introduce a metric tensor and a cometric tensor with “double indices”,
one that refers to the landmark index and the other that refers to the dimensional
component of that specific landmark. Given the block-diagonal nature of the metric
tensor we can write its generic element as follows:

(5.27) g% (q) = h (q) 6°, i,j=1,...,N, ab=1,...,D

Y

where (in the case of exact matching, A = 00) h'(q) = G(¢',¢?) = v(|l¢" — ¢ ||rp)-

The following result is the D-dimensional counterpart of Lemma 5.2.

LEMMA 5.9. Let v : [0,+00) — R be such that G(z,y) = y(||lv — y|lrp) is the
kernel of admissible space V. Then the first and second partial derivatives of the

cometric tensor for N one-dimensional landmarks are respectively given by:

iaj O o i j N A
(5.28) 7" = ggk ! * = (%‘%)7’(0”75 ’

)
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and

(qic _ qjc) (qzd _ qjd)

iaj 8 iaj % j 3 I\ Sa 1"( ij
g ]b;ccéd = Wﬂ ]b}cc = (0 — 03) (6, — &) 0 b{’Y (07) (Qij)z
@5, - (¢ = ) (" = qjd)] }

0 (¢¥)°

)

(5.29) +

where 09 2 ||¢" — ¢ ||ap-
PRrROOF. We have that ¢"?% = %(h”‘ )6°°, where

0 for k £i,k#j
ih”(Q) _ Y(07) =4 2~(o¥) for k=i
ach ach aqic7 0 -

aue(07)  for k=

By the chain rule

B 5 D g — g
-(07) = AV(Y) 5707 = V() i
90 ( ( )aqw (¢”) T = il
hence
p
0 for k #£i,k #j
o B qic _ qjc . ‘
iajb, _ ,}/ QZ] _ 5a fOI‘ k=1
e =1 T el
o qzc —q c b .
1y Qg _
- (oY) —————9 for k =
L 7(e%) l¢" — ¢7||rp g
which we may write in the compact form
iaj B TN e
(530) g ]b}cc = (516 - 5%) F/(Q]) —0 b7

oV
which is precisely (5.28). We can use such expression to write:
a a ic

iajb, . iajb,  _ (si ) 1( ij q;qjc} ab
(531) g keld aqug ke T (5k 5]@) aqu |:’Y (Q ) Qij 6

i j qic_qjc d
= - o) { TS )

7/ Qij a ic jc I( 1] ic jc a 1

we will now compute the three derivatives inside the curly brackets.
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In a way that is analogous to how (5.30) was computed we can prove that:

0 1( i ) I\ M EF qid — qjd
(5.32) WV(Q )= (0p = d7)7"(e )T-
Also,
( 0 it 0#iand €+
: , if d
%(qw—qjc)ﬂ o ez
q ajic (q”—qﬂc)zl if¢{=diand d=rc
L agic (¢°—¢°)=-1 if{=jandd=c
which may be expressed compactly as
5.33 O (e — ) = Bids— 5105 = (5 — 69)55
(5.33) W(q—Q)*ed_zd*(e_e)d-
We should now note that
.
0 if {£q7and { #1i
o - jd __ id
— " = T —9 ey =7
( Og7 09
that is,
o i ; ) qid _ qjd
WQ] = (54—5@—@” ;
whence we can finally compute
0 1 0 1 1 o . , gl — g
5.34 — — = —— (" =——5—907 = —(0,—0)) ———.
( ) dgtd i dqd (Q ) (Qij)Q g 0 (67 7) (Qij)3

Inserting the right-hand sides of equations (5.32), (5.33) and (5.34) into the right-hand
side of (5.31) finally yields (5.29), thus completing the proof of the lemma. O

REMARK. We should note that, as expected, in the case D = 1 equations (5.28)
and (5.29) reduce, respectively, to equations (5.4) and (5.5) provided by Lemma 5.2.
In fact in this case we have that a = b = c =d = 1, whence

qic _ qjc
0"
. . . . . N2
(qzc _ qjc) <qzd o qjd) B <qzl - qjl) .
() (¢7)
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FIGURE 5.9. Typical shape of function fi(z), z = (v, u), for D = 2;

and obviously §% = §*¢ = 1.

DEFINITION 5.10. For notational convenience, for a fixed index a € {1,...,D}

we will introduce function f, : R — R : 2 = /(||z||zp)

@

Telon and define:

) 2 Fole =) = o/ (Il = wller) T —

where 2% and y® are the a-th components of points z,y € RP.

As we had for function f introduced in Definition 5.3, it is the case that f,(z,y) =
—fa(y,x) and f,(x,x) = 0, for any choice of index a € {1,..., D}. Figure 5.9 shows
the typical shape of function ﬁ : RP — R in the case D = 2; compare it with
the one-dimensional counterpart shown in Figure 5.1. With the above notation,

equation (5.28) can be simply written as
iajb,

g (61 — o1 fo(d', %) 6°°.

We are now going to apply the results of Lemma 5.9 to Theorem 4.4 so to com-

pute the general formula for sectional curvature for the Riemannian manifold of N
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landmarks in D dimensions. In order to do that, we first need to rewrite the for-
mula provided by Theorem 4.4 in terms of the “double index” notation introduced
in Chapter 3. We are going to use u,r, s,v for the indices concerning the landmark
label, and a, b, ¢, d for those regarding the component of a specific landmark; as far
as summation indices are concerned, we are going to use , 1, &, n and «, 3,7, for

the two types of indices, respectively. We have:

2Ruarbscvquay;bYSCde — (Xua}/rb . YuaXrb) <gscua,rb'ud . iguasczpa grbvd,goa
3
+ guasc‘,pa ggoarb,vd . § guaipﬁ,rb‘gwﬁé’y gE’ysc,vd> (Xscy;d . Yschd>a
with u,r,s,v=1,...,N and a,b,c,d=1,...,D. As we did in section 4 we are going

to analyze the four terms in the central factor of the right-hand side of the above

equation one by one.

5.1. First term. We can use formula (5.29) from Lemma 5.9 to compute:

scua,rbvd A _scua, warb pBvd

g =9 ayp 9 9
(qsa . qua) (qsﬁ _ quﬁ)

(e)*

] }’V(Q‘”) 0°" v (") 6",

— (5; _ 53) (5;2 _ 6112) 5ca{7//(gsu)

ﬂw% (@ — ") (¢ — ¢*)
Ssu af — 2
Q (qu)

that is, summing over indices «, (3, ¢ and 1),

_|_

(qsb o qub) (qsd o qud)

= () = (e ) = 2o (e

+

M [5bd - (qsb _ qub) (qsd _ qud>] }7

oY (qu)Q

that is,

g e = [y(0" )7 (0™) = (™) (") = (0" )V () + v(0")v(0™)] 5

. (qsb _ qub) (qsd _ qud) /( su) b (qsb _ qub) <qsd _ qud)
: {’Y (™) 0% +1 qu [5 - Dk ”
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After multiplying by the components of the contangent vectors a simplification occurs,
in the same way that they occurred in the one-dimensional case: that is, the two

underlined terms in the above equation actually combine. The final result is:

(XuaY;‘b - YuaXrb) gscua,rbvd (Xscyvd - Yschd)

su

= > (XuaYi — YiaXo) ([27(9”)7(98“) — (") (") — (0" )v(0™)] 0

v (@ =a) (@ = q") A0 e (@ = ") (¢ = ")
~{7 (™) (™)’ T [5 - (o)’ ]})

. (XSCYUCI - Y:schd);

as usual, we have written the summation symbols explicitly only for those indices

that break the rules of Einstein’s summation convention.

5.2. Second term. This time we need formula (5.28) from Lemma 5.9:

- guasc, . grbvd,cpa _ _lguasc, N grbvd, g@awﬁ
4 ® 4 @ ¥B

__1 s usy 4" " e o sv oy 47— 477 g o\ saf
AR R R G ARLE >—Qm 5 1(0) 8
= 152 (0) — (") — () +1(e™)] fula® )5 Fo(a" ")

= 85 (0) ~ 2e™) ~ ") + 9] D Fala® 0" Fuld ).

a=1

Once again, multiplying by the components of the cotangent vectors causes some
simplifications: the two underlined and and the two doubly underlined terms combine.

The final result is:
(Xuay;‘b - YuaXrb) gscua,rbvd (Xch;)d - Yjschd)

= (XuaYip — YiaXo) ( —~ % 5% 6" [ (") = (@] Y fala" @) fald", Q”))

su a=1

. (Xchvd - Yschd) .
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5.3. Third term. Once again, by formula (5.28) from Lemma 5.9:

uasc, warbyd ___uasc, warb, YPBvd
9" 7 = g0 97 9

= Z —62) fala",q°) 0% (65 — 07,) fa(q?,q") 6° (o) 67
= [Z 5257 /(4% ") (") = 816, (¢, ') v (™)
=7 L Pt ) 1) + 5 FUaT 0 1) flat ) 0
= [fd(q“7 q) (™) = fUq", q") (™)
_ fd<qsyqr) ,Y(st) T fd(qs,qr) ’Y(Qm)} fb(q“,qs) 5ac
= {h(@“”) — (@) 4" q") + [1(@) = (&™) fe, q’")}fb(q“, q°) 6%,

where we have (only notationally) raised the indices in functions f¢ and f° to make

them consistent with the left-hand side, e.g. defining f* £ §°*f,,.

5.4. Fourth term. We have:

Eyscud 3 ua B, parb gvse, nevd

3 b
vavpr Gyper 9 0 9

=59 Guper ¢ = =58 0

= _‘Z —02) fald", ") 67 4(*")8°" guper (05, — 0) fo(a®, 07) 677 (™)8"

= ——Z o] f2(a", 4%) hye FU(GE @) [1(0™) — v(0™)] 6,

where h;;(q) is the inverse tensor of h*(q) = G(q',¢’), defined in (5.27): it is in fact

the case that gygey 097 07¢ = hye 0gy 6% 07 = hye 69
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5.5. Summation of four terms. The discussion above finally leads to:

2RuarbscvquaY'rbY'schd = Z (Xuay;b - YuaXrb> (XSCK}d - Y:schd) 9

rsu

: ([27(9”)7(98“) — (") (0™) = 7(0")v(0™)]

. {7”(qu> (qsb _ qub> (qsd _ qud) ’7/(qu> |:5bd B (qsb _ qub) (qsd _ qud)i| }

_l’_
() o™ (o)

- % 3" [y (e") = ~(e™)] i fold", ") fald", q")
a=1
+{ e =] @) + [1(e™) = e ' ) J e )
- g > [v@) = ()] £2(a", q%) hye f(a5,a°) [v(e™) — 7(@”)}) :
o
where, as usual, we have written the summation symbols explicitly for the indices

for which the rules of Einstein’s summation conventions are broken, i.e. when the

summation index appears more than twice in a product.

