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STRATEGY-PROOFNESS AND ARROW'S CONDITIONS: EXISTENCE AND CORRESPONDENCE
THEOREMS FOR VOTING PROCEDURES AND SOCIAL WELFARE FUNCTIONS

by
Mark Allen Satterthwaite
ABSTRACT

Consider a committee which must select one alternative from a set of
three or more alternatives. Committee members each cast a ballot which the
voting procedure counts. The voting procedure is strategy-proof if it
always induces every committee member to cast a ballot revealing his preference.
I prove three theorems. First, every strategy-proof voting procedure is
dictatorial. Second, this paper's strategy-proofness condition for voting
procedures corresponds to Arrow's rationality, independence of irrelevant
alternatives, non-negative response, and citizens' sovereignty conditions
for social welfare functions. Third Arrow's general possibility theorem is

proven in a new manner.



1. INTRODUCTION

Almost every participant in the formal deliberations of a committee
realizes that situations may occur where he can manipulate the outcome of
the committee's vote by misrepresenting his preferences. For example, a voter
in choosing among a Democrat, a Republican, and a minor party candidate may
decide to follow the "sophisticated strategy" of voting for his second choice,
the Democrat, instead of his '"sincere strategy" of voting for his first choice,
the minor party candidate, because he thinks that a vote for the minor party
candidate would be a wasted vote on a hopeless cause. 1 The fundamental
question I ask in this paper is if a committee can eliminate use of sophisticated
strategies among its members by constructing a voting procedure that is "strategy-
proof" in the sense that under it no committee member will ever have an incen-
tive to use a sophisticated strategy. I prove a negative answer: if a
committee is choosing among at least three alternatives, then every strategy-
proof vofing procedure vests in one committee member absolute power over the
committee's choice. 1In other words, every strategy-proof voting procedure is
dictatorial,

This result, which is reminescent of Arrow's general possibility theorem for
social welfare functions [1], suggests a second question. What is the relation-
shiﬁ between the requiremeng for voting procedures of strategy-proofness and
Arrow's fequirements [1] for social welfare functions of rationality, non-
negative response, citizens' sovereignty, and independence of irrelevant
alternativgs? I show that they are equivalent: a one-to-one correspondence
exists between every strategy-proof voting procedure and every social welfare
function satisfying Arrow's four requirements. This means that if a

social welfare function violates any one of Arrow's requirements, then the



voting procedure which is naturally derived from the social welfare function
is not strategy-proof. Lastly, for the third result of the paper, I use
the first two results to construct a new proof of Arrow's general possibility
theorem.

The questions of this paper are not new. Black [2, p. 182] quotes the
vexed‘retort, "My scheme is only intended for honest men!,"” which

Jean-Charles de Borda, the eighteenth century voting theorist, made when

a colleague pointed out how easily his Borda count can be manipulated by sophisti-
cated strategies. More recently Arrow [1, p. 7] suggested that strategy-
proofness is an appropriate criterion for evaluating voting procedures. Dummet
and Farquharson (3] conjectured in passing that for the case of three or
more alternatives no non-dictatorial voting procedure exists. By means of
distinctly different techniques Gibbard [7 ] °and Satterthwaite [13]
independently formalized and proved this conjecture. 2/ In addition Zeckhauser
[19] proved a similar existence theorem. Vickery [18] and Gibbard [7 ]
speculated about, but did not definitively establish, the relationship
between strategy-proofness and Arrow's four requirements. Finally,
Farquharson [4], Sen {16, pp. 193-194], and Pattanik [9] [10] [11]
each commented on different aspects of the manipulability of non-dictatorial
voting procedures.

This papér has six sections. 1In section two I forﬁuiafe the problem and
establish notation. The next three sections contain in sequence the paper's

three results: strategy-proof voting procedures are necessarily dictatorial ;
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a one-to-one correspondence exists between strategy-proof voting procedures
and social welfare functions satisfying rationality, non-negative response,
citizens' sovereignty, and independence of irrelevant alternatives; and con- -
struction of a new proof of Arrow's general possibility theorem using the
first two results. In order to clarify the exposition of these three sections
I have made within them the restrictive assumption that indifference is inad-

"missable. 1In section six I eliminate this assumption and show how each of the

results extend to the general case where indifference between alternatives is

admissable.