REMARK. Once again, one can easily verify that the formula computed above for
sectional curvature in the general case for N landmarks in D dimensions simplify to
the one that we had computed for N one-dimensional landmarks reported at the end

of section 4, simply by settinga =b=c=d = 1.

6. Conclusions

In this chapter we have provided explicit formulas for the dual Riemannian cur-
vature tensor in the case of N one-dimensional landmarks and for sectional curvature
in the case of N landmarks in one or D > 2 dimensions; in particular, we have have
also analyzed in detail the graphs of sectional curvature for two and three landmarks
on the real line. The formulas are expressed in terms of the function v that defines
the kernel G(z,y) = v(||z — y[lgp), and its first and second derivatives. For specific
choices of v its derivatives are related to it, e.g. by second order differential equa-

tion (2.15) in the case of Sobolev-type kernels or by equations (2.19) and (2.20) for
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the Gaussian and Cauchy kernels, respectively; using such expressions the formulas
for sectional curvature could be made analytically more explicit, although we chose
to leave them in their most general form—which is still numerically implementable.

In the next chapter we will use some of the formulas we worked out in the present
one to investigate the effects of curvature on the qualitative dynamics of landmarks,

i.e. the geodesic flow determined by the Hamiltonian system discussed in Chapter 3.
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CHAPTER 6

The Qualitative Dynamics of Landmarks

In this chapter we explore the qualitative dynamics of geodesics for landmarks
manifolds and analyze how such dynamics are influenced by curvature, which we

studied in the previous chapter.

1. Introduction

Geodesics are determined by the Euler-Lagrange equations for the Riemannian
energy that was introduced in Chapter 2. The geodesic flow on the tangent bundle

can also be obtained from the cogeodesic flow determined by Hamilton’s equations:

d tod i )
i = Z(G(q,QH A)z?]
(6.1) = i=1,...,N.
pi = —>_ VeG(d, ) (pi,pj)wo
j=1

which we derived in Chapter 3. Having studied curvature in the previous chapter we
will analyze the effect that it has on the qualitative dynamics of landmarks, e.g. by
verifying the existence of conjugate points (that is, points on the manifold that are
connected by distinct geodesic curves) in regions of positive curvature, or by verifying
the divergence of geodesics in regions of negative curvature.

Before proceeding we will express the conservation of the Hamiltonian for land-

marks, whose expression is

N | —

(6.2) H(p,q) = Z (G(q’}qj) + 5—;) (Pi» s ) »

in a way that will be useful for our study. As usual, we assume that the kernel G of
admissible Hilbert space V has the form G(z,y) = v(||z—y|[gp) for some function  :

[0,00) — R.
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PROPOSITION 6.1. For any choice of the smoothing parameter X\, the following

scalar quantity is conserved:

M(p,q) & ) [7(0) + % —(07)|(pi, pj)ro

1<i<j<N

where ¢ = ||¢" — ¢/ ||rp.

Proor. We can manipulate the expression for the Hamiltonian as follows:

H(p7Q):%{i<7(0)+i><pupzRD+2Z’Y )(pi, pj)R }

= %{(7(0) + %) [é@%pz Yrp + 2; Pis D) ]RD]
_QZ< >p“p] RD-i—QZ'Y U ){pis pj)r }
500+ §)<§p épj>RD > [0)+ 5 =) i pideo;

but the first term on the right-hand side is conserved by the conservation of linear
momentum. Since the Hamiltonian is conserved, so in the second term of the above

expression and this completes the proof. 0

REMARK. We have not proven a “new” conservation law. The above proposi-
tion is a consequence of the conservation of the Hamiltonian function (6.2) and the

conservation of linear momentum (Proposition 3.5).

For now on we shall assume, like we did in the previous chapter, that A = oo.

2. Dynamics of two one-dimensional landmarks

In the case of two landmarks on the real line Proposition 6.1 immediately implies

the following result.

COROLLARY 6.2. For A = oo (exact matching), in the case of two one-dimensional

landmarks the scalar quantity [7(0) — ’7(@12)]]?1])2 is conserved.
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The conservation of linear momentum and the above result allow as to write the

following expressions for the sum and product of momenta p; and ps:

(6.3) p1(t) + p2(t) = p1(0) + p2(0),
~ 7(0) = v("(0))
(6.4) p1(t) p2(t) = ~1(0) = 4(2(0)) p1(0) p2(0),

for all time t. Thanks to the above equations the evolution of momenta can be
completely solved in function of the evolution of the mutual distance o'%(¢) between
the two landmarks and the initial distance ¢'?(0); in particular, when the asymptotic
behavior of () for t — oo is known, equations (6.3) and (6.4) allow one to infer
the asymptotic behavior of the momenta, as a function of the initial distance ¢'?(0).

Hamilton’s equations (6.1) provided by Proposition 3.1 simplify to the following:

(6.5a) ¢ =7(0)p1 + (") p2
(6.5b) ¢* =7(0") p1 +7(0) p2

p1 = —f(q1,4) prpo

P2 = —f(q2,q1) p1p2 = —pr

with 0'%(t) = |q1(t) — q2(t)] and f(x,y) = v'(|z —y|) sgn(z — y) (see Definition 5.3). If

we assume, as we do in the following, that ¢; < g0 at all time, then f(q, ¢2) = —7'(0'?)

and the last two equations above can be rewritten as follows:

(6.5¢) P = ’Y/(le) p1p2

(6-5d) D2 = —7/(Q12) bipz2 -

Note also that the strong conservation law for momenta (Proposition 3.2) becomes:

(6.6) (’;—?(qxo»pi(t) —p(0),  te01], i=12

Since D = 1 there is no conservation of angular momentum, whence from now on in

this section by “weak conservation law” we will always mean the conservation of linear
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Case # Initial momenta p;(0), p2(0)

Lo O @ p1>0,p2=0

2 | — & 0<p2<p

3. | —r & — 0<p1=po

4. | - e— 0<p1<po

5. | e @ -@— pr=0,p2>0

6. | O — p1 >0, po <0, with p; = |po|
N O t@ >0, po < 0, with p; > |po|
8. — &—  p1 <0, pp >0, with |p1] = po
9. | ~0 O——  p; <0, py >0, with [p;] < py

TABLE 6.1. The nine cases of initial momenta (p;(0), p2(0)).

momentum (6.3). We also note that since ¢* > ¢' for all ¢ we have that o'? = ¢* — ¢,

whence the distance between landmarks satisfies the ordinary differential equation:

(6.7) a 0% =q¢ —q¢" = [7(0) —v(e")] (p2 — m),

by (6.5a) and (6.5b).
As far as the dynamics of equations (6.5a)+(6.5d) are concerned, we shall analyze

the different cases listed in Table 6.1 (which are characterized by different initial
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FIGURE 6.1. Sectional curvature x(0'?) for the Gaussian kernel.

values of the momenta p; and py) in various regions of the manifold, i.e. in areas with
positive or negative curvature. From now on, we shall always assume that ¢; < ¢
(and since we assume that A = oo such order cannot change in time). The qualitative
behavior of the dynamical system in other cases not listed in Table 6.1 (e.g. p; = 0,
pa < 0) can be inferred, by symmetry, from those listed.

We remind the reader that for the manifold of two one-dimensional landmarks
sectional curvature k, given by formula (5.17), only depends on o' and is plotted
again for convenience in Figure 6.1 in the case of the Gaussian kernel (5.18) with unit
variance. As we saw in the previous chapter function x has a minimum, a zero (other

than the one at p'? = 0) and a maximum at points:

Om = 0.953, 0, = 1.534, oM = 2.198,

K(0m) = —0.1594, k(0,) =0, k(om) = 0.1786,

respectively. We have implemented numerically differential equations (6.5a)-(6.5d)
precisely in the case of the Gaussian kernel with unit variance.

In the several figures that follow, where ¢;(t) is plotted against go(t), the thick
diagonal line has equation q; = g2 (or ¢'? = 0). Since we assume that ¢ > ¢q; the

dynamics of the system take place above such line (see, for example, Figure 6.2: the
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details regarding such Figure will be discussed later; note also that the scale may
change from figure to figure). Proceeding from bottom to top, the next (dashed)
diagonal line represents the points where ¢s —q; = on,, i.e. the points where curvature
has its minimum; the next (continuous) diagonal line represents the points where gy —
¢1 = 0,4, 1.e. the points where curvature has a zero; finally, the next (dash-dotted)
diagonal line represents the points where ¢; —q; = on, i.e. the points where curvature
has its maximum; above the latter line curvature is positive, and converges to zero
from above as g — q1 — +00. We shall now analyze the nine cases listed in Table 6.1

in some detail.

REMARK. Before proceeding, we should note some immediate consequences of
the conservation laws that hold for all cases listed in Table 6.1. For example, when
either one of the initial momenta is zero then by the strong conservation law (6.6)
such momentum remains equal to zero for all time; if this is the case, then the other

momentum is constant in time by the weak conservation law (6.3).

Also, note that for any ¢ the map £ — ¢;(&) is a diffeomorphism, whence aa—‘?(f )#0
for all pairs (¢,€); but for any ¢ the map ¢ — 88—‘?(5) is continuous and 88—“? o = 1,

therefore aa—‘pg(f) > 0 for all pairs (¢,£). Whence by the strong conservation law (6.6)
if p;(0) # 0 then p;(t) never changes sign in finite time and in particular never becomes
zero. This implies, for example, that if the two landmarks collide into one another
with opposite initial velocities then they will not “bounce” and escape to infinity in

opposite directions, since this would imply a change of sign for both momenta; we

shall provide the details of this instance later on (Case 6).