2. FORMULATION
Let a committee be a set I of n, n>1, individuals whose task is

to select a single alternative from an alternative set Sh of m elements,

m > 3. Each individual 1 € I, has preferences Ri which are a weak order
on Sm’ i.e. Ri is reflexive, complete, and transitive. 3/ Thus if
X, € S and i € In, then x Ri;y means that individual i either prefers
that the committee choose alternative x instead of y or is indifferent
concerning which of the two alternatives the committee chooses. Strict preference
for x over y on the part of individual i 1is written as X‘Eiy . Thus
X Ei37 is equivalent to writing x Riy and ~ vy Ri}{ Indifference is written
as x Ri37 and ¥y Ri}<. Let T represent the collection of all possible
preferences and let W; represent the mn-fold cartesian product of T

The committee makes its selection of a single alternative by voting. Each

individual i € N casts a ballot B, which is a weak order on s, 1i-e.

B, € T The ballots are counted by a voting procedure v, Formally a voting

procedure is a singlevalued mapping whose argument is the ballot set

n . . . . .
B = (Bl""’Bn) € T and whose image is the committee's choice, a single
. nm . n
alternative x € Sm' Every voting procedure v has a domain of ™ and a

range of either §  or some non-empty subset of Sm. Let the range be labeled

Tp where p, 1 < p < m, is the number of elements contained in Tp' Given

nm

these definitions, let the tetrad <In’ S , v , Tp) be called the committee's

m
structure.
This formulation of the committee decision problem incorporates two

assumptions which particularly merit further comment. First, the committee

makes only a single decision. This assumption excludes from consideration such
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committee behaviors as logrolling which may occur whenever a committee is

making a sequence of decisions. Second, the committee selects a single
alternative from the alternative set, This contrasts with Arrow's [1l] and
Sen's {157 [16] [17] specification of set valued decision functions. They
made that specification because their focus was social welfare where partitioning
the alternative set into classes of equal welfare is a useful result. Never-
theless specification of set valued decision functions (voting rules) is

inappropriate here because committees often must choose among mutually exclusive
4/

courses of action. For example, a committee can adopt only one budget

for a particular activity and fiscal period.
With the basic structure of the committee specified, I can define the

concept of a strategy-proof voting procedure. Consider a committee with

nm

structure (In, S , v, Tp>' Individual 1 € In can manipulate the voting

m

procedure v at ballot set B = (By,---»B) € n; if and only if a ballot

1 = T s
Bi 4 T exists such that

nm

— nm
v (B BY,...»B)B.v (By,...,B,...,B). (1)

1772

Thus vnm is manipulable at B 1if an individual 1 € In can substitute ballot
Bi for Bi and secure a more favorable outcome by the standards of the

original ballot Bi' The voting procedure v is strategy-proof 1if and

5/

only if no B € ﬂ; exists at which it is manipulable.
This definition has two interpretations. If a voting procedure Vnm

is not strategy-proof, then a ballot set B = (Bl,...,Bi,...,Bn) € W; and

- ballot Bi € my exists such that v is manipulable at B. Suppose the ballot

B; faithfully represents the preferences of individual i in the specific
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sense that B, = Ri' By substituting ballot Bi for Bi individual i can improve
i

the outcome of the vote according to his own preferences, i.e.

m — nm
VO(ByseeesBY, BRIV (B, Ry, B ) (2)

i

The ballot Bi = Ri is the individual's sincere strategy and the ballot

B{ # Ri is a sophisticated strategy.
The-second interérééation relates to the theory of games. If a voting
procedure Vnm is strategy-proof, then no situation can arise where an
individual i€ I, can improve the vote's outcome relative to his preferences
R; by employing a sophisticated strategy. Consequently, if v is strategy~
proof, then every set of sincere strategies R = (Rl,...,Rn) & ﬁg is an
equilibirum as defined by Nash [8 ]. 1If the voting procedure is not strategy-
proof, then there must exist a set of sincere strategies R = (Rl""’Rn) € ﬁg
which is not a Nash equilibirum.
Up until this point I have defined the preferences and ballots of committee
members to be weak orders over the alternative set. For the purpose of proof
this is an inconvenient convention. Therefore, throughout a majority of this
paper, I recognize as admissable preferences and ballots only strong orders.
Let P and p; respectively label the set of strong orders over Sm and
the n-fold cartesian product of P Since strong orders exclude the possibility
of indifference, if x, y € S » ¥ #y, and Ri £ P’ then x Riy implies
x ﬁiy and ~ 7y R;x. Similarly if x, y€S_, x # vy, and B, € p , then

x B,y implies x §iy and ~y B,x. Formally:

Restriction D. Consider a committee with structure (I , S ,vnm, T ).
n’ "m

If this structure is subject to restriction D, then only preference



n
sets R = (R;...,R ) € p_ and ballot sets B = (Bys-..,B ) € Pi

are admissible.