CASE 1 (p; > 0, p, = 0). By the strong conservation law (6.6) we have py(t) =0
for all ¢t € [0,1]; a direct consequence of this, together with the weak conservation
law (6.3), is that p;(¢t) = p1(0) for all ¢ € [0,1]. By equations (6.5a) and (6.5b) the
first landmark moves to the right with constant speed ¢'(t) = v(0)p;(0) and “pushes”
the second landmark, whose speed increases as p'? decreases since ¢*(t) = v(0'?)p1(0)

and ~ is monotone decreasing. The whole picture is provided by the following result.
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0 1 2 3 4 5 6 7 8 9 10
a0

FIGURE 6.2. Six trajectories

in Case I: (41(0), g2(0))
(0,1),(0,2),...,(0,6) and, in all six cases, (p1(0),p2(0)) = (10,0).

PROPOSITION 6.3. Under the hypotheses of Case 1, i.e. p1(0) > 0 and p2(0) = 0,
we have that py(t) = p1(0), p2(t) =0, ¢'(t) — oo and ¢*(t) — oo with 0'%(t) — 0 as
t — o0. Also, ¢*(t) = v(0)p1(0) for all t and ¢*(t) — v(0)p1(0) as t — co.

PRrOOF. Equation (6.7) becomes

d
20 ==[7(0) =7(e"”)]p(0) <0,
so 0'2(t) is a monotone decreasing and positive function; whence it converges. This
implies that £ 0'%(¢) — 0 as t — oo, so that, by the above equation, v (0'%(t)) — ~7(0);

therefore 0'%(t) — 0 by the monotonicity of function . The rest of the proof descends
directly from the equations (6.5a) and (6.5b).

0]
Typical trajectories in the (¢, ¢2) plane are shown in Figure 6.2.

CASE 2 (0 < py < p1). In this case both landmarks initially move to the right,

with the first one moving faster than the second one and therefore approaching it. It

is not the case anymore that either p;(t) or ps(¢) remain constant, but by the weak
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conservation law their summation p;(t) + pa(t) does. The interesting phenomenon
that happens is that the second landmark “bounces” off the first one, and the two
momenta are eventually “swapped” between the two; we will later provide a rigorous
justification of such a behavior. This is illustrated in Figure 6.3: the top graph
shows the time evolution of ¢;(t) and ¢s(t), whereas the bottom portion illustrates
the corresponding time evolution of momenta p;(t) and ps(t); note that p;(t) + pa(t)
is constant in time. Figure 6.4 shows the same trajectory in the (g1, ¢2) plane; since
initial velocities are eventually swapped the final slope of the curve is the inverse of

the initial slope. The following result holds.

PROPOSITION 6.4. Under the hypotheses of Case 2, i.e. 0 < py(0) < p1(0), we

have that ¢'(t) — oo, ¢*(t) — oo and 0'%(t) — oo ast — oo. Also,
1tlim m(t) = 1thm pa(t), tlim pa(t) = 1tlim p(t),
i.e. the two momenta are swapped.

PRrROOF. Differential equation (6.7) holds for the mutual distance o'?:

07 = [(0) (™)) (2~ )

Factor [y(0) —~(0'?)] is always positive, so that the sign of the right-hand side of (6.7)
depends only on the difference p, — p1, and is initially negative; whence ¢'%(¢) initially
decreases. By the strong conservation law momenta p;(¢) and p(t) are always positive

in finite time therefore

P =17"(0") pp2 <0,
P2 = —’Y/(Q12) pip2 > 0,

i.e. p1(t) and py(t) are respectively monotone decreasing and increasing. But we
have that pi(¢) > 0, so it will converge so some positive value p;(c0); on the other
hand po(t) < p1(0) + p2(0) so it will also converge to some positive value py(00).

We now claim that there exists a finite time ¢* such that p;(t*) = po(t*). We

will reason by contradiction, assuming that p;(t) > po(t) for all £ > 0; in particular,
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FICURE 6.3. Trajectory in Case 2: (¢:1(0),4(0)) = (0,1),
(p1(0),p2(0)) = (9,1). The top and bottom graphs represent, respec-
tively, the evolution of positions and momenta versus time. Note that
the second landmark (dashed line) bounces off the first one (continuous

line) and eventually the two momenta are swapped.

we assume that p;(c0) > pe(co) > 0. If this is true p'?(¢) is a monotone decreasing
function for ¢ > 0 by (6.7) and it must necessarily be the case that ¢'*(t) — 0 as
t — oo; in fact if ¢'2(t) — D, for some D > 0, then p;(t) — ~'(D) pi(c0) p2(c0) < 0
and pa(t) — —v'(D) p1(00) p2(00) > 0 as t — oo, which would imply that the graphs
of p; and p, cross, immediately reaching a contradiction. So our hypothesis implies

that o'2(t) — 0.
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a,0

0 2 4 6 8 10 12 14
a,(0)

FIGURE 6.4. The same trajectory of Figure 6.3 drawn in the (g1, ¢2) plane.

Let us study the convexity of function ps(t). Differentiating equation (6.5d) and

subsequently inserting equations (6.7), (6.5a) and (6.5b) yields:

P = —7"(0") 6120102 — 7' (0"%) P2 — 7' (") P1po
- B0 -
— )

(6.8) = {7"(@12)[7(0) ()] + [ (e )]2}p1p2(p1—p2).

](pQ — p1)p1p2 — [7’(@12)}21711?% + [7/(912)}217%?2
+ 2

By our hypothesis it must be the case that pi;ps(p; — p2) > 0, so that the sign of s is
determined by the factor in the curly braces; note that the first term in the braces is
negative near zero and positive away from zero (this is determined by the sign of ")

while the second term is always positive. However, since ¢'?(t) — 0 as t — oo, we
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are allowed to consider the following approximations:

2(0) — 7 (0) = —2 (0 (62)° + o((¢2)?)  since 4(0) =0,

2
7//(912) 7//(0) 4 0(912) since 71/1(0> _ 0’
7' (0"%) =7"(0) 0 + 0

[ (@) =[O (¢

0") since 7/(0) = 0,

4 of(2)).

(
)

Inserting the above into the expression in curly braces in (6.8) yields:

1
= 5O (%) +o((e")") + (] ()" +o( (™))
1
= SO (@) +o((e?)).
so that we may conclude that fis > 0 (and p; = —py < 0) once p'? reaches a neigh-

borhood of zero. This implies that from that time onwards ps(t) is convex (and p;(t)
is concave); in particular it cannot be that ps(t) converges to a finite limit (nor
can pi(t)), which is a contradiction.

The time t* defined above is the “crossing point” of Figure 6.3; when this occurs
by equation (6.7) the time derivative ¢'? changes sign, so that the distance between
the landmarks starts increasing (in the (g1, g2) plane, the angle between the tangent
vector to the trajectory and the ¢; axis reaches 45°, and keeps increasing). We should
now note that the evolution of p;(¢) and p,(t) depends on positions ¢ (t) and g(t)
only through their difference 0'2 = ¢ —qi, i.e. if one is interested only in the evolution
of momenta it is sufficient to consider (6.5¢) and (6.5d) in conjunction with ordinary

differential equation (6.7), with the appropriate initial conditions. We will now reverse
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time by defining 6'*(s) = 0'*(—s), pi(s) = pi(—s), P2(s) = pa(—s). We have that
Cas) = T = (@5 i) pal-9) = 7 (2%(5)) Br() 7o)
Tl =~ = (@) (=) pa(=9) = +7(276)) Ba(5) ),
L5 = 1| =) )] (o)~ ()

= [7(0) =v(2"(s))] (P1(s) — Pa(s)),

so that the evolution of §'2, p; and p, is determined by the following system of

ordinary differential equations:

0% = [v(0) = ()] (1 — B2,

151 = —7/(512) P1D2

P2 = (") Pipo
which are the same as (6.7), (6.5¢) and (6.5d), except that the roles of p; and ps
are exchanged. This implies that starting from the same initial conditions at the
“crossing point” of Figure 6.3 the evolution of p;(s), s > 0 will be the same as that
of pa(t), t > 0 and the evolution of pa(s), s > 0 will be the same as that of p;(¢),
t > 0; that is, the evolution in the past of p; will be the same as the evolution in the

future of po, and vice versa. In conclusion, p;(—o00) = pa(00) and pa(—o0) = p;(00),

so that momenta are eventually swapped between the two landmarks. 0]

It is especially interesting in this case to study trajectories in different regions of
the (q1, g2) plane; specifically, in regions of positive and negative curvature. It should
first be noted that the behavior described above (the “bouncing” and swapping of
momenta) is common to all regions, therefore, independently of where the trajectory
originates, since p'2 — oo the point (q1 (1), qg(t)) will eventually end up in the region
of positive curvature (characterized by g2 — ¢1 > 0,). However, it turns out that
trajectories that originate at a common point in the region of positive curvature may
exhibit conjugate points, as illustrated in Figure 6.5. Note that a trajectory that orig-

inates at a point in the region of positive curvature may enter the region of negative
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a,0
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a0

F1GURE 6.5. Conjugate points for trajectories that originate at a com-

mon point in the region of positive curvature (Case 2).

curvature (if, for example, p; > py > 0) and then “bounce back” in the region of
positive curvature, where it could have a conjugate point with another trajectory that
originated at the same point. On the other hand, as illustrated in Figure 6.6, tra-
jectories that originate at a common point in the region of negative curvature, never
cross again within such region; however, they may meet again, i.e. have conjugate

points, once they enter the region of positive curvature (Figure 6.7).

CASE 3 (0 < p; = p2). The graphs and trajectories relative to this case can be
inferred from those of Case 2. In fact, with reference to Figure 6.3, the trajectories
start from the point where the momenta are the same (the “crossing point” of the
bottom graph) and then are completely the same as in Case 2, with the two momenta
settling to two final values p; > p; > 0 and both landmarks diverging (the second
one faster than the first one).

For a fixed pair of (equal) initial momenta, the values of the final momenta depend
on the starting point on the (q1,q2) plane, i.e. on the initial distance between the

landmarks. More precisely, the following result holds.
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4
a,(0)

FIGURE 6.6. Trajectories that originate at the same point in the region

of negative curvature (Case 2).