A committee subject to restriction D 1is called a strict committee and its

voting procedure is called a strict voting procedure. For strict committees

the definitions given above must be revised with the substitution of pi
for ng. Thus a strict voting procedure v"™ has a domain of pi and is
strategy-proof if and only if there exists no B € p; at which it is mani-
pulable.

My notational conventions for this paper are that the letters B, C, and
D represent ballot sets or, if subscripted, individual ballots. The letters
U, V, and W represent subsets of Sm or Tp' The letters i and j index
the individuals who are committee members and the letters w, X, y, and z
represent elements of Sm' Script upper case letters represent collections of
voting procedures or social welfare functions. Finally ¥ and 6 represent
two functions which appear throughout the remainder of the paper.

The choice function YW’ defined for any W CiSm, is a mapping from
T into the non-empty subsets of Sm. It has the property that x € Yw(Bi)
for some B; € T if and only if x € W and x Biy for all y € W. 1In
other words, ¥y picks out those elements of W which the weak ordering B,
ranks highest. Turning to the function Oy let W be a subset of Sm that
has q < m elements. Define 8y to be a mapping from m, to Tq with the
property that if x, y € W, C; € Mg’ D, € m» and C, = ew(Di), then x Ciy
if and only if =x D,¥. Thus ew constructs a new weak ordering C; from D,

by simply deleting those elements of S, that are not contained in W.
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3. EXISTENCE THEOREM FOR VOTING PROCEDURES

In this section I prove that if a strict voting procedure includes at
least three elements in its range and is strategy-proof, then it is dictatorial.
A dictatorial voting brocedure, as its name implies, vests all power in one
individual, the dictator, who determines the committee's choice by his choice
of that element of the voting procedure's range which he ranks highest on his
ballot. Formally, consider a voting procedure v " with range Tp' Define
for all B € ﬂ; and for some 1i € In the function f%(B) so that it is single-
valued, has range Tp’ and if f;(B) = x then x Biy for all y € Tp’ The
voting procedure v ois dictatorial if and only if an i € In exists such
that vnm(B) = f%(B) for all B € n;. Notice that f;(B) is identical to
the choice function Y¥.(B,) except that f%(B) has a tie-breaking property
which the set valued WT(Bi) does not have.

Since I define dictatorial voting procedures with reference to its range
Tp’ not with reference to the alternative set Sm’ two varieties of dictatorial

voting procedures are possible. First, fully dictatorial voting procedures

have as their ranges the full alternative set: TP B Sm‘ Second, partiall

dictatorial voting procedures have as their ranges proper subsets of the full

alternative set: Tp cc Sm . In other words, if the voting procedure is
partially dictatorial, then imposed on the dictator's power is the constraint

that he can not pick any = € S_ such that =x ¢ Tp

The dictator of a dictatorial voting procedure never has any reason to
misrepresent his preferences because the committee's choice is always that element

of the range which the dictator ranks first on his ballot. The same is not

necessarily true for other individuals., 1If at the top of his ballot the dictator

states that he is indifferent among a group of several alternatives, then the

dictatorial voting procedure may resolve the tie by consulting the ballots of the
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other individuals. If, for example, the Borda count is the method used to count

the other individual's ballots, then the manipulability of the Borda count when

the choice is among at least three alternatives may give these individuals an oppor-

tunity to manipulate the outcome. Thus, when indifference among alternatives is

admissable, dictatoriality is a necessary but not a sufficient condition for

strategy-proofness. It is necessary and sufficient when indifference is not admissable.
Theorem 1 is the existence theorem for strict strategy-proof voting

procedures. 1In section six I extend it to the case of non-strict committees.

Theorem 1., (Gibbard - Satterthwaite). Consider a strict committee
nm
with structure (I, S , v Tp> where n>1 and m>p > 3.

The voting procedure vnm is strategy-proof if and only if it is

dictatorial.

This is formally a possibility theorem, but its substance is that of an
impossibility theorem because no committee with democratic ideals will use
a dictatorial voting procedure. Such a voting procedure vests all power in
one individual, an unacceptable distribution.

The theorem limits itself to the interesting case where the voting
procedure's range includes at least three alternatives. If its range contains
less than three elements, then a trivial result is that two more types of
strategy-proof voting procedures exist: imposed procedures and twin alternative
voting procedures. é/ These two types are of little interest because committees
usually must select among three or more alternatives.