PROPOSITION 6.5. Under the hypotheses of Case 3, i.e. 0 < py(0)

have that q'(t) — oo, ¢*(t) — oo with 0'%(t) — oo ast — oo. Also,

7(0'2(0))

T B

pi(co) £ lim py(t) = pl(O){1 -
and

7(0'2(0))

7(0) } > P2(0).

M@émwM=m®%+

t—o0

= p1(0), we

In particular if ¢'%(0) ~ 0 we have that p;(co) =~ 0 and py(cc0) =~ 2p;(0), i.e. the

transfer of momentum between the landmarks is almost complete.

PRrROOF. By the strong conservation law momenta must be positive for all time,

whence by equations (6.5¢) and (6.5d) we must have p; < 0 and ps > 0. So p;(?)

increases and po(t) decreases with time; consequently p, — p; > 0 for ¢ > 0. The

following equation holds:



Il Il Il Il Il I}
0 5 10 15 20 25 30
a0

FIGURE 6.7. Trajectories that originate at the same point in the region
of negative curvature and meet again in the region of positive curvature
(Case 2). Dashed trajectory: (¢:1(0),¢2(0)) = (0,1.3), (p1(0),p2(0)) =
(7,3). Continuous trajectory: (¢1(0),¢2(0)) = (0,1.3), (p1(0),p2(0)) =
(5.01,4.99).

since both factors on the right-hand side increase in time it must be the case

that o' — oo as t — oo. By (6.3) and (6.4) it is the case that

(6.9) p1(00) + p2(00) = 2p1(0),

7(0™(0))7 ,
W] P1(0) )

since lim, ., 7(0) = 0. Combining the above equations implies

(@207 50
e o —o

(o) (o) = 1=

P2(00) — 21 (0)pa(o0) + [1 -

which in turn yields
7(0'2(0)) }
7(0) )’

the minus sign must be picked since p;(t) is a decreasing function. The result

p1(00) :pl(O){l +

for py(o0) follows immediately from (6.9). O
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FICURE 6.8. Trajectories with initial momenta (p;(0),p2(0)) = (5,5)

but different initial positions (Case 3).

Figure 6.8 shows different landmark trajectories in the (qi,q2) plane which all
have common initial momenta (p;(0),p2(0)) = (5,5) but different starting points
(¢1(0),42(0)) = (0,k-0.12), k=1,2,...,35.

CASE 4 (0 < p1 < p2). Most of the relevant information on this case can be
inferred from the previous graphs. For example, momenta evolve in time as in Fig-
ure 6.3, except that only the portion of the graph relative to some time after the “cross-
ing point” of momenta should be considered. We should note that since p, > p; > 0
the initial tangent vectors to trajectories in the (g1, ¢2) plane form an angle with the ¢

axis that is greater than 45°.

PROPOSITION 6.6. Under the hypotheses of Case 4, i.e. 0 < p1(0) < p2(0), we
have that ¢'(t) — oo, ¢*(t) — oo with ¢'%(t) — oo ast — oo. Also

p(0)+p2(0) 0 [T 7(2'2(0))1  pi(0)p2(0)
{1 \/1 1- =5 ][p1<o>+p2<o>12}

lim py(t) =

t—o00 2
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and

| _ (0) +ps(0) o (@20)1 pi(0)p(0)
fm pe(t) = = {”\/1 1-=25 ][p1<o>+p2<o>]2}‘

Note that setting p;(0) = p2(0) yields the result of Proposition 6.5.

PROOF. The fact that o'?(t) — oo as t — oo is proven exactly as in Proposi-

tion 6.5. As far as momenta are concerned, we have that

p1(00) + p2(00) = p1(0) + p2(0),
7(0"(0))
7(0)
since lim, ., 7(0) = 0. Combining the above equations implies:
7(0"(0))
7(0)

Solving the above quadratic equation yields the result. 0

(o0} a(ox) = |1~ | (00

pi(c0) = [p1(0) + p2(0)]p1(c0) + [1 - ] p1(0)p2(0) = 0.

Figure 6.9 shows two sets of eight trajectories. The two sets start from points
(ql(()), qg(())) = (0,1) and (0, 5) respectively, and within each set the eight initial mo-
menta are (p1(0),p2(0)) = (4.5,5.5), (4,6), (3.5,6.5), (3,7), (2.5,7.5), (2,8), (1.5,8.5),
and (1,9), for both sets.

CASE 5 (p1 =0, p2 > 0). As in Case 1, since one of the two momenta is initially
equal to zero the conservation laws imply that both momenta remain constant at
all time; whence p;(t) = 0 and py(t) = p2(0) for all t. What happens is that if the
two landmarks are initially close then the first one is “dragged” by the second one
for a while, until the latter detaches itself and escapes to infinity, leaving the former

virtually still. More precisely, the following holds.

PROPOSITION 6.7. Under the hypotheses of Case 5, i.e. p1(0) =0 and p2(0) > 0,
we have that pi(t) = 0, pa(t) = p2(0), ¢(t) = v(0)p2(0) and ¢'(t) — 0 as t — oo.

That is, ¢*(t) converges and ¢*(t) — oo as t — oo.
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FIGURE 6.9. Two sets of trajectories for Case 4, which share common

initial momenta but have two different starting positions.

a,0

6
a,(0

FiGURE 6.10. Trajectories for Case 5, all with initial momenta

(p1(0),p2(0)) = (0,10) but different initial positions.
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PROOF. Equations (6.5a) and (6.5b) become, respectively, ¢! = ~(0'?)p2(0)
and ¢? = v(0)p2(0); the latter velocity is constant and positive, therefore g(t) — +o00
as t diverges. As far as the mutual distance p'? is concerned, the ordinary differential

equation
d
at °

holds; since the right-hand side is always positive function p'?(¢) is monotone in-

2= gt = [0) = +()]pal0) > 0

creasing. Whence ¢' is monotone decreasing by (6.5a), i.e. the first landmark
slows down in time; we will now argue that it comes to a virtual stop. In fact
& 02(t) = [7(0) =v("(1))]|p2(0) > [7(0) —~("*(0)) ] p2(0) for all t because o'*(t) is

monotone increasing, which implies, by integration, that

0™ (t) > ¢"(0) + [(0) — 7(¢"*(0))]p2(0) £,

whence ¢'%(t) diverges as t — oo. When p'? becomes large enough we have y(0'?) ~ 0,
therefore the dragging effect stops and the first landmark comes to a halt while the

second diverges to infinity with constant speed. 0

Figure 6.10 shows some typical trajectories for this case, with initial momenta
all equal to (pl(O),pg(O)) = (0,10) and initial positions (ql(O),qg(O)) = (0,k-0.2),

k=1,...,12; note that all trajectories eventually become virtually vertical.

CASE 6 (p1 > 0, pp < 0, with p; = |p2|). What qualitatively happens in this
case is that the two landmarks ¢;(¢) and go(t) converge towards each other without
bouncing back, as we mentioned in a previous remark, while their momenta p;(¢)

and po(t) diverge to plus and minus infinity, respectively.

PROPOSITION 6.8. Under the hypotheses of Case 6, i.e. 0 < p1(0) = —po(0), it
is the case that q'(t) — M, fori = 1,2, and 0"*(t) — 0 ast — oco. Also,

p1(t) — oo and pa(t) — —oc0 ast — oo.

PROOF. Assuming p;(0) + p2(0) = 0, we have by the weak conservation law

that pa(t) = —pi(t) for all ¢. Therefore ordinary differential equations (6.5a)
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FIGURE 6.11. Evolution of positions (top) and momenta (bottom) ver-
sus time in Case 6. The continuous lines represent ¢, (¢) and p; (¢), while

the dashed lines represent ¢o(t) and po(t).

and (6.5b) may be written as:

(6.10a) ' = [7(0) = ()]s (t),
(6.10b) i* = [v(2") = 7(0)]pa (t);
in particular, we note that ¢*(t) = —¢*(t) at all time. As far as the differential

equations for momenta (6.5¢) and (6.5d) are concerned, we have

(6.10¢) pr=—7(0")pi(t) >0,

(6.10d) P2 =7'(0") pi(t) < 0;
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therefore p;(t) and po(t) are monotone increasing and decreasing, respectively. Com-

bining (6.10a) and (6.10b) yields the ordinary differential equation

d

(6.11) -

0" =@ —¢' =2[v(0") —1(0)] p1(t);

the right-hand side is always negative since v(0'%) < v(0), p1(0) > 0 and p;(¢) is mono-
tone increasing by (6.10c). This implies that the mutual distance ¢'%(¢) is a monotone
decreasing, continuously differentiable, lower bounded function; hence %gm(t) — 0
as t — 0o. Since p;(t) is strictly positive and monotone increasing, by (6.11) we have
that that v(0'(t)) — 7(0), i.e., by the monotonicity of function v, that ¢'2(f) — 0
as t — oo. In order to prove the divergence of the momenta we will use the formula
on the product of momenta (6.3); since p;(t) = —po(t) at all time we have that

_ [7(0) = v(e%2(0))
mi) = \/7(0) —(0™(t)) no)

whence p;(t) — +oo (and py(t) — —o0) as t — oo. O

Figure 6.11 shows exactly this behavior for initial positions (g1(0),¢(0)) = (0,4)
and momenta (p1(0),p2(0)) = (5, —5).

CASE 7 (p1 > 0, pp < 0, with p; > |ps|). This case is similar to the previous one
except that, since p; is initially larger (in absolute value) than py, when the colli-
sion occurs the “stronger” landmark prevails and the two eventually diverge together
to +o0o, with their mutual distance p'?(t) quickly converging to zero (see Figure 6.13).
Even though the second landmark eventually travels toward +oc its momentum never
changes sign from negative to positive (by the strong conservation law) and in fact
diverges to —oo; p1(t) also diverges (to +00), but by the weak conservation law it is
always the case that p;(t) maintains “the edge” against py(t) (exactly by the differ-
ence p1(0) — |p2(0)]) so that the two landmarks finally travel together, at virtually

constant positive speed.

PROPOSITION 6.9. Under the hypotheses of Case 7, i.e. p1(0) > 0, pa(0) < 0

with p1(0) > |p2(0)|, it is the case that ¢'(t) — oo, ¢*(t) — oo with ¢'(t) — 0
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as t — oo. AZSO; pl(t) — 00, p2(t) — —00 and qz<t) - 7(0)[p1(0) +p2<0>]7 1= 1727

ast — oo.

PROOF. Let Ap £ py(t) + pa(t) = p1(0) + p2(0) > 0; we can write

% 0" = [7(0) = v(0") ] (p2 — p1)

(6.12) =2[7(0) = v(0")] p2 + [7(0™) = 7(0)] Ap.

Since Ap > 0 and py(t) < 0 for all ¢ both terms on the right-hand side of the above
equation are always negative, therefore p'?(¢) is a monotone decreasing, continuously
differentiable function bounded from below, so that % 0'%(t) — 0 as t — oo; whence
both terms on the right-hand side of (6.12) must converge to zero as t — oo. In
particular v(glz(t)) — ~(0) so that, by the monotonicity of 7, it must be the case
that o'?(t) — 0. Now, combining equations (6.3) and (6.4) yields
7(0) = v("(0))
7(0) = v (e™(t))
where we have used p, = Ap — py, which yields:
_ A, \/(@)2 ~ 7(0) —~(e'(0))
2 2 7(0) = v (™(t))
the plus sign must be chosen since p;(t) is an increasing function. Analogously,
_Ap \/(@)2 ~ 7(0) —~(e'(0))
2 2 7(0) = v (™(t))

Taking limits for ¢ — oo proves the divergence of momenta. Finally, note that we

pi(t) — Appi(t) + p1(0) p2(0) = 0,

pi(t) p1(0) p2(0);

pa(t) p1(0) p2(0).

can rewrite ordinary differential equation (6.5a) as follows:

it = 5(0) 8p— [30) ~ (6] b = 1(0) ap - OO PORAO),

where we have used (6.4). Since p;(t) — oo as t — oo we also have ¢'(t) — ~(0)Ap.

A similar reasoning holds for ¢*(t). O

The situation described above is illustrated in Figure 6.12, where a the evolution
of positions and momenta is shown for initial conditions (g1(0),¢2(0)) = (0,4) and

(p1(0),p2(0)) = (8, —5). Note that in this particular instance the two landmarks are
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FIGURE 6.12. A typical trajectory for Case 7, plotted against time.

Top: positions; bottom: momenta. Continuous line: first landmark;

dashed line: second landmark.

initially relatively far, so that they initially travel at virtually constant speeds ¢! ~
v(0)p1(0) > 0 and ¢* ~ v(0)p2(0) < 0, with |¢?| < ¢'; as they get closer they start
feeling each other’s influence, and eventually both move linearly together with positive
speed. Figure 6.13 shows three sets of eight trajectories in the (qi, ¢2) plane. The three
sets start at initial positions (¢:(0), ¢2(0)) = (0,0.75), (0,2), and (0,4) respectively;
within each set, the eight trajectories have initial momenta (p;(0),p2(0)) = (5.5, —5),
(6,—5), (6.5, =5), (7,=5), (7.5,=5), (8,—5), (8.5,—5), and (9, —5). The farther away
the two landmarks start from each other, the straighter are the trajectories initially;

all trajectories eventually converge to the ¢ = ¢ diagonal line. It is perhaps useful
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FIGURE 6.13. Three sets of trajectories in Case 7.

to remark that if it were the case that ps(0) = —p;1(0) < 0 (Case 6) the trajectory in

the (g1, ¢2) plane would be a straight line perpendicular to the ¢, = g2 diagonal line.

CASE 8 (p1 <0, ps > 0, with |p;| = p2). In this situation the two landmarks are
pulling away from each other, with equal (in absolute value) but opposite initial mo-
menta. When the two landmarks are finally far away from each other, they break free
and diverge with constant speed in opposite directions, having exchanged a certain

amount of momentum prior to this.

PROPOSITION 6.10. Under the hypotheses of Case 8, i.e. po(0) = —p1(0) > 0, it

is the case that ¢*(t) — —oo and ¢*(t) — +o00 as t — oo. Also,

7(0'2(0))

dm pilt) = PO\ = ==

i=1,2.

PROOF. Since p;(0) + p2(0) = 0, by the weak conservation law we will have

that p;(t) + p2(t) = 0 for all . By the strong law p;(¢) < 0 and po(t) > 0 for all time.
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Equations (6.5a) and (6.5b) become, respectively:

¢' = [v(e") = 7(0)] p2 < 0,

¢* = [7(0) =v(")] p2 = —¢' > 0,

d
so that p 0" = ¢ — ¢" =2[v(0) — v(0"?)] p2 > 0. Therefore o"(t) is an increasing
function of time; we claim that ¢'%(t) — oo.

Since ¢'%(t) > 0'2(0) and ~(-) is monotone decreasing, we have

(6.13) % 0"(t) = 2[7(0) — v("(1))]p2(t) > 2[7(0) — 7 (2"(0))]p2(t);

but by (6.4) and the fact that p,(t) = —p2(t) we also have

that is

v 0 12 O))
(6.14) \/ 1)

Therefore (6.13) becomes

7(0'2(0))
7(0)

the right-hand side is a positive number that does not depend on time, therefore

% 0"(t) > 2[7(0) — v(2"(0))]p2(0)4 /1 —

0'%(t) — oo as t — oo. Finally, expression (6.14) implies

fim \/

the result for p;(t) follows from p;(t) = —pa(t O

The situation is illustrated in Figure 6.14 for initial conditions (gi(0),¢(0)) =
(—0.15,0.15), (p1(0),p2(0)) = (=5,5).
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4. A typical trajectory for Case 8, plotted against time.

Top: positions; bottom: momenta. Continuous line: first landmark;

dashed line: second landmark. Note the exchange of momentum that

occurs in the first part of the trajectory, when the two landmarks are

relatively close.

CASE 9 (p; <0, po > 0, with |p;| < pa). This case is similar to the previous one,
except that the second landmark “pulls to the right” more than the first one “pulls
to the left”, thus if the two start close enough to each other the former initially drags
the latter to the right for a while, until the two eventually detach from each other.
In the process some momentum is exchanged, as shown in Figure 6.15, which refers

to the initial data (¢1(0), ¢2(0)) = (—0.1,0.1) and (p1(0), p2(0)) = (=5;9).
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dashed line: second landmark.

PROPOSITION 6.11. Under the hypotheses of Case 9, i.e. p1(0) < 0, pa(0) > 0

with |p1(0)] < p2(0), it is the case that ¢*(t) — —oo and ¢*(t) — oo as t — oo. Also,

tli)rgopl(t) = % + \/(%)2 — [1 - %] p1(0) p2(0)

and

)= 32 (3" - 2250 o)

where Ap £ p1(0) + pa(0) = p2(0) — [p1(0)] > 0.
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PrOOF. We have that p;(0) + p2(0) = Ap > 0. By the weak conservation law
po(t) = Ap — pi(t) for all t. Equations (6.5a) and (6.5b) can be written as:

¢ =7(0) p1 +7(2") (Ap — p1) = [7(0) = ¥(2")] 1 + (") Ap

i [7(0"?) = 7(0)] p1 +~(0) Ap

¢ =~(0")p1 +7(0) (Ap — p2)

so that %Qn = 2[7(912) — 7(0)] p1+ [7(0) — 7(912)} Ap > 0; in fact, both terms on

the right-hand side are positive; since ¢'?(¢) is monotone increasing,

5 0" > [v(0) — v (0"(®))] Ap > [7(0) — v(0"(0))] Ap,

so that o'(t) > 0'(0) + [v(0) — v(0'*(0))] Ap - t, ie. 0"(t) — o0 as t — oc.

Manipulating equations (6.3) and (6.4) yields

p3(t) — Appa(t) +

whose solution is

Ap Ap\2 - Y(0) —y(0'2(0)) -
) =5 \/(7) T 0) — () PO

taking the limit for ¢ — oo completes the proof. OJ

Figure 6.16 shows three sets of eight trajectories in the (qq,¢2) plane. The three
sets start at initial positions (¢1(0),¢2(0)) = (—0.1,0.1), (—0.5,0.5), (—2.5,2.5) re-
spectively; within each set, the eight trajectories have initial momenta (p1 (0), p2(0)) =
(—5,5.5), (=5,6), (—5,6.5), (=5,7), (—5,7.5), (—5,8), (—5,8.5), and (—5,9). Once
again, the farther away the two landmarks start from each other, the straighter are
the trajectories initially. In any case, all trajectories eventually straighten as the two

landmarks get farther away from each other.

REMARK. After having analyzed in detail all nine cases listed in Table 6.1 we
should note that we have implicitly shown that in the case of two landmarks in
one dimension the dynamical system 6.1 admits no closed orbits. Francois-Xavier

Vialard provides an alternative and elegant short proof of this fact [44]. However, it
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FIGURE 6.16. Three sets of trajectories for Case 9.

is currently not known weather such result can be extended to landmarks in D > 2

dimensions.

3. Dynamics of three one-dimensional landmarks

In this brief section we show the qualitative behavior of three one-dimensional
landmarks for some sets of initial conditions and draw some comparison with the case
of two landmarks in one dimension, which was thoroughly analyzed in the previous

section. Hamilton’s equations for three one dimensional landmarks are:

q' =~v(0) p1 +v(0") p2 + (") ps

¢* = (") p1 + 7(0) p2 + ¥(0**) ps

§* = (") pr +7(0*) p2 + 7(0) ps
p1= ‘1"7’(@12) p1p2 + 7’(013) DP1P3
D2 = —7/(912) p1p2 + 7,(923) DP2ps3

Ps = —7'(0") pips — 7' (6®) paps ;
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FIGURE 6.17. Positions and momenta versus time for Example 1
(p1(0) > 0, p2(0) = p3(0) = 0). Landmark 1: thin line; Landmark 2:
thick line; Landmark 3: thick dashed line.

we shall limit ourselves to illustrating three possible combinations of initial conditions

for positions and momenta.

EXAMPLE 1. (p1(0) > 0, p2(0) = p3(0) = 0) In this case, by the strong law, the
momenta for the second and third landmarks are identically equal to zero in time
and consequently p;(t) = p1(0) by the weak law. Therefore the velocity of the first
landmark is constant it time, ¢' = (0)p1(0), and the remaining two landmarks are
“pushed” to +oo by the first one, without bouncing off; this type of behavior is
completely analogous to the one of the two landmarks in one dimension of Case 1;

see Figure 6.17.