An imposed voting procedure is one where no individual's ballot has any
influence on the decision. Thus a voting procedure is imposed if there exists
a xX€ Sm such that vnm(B) = x for all B & n;. Imposed voting procedures

are strategy-proof because no individual's choice of strategy affects the
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7/

comnittee’'s choice. —' Twin alternative voting procedures have ranges

that are limited to only two elements of the alternative set. Formally,

if a set T, = (x,y) Sm, x # y, exists such that vnm(B) € T2 for all

B € ”;’ then v'™ is a twin alternative voting procedure. An example of

a strategy-proof twin alternative voting procedure for a committee considering
the alternative set 84 = (w,x, y,2) 1is defined by the rule: select alterna-
tive x or 2z depending on which is ranked higher on a majority of the
committee members' ballots. Alternatives w and y are excluded no matter
how the committee votes. This twin alternative voting procedure is strategy
proof because each individual has only two choices: vote for or against his
preferred alternative. Obviously, in this case, he has every reason to vote
for his preferred alternative no matter what his subjective estimate of how
the other individuals will vote is. Nevertheless a twin alternative voting
procedure is not necessarily strategy-proof because conceivably it might
perversely count a vote for one included alternative as a vote for the other
included alternative.

The proof presented here of Theorem 1 is by construction. I first show
that the theorem is true for the case where n =1 and m = 3, Next I prove
that, where m = 3, if the theorem is true for any n = n', then it is true
for n=n'+ 1. This sets up an inductive chain and therefore, in the m = 3
case, the theorem is true for all n > 1. Finally, given any arbitrary n > 1,
an inductive chain on m can be set up to establish the theorem’'s validity
for m > 3. This proof is direct and is not based on Arrow's impossibility

theorem. 1In both these respects it is different from Gibbard's proof [7] of

this same theorem.



_13—

A necessary preliminary before beginning the proof's substance is to

define weak and strong alternative-excluding voting procedures. A strict

nm . . . . . .
voting procedure v is weak alternative-excluding if and only if there exists

at least one alternative x € Sm such that vnm(B) # x for all B ¢ p;. Thus
v is weak alternative-~excluding if and only if Tp CCZSm, i.e. its range
must be strictly contained in 8 .

The definition of strong alternative-excluding voting procedures depends

on Condition U, a Pareto optimality conditiom.

Condition U: Consider a strict committee (In,Sm,vnm,T = Tp).
The strict voting procedure v satisfies Condition U if and
only if, for every B = (Bl,...,Bn) € p; such that

vp (B = ¥ (B)) = ¥ (B ),V (B) = ¥, (B)).

Less formally, if v'™ satisfies Condition U and if the ballots unanimously
rank x € Tp higher than every other vy € Tp’ then v will select x as
the committee's choice. Given this, a strict voting procedure v is a

strong alternative-excluding voting procedure if and only if it is weak

alternative~excluding and also satisfies Condition U.
Condition U is helpful in the proofs that follow because every strict
strategy-proof voting procedure must satisfy it. Lemma 1 establishes this

assertion.

Lemma 1. Consider a strict committee (In,Sm,vnm,T = Tp) where

n>1l, m>3, and p > 1. If vnm is strategy-proof, then it

satisfies Condition U.
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Proof: Suppose vnm> is strategy-proof and does not satisfy Condition U.
Consequently for some x € Tp there exists a ballot set C &€ pz such that
WT(Cl) = WT(CZ) = ,,. = YT(CD) and vnm(C) =x # YT(Cl). Since
¥ (Cl) € Tp’ aDE¢€ p; exists such that vnm(D) = ?T(Cl). Consider the

sequence of ballot sets and outcomes:

vm“(cl,c 5C) = x # ¥.(Cp),

27"

nm
v (Dl’CZ""’Cn)’

nm
v (DyseeesDy 15C5C 0500 5C ),

nm ) 3
v (Dl}.--}Di_l} D]‘_’C]'_+]_’°”’Cn)’ ( )
nm
v (Dl"“’Dn-—l’Cn)’
nm _
v (Dl""’Dn—l’Dn) = YT(Cl).
For later reference label such a sequence S(C,D). At some point in this
sequence of n + 1 elements the outcome must switch from ~ YT(Cl) to
YT(Cl). Therefore an i € I must exist such that
v™(D D c.,C C) =y # v (C,) and )
1,..., ]‘_'1’ i; i+1}c--,n y ‘FT 1 T
nm _
v (Dl""’Di-l’Di’Ci+1’""Cn) = YT(Cl) (5)

where vy € Tp and y # YT(Cl). Let individual i have preferences Ri = Ci
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This means that YT(Cl) is that alternative contained within Tp which

individual i most prefers. Consequently his best strategy is the sophisticated

. . . n . .
strategy Dj rather than his sincere strategy Ci’ ie. v is manipulable

at (Dl""’Di—l’Ci’Ci+1"'"Cn)° Therefore,if v'™  fails to satisfy

Condition U, then it is not strategy-proof. ||

n,3
The next three lemmas prove that if a strict voting procedure v ’

defined for a three element alternative set is strategy-proof and has a

range Tp’ 1< p< 3, then it must be either fully dictatorial or strong
n,3
alternative-excluding. The main task of these lemmas is to show that if v’