EXAMPLE 2. (p1(0) > p2(0) = p3(0) > 0) In this case all three landmarks have
strictly positive momenta, so that “transfer” of momentum among them is possible,
as it happened in Case 2 for two one-dimensional landmarks. The first landmark is

initially much faster than the other two, and eventually bumps into the second one;
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(p1(0) > pa(0) = p3(0) > 0); large initial mutual distances. Land-

mark 1: thin line; Landmark 2: thick line; Landmark 3: dashed line.

momentum is swapped between the first and the second one, and later between the
second one and the third one. Eventually the latter escapes to infinity at great speed,
leaving the first and second one behind (at nonzero positive speed). Figures 6.18
and 6.19 refer, respectively, to the cases of large and small initial mutual distances;
in the latter case the second landmark never gains “full” momentum, since this is
transferred directly to the third one in an intermediate phase when all three landmarks

travel closely to each other.
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mark 1: thin line; Landmark 2: thick line; Landmark 3: dashed line.

EXAMPLE 3. (p1(0) > 0, p2(0) < 0, p3(0) < 0, with p;(0) > |p2(0) + p3(0)|) This
case is analogous to Case 7 for two one-dimensional landmarks. The first landmark
collides into the other two, which initially travel in the opposite direction. Since
p1(0) > [p2(0) + p3(0)| the three eventually travel together towards +oo; note that

the three momenta diverge, to +00, —oo and —oo respectively. See Figure 6.20.
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(p1(0) > 0, p2(0) < 0, p3(0) < 0, with p1(0) > |p2(0) + p3(0)|). Land-
mark 1: thin line; Landmark 2: thick line; Landmark 3: dashed line.

4. Dynamics of two two-dimensional landmarks

In this section we briefly analyze the qualitative behavior of two landmarks in-
teracting with each other. We should say right away that while the dynamics of two
landmarks are fully understood, it is not the case for two landmarks in two dimen-
sions. Further research is needed, and here we shall limit ourselves to describe the
observed qualitative phenomena.

If the two landmarks have initial momenta that lie on the same line, i.e. p;(0) =

kp2(0) for some k € R, then the problem is reduced to the one-dimensional case that
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was fully explored in section 2. For example, if

(6.15) p2(0) = —p1(0)

and the momenta point “towards” each other, we are exactly in the situation described
in Case 6 for two landmarks in one dimension. Since we are in two dimensions we
are allowed to modify the angle of collision. For example Figure 6.21 shows the

trajectories of two landmarks in two dimensions with initial positions
ql(O) = (170)a QQ(O) - (_Lo)a
and initial momenta

p1(0) = (=10,8.6), p2(0) = (10, —8.6)

(as usual, we are using a Gaussian kernel with unit variance); that is, situation (6.15)
is perturbed by adding “opposite angles” to each of the initial momenta. As in
case (6.15) the two landmarks eventually collide (in infinite time) by spinning around
one another a countably infinite number of times. Figure 6.22 is a zoomed-in version of
Figure 6.21 around the origin (note the different scale on the axes). As far as momenta

are concerned, it is still the case that both p;(t) and po(t) diverge as t — oco.

REMARK. We should remind the reader that the landmark trajectories illustrated
in Figures 6.21 and 6.22, despite being apparently complicated around the origin, are
in fact generated by flows of diffeomorphisms of the plane. Such diffeomorphisms
can be computed from the trajectories by implementing the techniques discussed in

Chapter 2.

If we increase the value of the angle between the initial momenta beyond a certain
threshold we have a bifurcation in the qualitative behavior of trajectories. This is

illustrated in Figure 6.23 for initial positions

¢'(0) = (1,0), ¢*(0) = (~1,0),
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FIGURE 6.21. Converging trajectories for two landmarks in 2D.
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FIGURE 6.22. Converging trajectories for two landmarks in 2D—detail.

and initial momenta

p1(0) = (=10,9), p2(0) = (10, -9).
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We observe that the two landmarks still spin around one another for a while, but
eventually escape to infinity in opposite directions. The corresponding momenta
(graphs not shown) eventually converge to finite values (p;(0c0) + pa(c0) = 0 by the

conservation of linear momentum) that determine the escape velocities of landmarks.

A similar behavioral pattern is observed when initial condition (6.15) is perturbed
by adding an angle to each initial momentum “in the same direction”; this is depicted

in Figure 6.24, which refers to initial positions

ql(o) = (Qv _4)7 (]2(0) = (_2’ _4)a

and initial momenta

pl(o) = (_127 10)7 pQ(O) = (127 10);

in this case the two landmarks still converge and collide in infinite time. However, if

the angle between the initial momenta is further increased beyond a certain threshold,
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Landmark Trajectories

-4+ N .

— P,0)= (-12,10)
- - P,0)=(1210)

% ” = 0 2 7 6
FIGURE 6.24. Converging trajectories for two landmarks in 2D.
e.g. if the initial momenta are chosen to be

with the same initial positions, then the qualitative behavior of Figure 6.25 is ob-
served: the landmark trajectories eventually diverge.

As we mentioned at the beginning of this section we have not yet developed a
rigorous explanation for the qualitative behavior of the dynamics of two landmarks in
two dimensions. In particular, it would be of interest to find an analytical expression
for the threshold “collision angle” beyond which the two landmarks eventually diverge,
expressed in terms of the initial positions and the function ~ that determines the
kernel. Also, the question of whether periodic orbits exist in two dimensions is still
an open one. The conservation of angular momentum is probably key to answering
all these questions.

We conclude this section, and the chapter, by observing the effects of curvature

on the qualitative dynamics of two landmarks on the plane: Figure 6.26 illustrates
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Landmark Trajectories
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— p,0)=(7.10)
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FIGURE 6.25. Diverging trajectories for two landmarks in 2D.

Landmark Trajectories — Conjugate Points

N Y

-3t

-5 i i i i i i i i i j

FIGURE 6.26. Existence of conjugate points for two landmarks in 2D.

the existence of conjugate points for trajectories originating at points

¢'(0) = (2,—4), ¢*(0) = (—2,—4)
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with different initial momenta, namely

pl(O) = (_7 - k’ 10)7 p2<0) = (7+ k’ 10)7

for k = 1,2,...,7 (the thicker line corresponds to the choice of k = 1). The above
conditions correspond to positive sectional curvature at the point in question, and
the existence of conjugate points is evident. The next chapter, which concludes this
thesis, briefly illustrates the possible effects of the existence of conjugate points in

the statistical analysis on shape spaces.
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CHAPTER 7

Conclusions

1. Results

In this thesis we have endowed the set of N landmark points in D dimensions with
the structure of Riemannian manifold: such structure derives directly from the notion
that the distance between two shapes can be computed as the square root of the min-
imal energy that is necessary to match the first shape to the second one by means of a
fluid flow. The metric tensor of the resulting D N-dimensional Riemannian manifold
was made explicit, as well as the ordinary differential equations that determine the
cogeodesic flow. Conservation laws, that follow from the translation-invariance and
rotation-invariance of the metric tensor, were also explored.

Once the metric tensor of a generic Riemannian manifold is known, in principle
one can compute the Riemannian curvature tensor by taking first and second partial
derivatives of the elements of the metric and combining them. In our case following
this procedure was unfeasible since the metric tensor is given by the inverse of a
matrix; on the other hand, the structure of the matrix of partial derivatives of the
cometric tensor happens to be very sparse, since each element of such tensor only
depends on 2D out of the n = DN coordinates. This suggested solving the problem
of finding formulas for the Riemannian curvature tensor and sectional curvature that
depend on the first and second derivatives of the elements of the cometric.

We then applied these formulas to computing the general expression of sectional
curvature for landmark manifolds, both in one and D dimensions. In particular,
we explored in great detail the simple but nonetheless very informative examples of
two and three one dimensional landmarks: in the latter case we also identified the
tangent 2-planes that correspond to maximum and minimum curvature in a number
of different landmark configurations.
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Last, but not least, we analyzed the effects that curvature has on the qualita-
tive dynamics of landmarks. In particular, we verified the divergence of geodesics
in regions of negative sectional curvature and the existence of conjugate points in
regions of positive sectional curvature. These facts have important consequences in

applications, as we will briefly discuss in the next section.

2. Applications and Future Work

Model (2.3) introduced in Chapter 2 and analogous ones are currently in use in
the emerging discipline of computational anatomy [10, 14, 15, 18, 22, 34, 35, 46],
specifically in analyzing Magnetic Resonance Imaging (MRI) data of the human brain.
In such field one has the interest in building templates from data, i.e. models for a
typically healthy brain and for a brain that is at a certain stage of a pathology, such
as Alzheimer’s disease, that modifies its geometry and structure in a characteristic
manner. The ultimate goal of this exercise is the creation of diagnostic software.

Typically, statistical analysis on a data set B = {Ji,...,Jy} C T is performed as

follows. First of all the so-called intrinsic (or Karcher’s) mean [38] is computed:

— - 2
(7.1) m = argrlpelg;d(l, J)?,

where d(-, -) is the geodesic distance. Then vectors w; € T,,Z, i = 1,..., M are found
such that, for all i, exp,,(w;) = J; (the mean m is “shot” with initial velocity w;
“evolves” along a geodesic curve into datum J; in unit time). At this point statistical

analysis is done on the tangent space, for example by performing Principal Component

Analysis (PCA, see [5]) on vectors (wy, ..., wy,,) in the linear space T,,Z; equivalently,
PCA can be performed on the cotangent vectors (w},...,w’ ). in T*Z. Note that

statistical analysis should be ideally performed on the manifold tself using Principal

Geodesic Analysis (PGA, see [14, 15]), which is however computationally unfeasible,

whence such analysis is approximated with linear PCA on the tangent space at m.
Several remarks are in order. First of all, when the manifold is non-negatively

curved and the data is not localized enough Karcher’s mean (7.1) may not be unique
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(for example, the sphere has constant positive curvature and if the “data” happen to
be precisely two opposite poles then any point on the corresponding equator solves
the above minimization problem).

Also, conjugate points may exist in regions of positive curvature: in fact in the
previous chapter we verified that this is precisely the case for landmark manifolds
eve in low-dimensional settings. A consequence is that if the data points in B are
not localized enough the vectors w; € T,,,Z such that exp,,(w;) = J; may not be well
defined themselves (non-uniqueness).

Last, but not least, even when the Karcher mean is unique and the tangent vec-
tors w; € T,,Z7 are well defined, curvature causes distortion in the statistical anal-
ysis. For example geodesics that originate at the Karcher mean m with initial ve-
locities X, Y € T, 7 locally diverge if K(X,Y) < 0, whereas they locally converge
if K(X,Y) > 0. In any case, distortion is generated by the process of representing
the data points on the tangent space at m: that is, in case of negative curvature two
data points J; and Jy, whose corresponding vectors, respectively w; and w,, appear
close on T,,,Z, may be far on the manifold 7 in terms of actual geodesic distance; on
the other hand, in case of positive curvature the tangent vectors w; and wsy could
appear far on 7,,Z when in reality J; and J; are close on the manifold. Situations
like these can potentially lead to inaccuracies in the statistical analysis.

Our current and future work aims precisely at estimating this distortion in the case
of landmark shapes deriving from MRI databases of left and right hippocampi of three
groups of patients: healthy patients, patients with Mild Cognitive Impairment (MCI,
that corresponds to a Clinical Dementia Rating, or CDR, of approximately 0.5), and
patients with Alzheimer’s disease! (AD). For each of the three classes of patients the
Karcher mean m is computed together with the tangent vectors w; € T,,Z that corre-

spond to the data, and PCA is performed on the tangent space. Now that a formula

IThe three-dimensional landmark sets, which are hand-picked and hand-labeled from MRI im-
ages of the brain, are provided by the Center for Imaging Science at Johns Hopkins University.
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for the sectional curvature of landmarks manifolds is known (see Chapter 5), we in-
tend to compute sectional curvature for each pair of tangent vectors w;, w; € T,,,7 and
perform a study of the local distortion. Also, since the whole computation depends
on the choice of the kernel (i.e. of the admissible Hilbert space V'), quantifying how
the choice of the kernel’s parameters (e.g. the scaling factor) influence the distortion

in the statistical analysis will certainly be of interest.
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APPENDIX A

Admissible Hilbert Spaces and Reproducing Kernels

In this Appendix we will concisely summarize the properties of admissible Hilbert
spaces and their reproducing kernels. We refer the reader to [47] for more details; we
should note that Reproducing Kernel Hilbert Spaces (RKHS) were first introduced
in [3], while [45] provides a modern and concise introduction.

We denote with CJ(RP RP) or simply with Co(RP, R”) the linear space of contin-
uous functions u : RP? — RP that vanish at infinity (that is, such that for every e > 0

the set {x : ||u(z)||gp > £} is compact; see [16]) which is Banach with the norm:
lulloe = max [Ju(z)||rs.
TE
Also, we define
Ci(RP RP) £ {u e C*"RP,RP) : 9°u € Cy(R",RP) for |a| < k},

where C*(RP RP) is the linear space of functions R” — R which are continuously
differentiable k£ times; in the above definition we have used the multi-index notation
for partial derivatives [13, 16]. C¥ is a Banach space with the C* (or W*°) norm

[ullkoe 2D max [|0%u(z)||,p.

z€RP
la|<k

In particular C} (RP,RP) is the linear space of continuously differentiable functions
u : RP — RP that vanish at infinity with their first partial derivatives, which is

Banach with the norm:

lull e = max ) o + Z ma | 25 ()],

z€RD

Admissible Hilbert spaces are defined as follows.
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DEFINITION A.1. A Hilbert space (V, (-,-)y) of functions R? — RP is said to be

admissible if the following conditions hold:

(1) V is continuously embedded in C}(RP RP), i.e. there exists a positive con-
stant C' such that ||ul|100 < Cllully, for all u € V;
(2) for any positive integer M, if x1,...,2x € RP and ay,...,ay € RP are such

that, for all u € V, Zfil <04¢,u(xi)>RD =0, then a; = ... = ay =0.

We should note that property (2) establishes a certain “richness” of functions in
space V. In fact it can be rewritten as follows: for fixed points z1,...,zy € RP,
if there exist vectors a,...,ay € R of which at least one is non-zero, then there

exists at least a function v € V such that vazl (a, u(azi)>RD # 0.

EXAMPLE. As we do in Chapter 2, V' can be chosen to be Sobolev space H* (R, RP)

with its norm:
2 [ (L), u(o)) g d

in the above expression L = (id — a?A)* is a self-adjoint spatial differential operator
(a € R, k € N and A is the Laplacian) that is applied to each of the D components
of vector field u. By the Sobolev Embedding Theorem [16] we have in fact that if
k> L 41 then V is embedded in C}(RP,RP). Property (2) of Definition A.1 is also
satisfied by H*(RP,RP) (in fact, for any value of k).

We will now prove the existence of so-called reproducing kernels for admissible
Hilbert spaces, which is a consequence of property (1) of Definition A.1. For a fixed

point x € R” and a fixed vector o € R” consider the evaluation functional

(A.1) 60V —=R:ur— (a,u(z))

RD"
Note that:

e functional 0% is linear, since for all u,v € V,

0(u+v) = <a, (u+v)(x)>RD = <a,u(a:)+v(:z:)>RD

= <O" u<x>>RD + <O‘77}(37)>RD = 0y (u) + 05 (v);
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e functional 0% is also bounded, since for all u € V,

or ()] = (o u(@))pn| < llafles llu(@)]er

< lleleellullice < Cllafler |fuflv,

where we have used the Schwartz inequality, the definition of || - ||« and

property (1) of Definition A.1.

Therefore, by the Riesz Representation Theorem for Hilbert Spaces [16] there exists

a unique function K¢(-) € V such that

(A'2) <Kxaa u>v = <O‘7 u<x)>RD )

for all uw € V. Such function is called the representer of evaluation functional (A.1),

and relation (A.2) is referred to the reproducing property of function K¢(-).

REMARK. In order for V' to have a reproducing kernel we could loosen the re-
quirements in the definition of admissible Hilbert space. In fact the existence of a
constant C' such that ||ull, < C||ul|y, for all u € V' would imply the boundedness of
functional 6%; in other words, the continuous embedding of V in CJ(R”, RP) would
be sufficient. However we require that V is continuously embedded in C}(RP RP)
so that the flow generated by time dependent vector fields v € Ll([(), 1], V), used in

Chapter 2, are actually diffeomorphism from R” to R”, i.e. continuously differentiable

and invertible with continuously differentiable inverse.

REMARK. The Hilbert space L?(R,R) of square integrable functions, with inner
product (f,g9) = [; fg dz, does not have a reproducing kernel (indeed, it is not
embedded in CJ(R,R)); formally, only the Dirac delta function, which is not an

element of the space, has the reproducing property.

Let V be an admissible Hilbert space. Note that the map R” — V : a +— K2(-)
is linear in o in fact, for all z € RP, a, 3 € R, and u € V,
<Kg+67 u>v = <Oé + ﬁ7 U($)>RD = <Oé, U(I)>RD + <57 U(ZL’)>RD

= <K§’u>v + <K:§7u>v = <K§ +Kf’u>v;
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whence Ko+# = K% + K? by the uniqueness of the representer. In particular, for
any point y € RP we have that Ko™ (y) = K%(y) + K?(y); so for an arpitrary pair
of points z,y € RP there exists a D x D matrix K(y,xz) € RP*? such that, for
all « € RP, K%(y) = K(y,z)a (here we are treating o as a column vector). Such
matrix-valued function K : RP x RP? — RP is called the reproducing kernel of Hilbert
space V' (whence the name of reproducing kernel Hilbert spaces).

By the reproducing property (A.2) we have that, for any pair of points x,y € R”

and any pair of vectors o, 3 € RP,

<K§>K5>V = <O‘>K5(x)>RD = <O‘>K(5E’y)ﬁ>RD - O‘TK(:U’Z/)B’

but also

(KJ K, = (B, K W)go = (B, K(y,z)a)pnr = 8 K(y,z)a =" K(y,z)" 5,

so that by the arbitrariness of o and 3 we have the symmetry: K(z,y) = K(y,z)T.
We will now use property (2) in Definition A.1 of admissible Hilbert spaces to prove

positive-definiteness of the kernel.

PROPOSITION A.2. For any positive integer M, any points x1,...,zx € RP and

vectors ay, . ..,an € RP the following holds:

M
Z o K(zi,25)a; >0

1,7=1

with equality if and only if oy = ... = ay = 0.

PRrROOF. By the reproducing property of the representer function:
M

M M
e = <ZK3’ZK3>V = SO (KSR,
i=1 )

1,j=1

M M

= (o K)o = D o Kl )05 )y
i,j=1 i,j=1
M

= > alK(w,a)a,
ij=1
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so that Z%Zl ol K(z;,2;)a; > 0, with equality if and only if S°M, Kgi =0, that is
when, for all v € V,
M M
<ZK§;,U> =0, ie. Z<O‘ivv(xi)>RD =0;
i=1 4 i=1
but by condition (2) in Definition A.1 the above relations holds if and only if o; = 0
foralli=1,... N. O

PRrROPOSITION A.3. When the admissible Hilbert space is of the Sobolev type, V =
HE(RP RP), with inner product:

(u,v), = /RD (Lu(z),v(x))pp dx

where L is a self-adjoint differential operator that acts on each of the components

of u, the reproducing kernel has the form:

-G(x,y) 0 0 ]
Gz,
K. =Gy id=| O ut
0 0 o G(z,y) |

where id is the D x D identity matriz and G(z,y) is the (scalar) Green’s function',

or fundamental solution, of differential operator L.

PROOF. For any point # € R, vector a € R”, and function v € V, by the

reproducing property (A.2) we have that

<a7u(x)>RD - <K§’u>v - /RD <K§(y)aLu(y)>RD dy
= [ (Koa Lu) o dy = [ " (pa) Luy) dy

ot mMmmwz@wfmwmwﬁ,

RD RD
1By definition, the Green’s function of a differential operator L is the solution of partial differ-
ential equation Lu = d, where 0 is Dirac’s delta function. The solution to equation Lv = f is v(x) =
J G(z,y)f(y) dy, therefore the Green’s function has the property that v(z) = [ G(z,y) Lv(y) dy for
any function v in the appropriate function space. See [13] for more details.
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where we have treated Lu(y) as a column vector. By the arbitrariness of a € R? we
have that
(A-3) u(@) = | K(z,y) Luly) dy.
R
So if we indicate with u® the i-th component of vector u and with K% the element of
matrix (reproducing kernel) K in position (7, ), expression (A.3) can be written as
D
W)= [ S Ky L) dy, =D,

function v € V is also arbitrary, so if we choose a function whose only nonzero
component is u! the above integral yields
ul(z) = [ K"(z,y) Lu'(y) dy,
RD
so we may conclude, by the arbitrariness of u!, that K™ (z,y) = G(z,y), i.e. the
Green’s function, or fundamental solution, of differential operator L. In the same way
we can prove that all the remaining diagonal elements K%(z,y) are equal to G(z,y),
fort=2,...,D. On the other hand, if we choose again a function v € V whose only
nonzero component is u! we also get
uF(z) =0= K" (z,y) Lu'(y) dy, k=2,...,D,
RD

so that, by the arbitrariness of ', it must be the case that K*(z,y) = 0. In a
completely similar way one can prove that all the remaining off-diagonal elements of

the reproducing kernel K are identically equal to zero. 0

In the case of admissible Hilbert spaces of the Sobolev type we sometimes say,

with abuse of terminology, that scalar function G is the kernel of V.
COROLLARY A.4. Under the hypotheses of Proposition A.3,

<G(-,x)a,v>v = <a,v(m)>RD

for any point x € RP, any vector x € R”, and any function v € V.
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PRrROOF. In fact, by the reproducing property:
(a,v(x))pp = <K§‘,v>v = <K(-,a:)oz,v>v = (G(,,z) ida,v>v = <G(-,:13)oz,v>v. O

COROLLARY A.5. Under the hypotheses of Proposition A.3, for any choice of
points xq, ..., 1y € RY and for any vector (ay, ..., ap) € RM it is the case that
M
Z G(xl, SL’j) CLz‘OJj Z 0 y
ij=1

with equality if and only if a; = ... = ay = 0.

Proor. It is sufficient to apply Proposition A.2 to vectors a; = (\7’5, cee \a@) €
RP fori=1,..., M. O
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APPENDIX B

Properties of Bessel Kernels

1. Introduction

When performing regularized landmark matching between the two labeled sets

I'=(z'...;2")and I' = (y,...,y"), one’s objective is to minimize the functional:

Elv,q] = /ol/RD (Lve, ve)gp dodt + )\/01 i H%(zﬁ) — vy (qi(t))

with respect to time-dependent velocity v € L*([0,T], V), where V is an appropriate

2

dt

Hilbert space embedded in C3(R”, RP), and to landmark trajectories ¢' : [0, T] — RP
that satisfy the boundary conditions ¢‘(0) = 2% and ¢*(1) = y*, fori = 1,...,N. In
the first term of the right-hand side of the above equation L is a spatial differential
operator which typically has the form L = (id — a®?A)*, where A is the Laplacian
operator and a? is just a scaling factor; exponent k is generally a positive integer,
although the theory can be extended to the case of positive real values of k (pseudo-
differential operators).

It turns out that the Green’s function of operator L plays a fundamental role in
both the solution of the above minimization problem and in the study of the Rie-
mannian curvature tensor of landmark-based shape manifolds. When the differential
operator is in fact L = (id — a®?A)* such Green’s function G : RP? x RP — R takes
the form G(z,y) = v(||lz — yllgp), with v : [0, 00) — R given by:

(B.1) (o) 1 : (g)k_gKk_g <g> :

T ool D (k) aP \a a

where K, is a modified Bessel function [1, Chap. 9] whereas I' is the gamma func-
tion [1, Chap. 6]. Note that v and its derivatives are defined at zero by continuity.
Reference [20] provides a table of fundamental solutions for different differential op-

erators, from which (B.1) can be computed. Function (B.1) depends on both D, the
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dimension of the ambient space for landmarks, and k, the exponent of differential
operator L. Function v is C* in the open set (0, 00) while its regularity in the origin
depends on v = k — %: its smoothness at zero in fact increases with parameter v. We
shall explore the asymptotic behavior of v at zero later on in this appendix.

For notational convenience let us define, for a fixed value of scaling factor a:

so that (B.1) can simply be written as

(B.2) 1) = men 'K, (2).

Withl/:]{,‘—%.

2. Differential equation

It is well known that modified Bessel function K, (z) is a solution to the following

second order differential equation [1]:
(B.3) Pt — — (2 + 1Hw = 0;
z

note that K,(z) is a holomorphic function of z throughout the complex plane cut
along the negative real axis, and for fixed z it is an entire function of v. For our
purposes, we are interested in K,(z) when z € RT and v € R.

Function 7(p), which is defined in terms of a modified Bessel function, also satisfies
k—D/2

a second order differential equation which will differ from (B.3) due to factor o

in (B.1). In fact the following result holds.

PROPOSITION B.1. Function ~y defined in (B.1) satisfies the following second order

differential equation:

2v—1 1
= 757

(B.4) gl

whereyzk—g.
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PROOF. Perhaps the most straightforward way of proving the proposition is tak-
ing successive derivatives of the expression provided by (B.1), recombining the result-
ing terms and and then using differential equation (B.3). However we shall pursue a
different path, which will also yield a useful expression for the first derivative of v(p).

Differentiation of (B.2) yields the following expression:
1
(B.5) 7' (0) = nk,D{VQV_lKV (Q) +- 0K, <g> }
a a a

We will use an important property of the modified Bessel functions of our interest.

Namely, the following formulas hold [1, §9.6.26] for any value of parameter p:

(B.6) Z(2) = Za(x) - L 20,

(B.7) Z(2) = Zun(x) + 2 2.02),

where Z,(z) = e*™K,(z). Identity (B.6) implies that K7, (2) = —K,_1(z) — £K,(z)

for all pu, so that, fixing u = v,

(B.8) K{,(g) = —KH(S> - %Ky@);

(B.9) K (g) - —Ky(€> + YW -1K,, (g)

Inserting (B.8) into the right-hand side of (B.5) yields:

V(o) = nk,p{ug”’lfﬂ, (S) +é Q”[ - KH<§) - %Ku(gﬂ}

1Y a

1
(BlO) = _nk,D - QVKV,1 (g) .
a a
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Differentiating the above function gives:

1 1
7'(0) = _nk,D{_ VQV_lKu—1<g> + 50K, 1<Q>}
a a a
% 1
= e, V@””val(% o[ =K () +p 0K ()]
a a
2v—1 1 #1 1 0
= ot ()——2 v(-)}
0 a
2v—1
= { Nk,D — QKV1< >} QHkDQK(Q)
0 a
w1, 1
= —, T+ 5,
which is equation (B.4); note that we have used expression (B.9) in step (). O

A by-product of the above proof is the following result.

COROLLARY B.2. The first derivative of function v may be expressed ad follows:

ooy 1 1 /o kng 0
10 =~ e ) eea(l)
1 4
=-mo, & T (7).
PRrROOF. The result follows immediately from expression (B.10). O

3. Asymptotic behavior at zero

We shall now study the behavior of function v(¢) in a neighborhood of zero.
We will need the following properties of modified Bessel functions [1, §9.6.8, §9.6.9]:
when z — 0, Ky ~ —In z, while for a fixed value of paramenter p with ®u > 0 we

have that K,(z) ~ 3I'(u)(32) " In other words,

lim KO—(Z) =-1
z—0 Inz
and
(B.11) hrr(l)z“K (2) = 27T (p)
for Ru > 0.
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ProrosiTION B.3. It is the case that:

EE%W(Q)::(Qa\/E)D k)

provided that k — % > 0. Otherwise, when k — % < 0 the above limit diverges to +oo.

PrRoOOF. The case k > % follows directly from applying property (B.11) to ex-
pression (B.1). The other case follows form the facts that K,(z) — 400 as z — 0T

for any value of parameter y, and that 2 — 400 as  — 07 for u < 0. O

PROPOSITION B.4. The first derivative of function v is such that:
7 (0) 1 TkE-3-1)

I =-
0 g obtighieg? (k)

- D
provided that k — 5 —1 > 0.
Proor. It follows from Corollary B.2 that

V(o) _ 1 1 (@)k—?—lkf <g>
- D_1] D D2 \ =21\~ )
0 T 1% T(k) aP+? \a 2 \a

which, provided that k& — % —1>0, by (B.11) converges to

! 1 1 D
hmmz_ - . 2/€—%—2F(k,___2>
0=0 okt5~1p3 T(k) aP+? 2
D
_ 1 I'(k—L2-1)
9OD+1gD+2, % (k) ’
which is precisely what we wanted to prove. 0

PROPOSITION B.5. The second derivative of function v is such that:

1 k-2 -1
lim 7"(0) = — 5 (k=5 X
0—0 2D+1CLD+27T§ F(k’)

provided that k — % —-1>0. If k— % — 1 <0, the above limit diverges to +o00.

PROOF. In order to compute the above limit we shall use differential equa-
tion (B.4) and the results provided by Propositions B.3 and B.4, which both hold
since k — % — 1> 0. By Proposition B.3 we have that

.1 k—2-1T(k-2-1)
lim — (o) T k) ,

0—0 a 9D D+255
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where we have used the property of the gamma function: I'(z 4+ 1) = 2I'(z). On the

other hand by Proposition B.3 it is the case that

2v—1 2k—-D—-1T(k—2-1
lim =—— /(o) = — M o)
=0 0 9D+1,3 D425 (k)
where we have fixed v = k — £. Combining the above limits with equation (B.4)
finally yields
2v—1 1
. " T / -
my"e) = lm|——"(0)+ 3 7(9)]
_ 2%k-D-1 rk—2-1) 2%-D-2Tk-2-1)
oD+1D+2, 2 L'(k) 9D+1D+2, % (k)
_ 1 L(k—2-1)
9D+1gD+2,0 % (k) ’
as we wanted to prove. O

/
REMARK. Out of curiosity, note that: lir% v (o) = lin% 7o) :
o— 0—0 0
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