3
is strategy-proof and TP = S3, then v’ is fully dictatorial., The result

53

n . 3
that if v is strategy proof and Tp(:C:S3, then vn’ is strong alternative-

excluding is secondary because it can be derived immediately. By definition
n,3

53

I
Tp CK:S3 implies that v is weak alternative-excluding. Since v

is both strategy-proof and weak alternative-exluding, Lemma 1 implies that
n,3 . . . .
v is necessarily strong alternative-excluding.
The method of proof which the three lemmas together employ is mathematical
induction over n, the number of individuals who are committee members.
Lemma 2 begins the inductive chain by proving the result for committees with
a single member.

1,3
Lemma 2. Consider a strict committee (I;,5;,V ?

1,3
v’

,T =T ) where
p
l<p< 3. If is strategy-proof, then it is either fully

dictatorial or strong alternative-excluding.



-16-

L,

Proof: Suppose the lemma is false. Therefore a v exists that

is strategy-proof and neither fully dictatorial nor strong alternative-excluding.

1,3
v

Then one of the following must be true: (a) satisfies Condition U

3 . e g
and is not weak alternative-excluding, (b) v’  satisfies Condition U and

1,3
v

is weak alternative-excluding, or (c) does not satisfy Condition U, But

1,3

case (a) cannot be true since if T_ = 33 and if v satisfies

p
1,3
Condition U, then v’  must be fully dictatorial. This conclusion follows

directly because for a single member committee Condition U is equivalent to

a dictatoriality requirement., Case (b) cannot be true because any weak
alternative-excluding voting procedure that satisfies Condition U is

strong alternative-excluding. Case (¢) also cannot be true because Lemma 1

states that every strategy-proof strict voting procedure satisfies Condition U. ||

Statement and proof of Lemma 3 depends on the fact that we can write

. . n,3 . .
any strict voting procedure v as an n-dimensional table. For example,

let (x vy z) represent the ballot B; with the properties that

x Eiy, X Eiz, and y Eiz where x, y, z € S;. Tables 1 and 2 are then equivalent
2,3
representations of an arbitrary, assymetric strict voting procedure v .

Specifically, if individuale one and two respectively cast ballots (x z y) and

(v z x), then the committee's choice is z,

ntl,3

Lemma 3. Consider a strict committee (I ,Tp) where

nt17532Y
n>1land 1<p< 3. Let B = (Bl,...,Bn). The strict voting

+1,3

n .
procedure v may be written as
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///v§’3<3> B, = (xy2)
\

= v;’3(B) if B = (xz v) (6)

nt+l,3
v (B’Bn+1)

[

n,3 . -
v (B) LB = (zy %)

n,3 n
where v’ ,...,v6’

1 are strict voting procedures for committees

+1 . .
with n members. No ballot set (B,Bn+1) € n; exists at which

any individual i, where 1 € In(individual ntl is excluded),can

+1,3
maniuplate v L if and only if each of the six voting procedures
n n
Vyseees Ve are strategy -proof.

Despite the if and only if phrasing, this lemma states that a necessary but

not sufficient condition for constructing a strategy-proof voting procedure

n+l1,3
v ’7 is that it be constructed out of a set of strategy -proof voting

n,3
procedures vk’ , k=1,...,6. The condition is not sufficient because some
. n,3 . e ae . . .
sets of voting procedures vy exist such that individual nt+l can manipulate

nt+l,3
the resulting voting procedure v ’ in specific situations.
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TABLE 1. v2’3(B1,B2)

By

(xy 2) (zxzy) (y x 2z) (y z %) (z xy) (z y %)

(xy 2) X X y y y y

(xzvy) X x v v v v

(v x 2) y y b4 X X X
By

(v z %) vy z b4 X b4 X

(z x v) y y X X X X

(z v x) v v b4 b4 X X



TABLE 2.

where

(x
(x
6%

(y

(z

2

v
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3
2
(B,5B,y)
S B
I1,3
i p)
1
1,3
Vv
\ 3 1
2,3
v (B.,B y = 5
2 i v1’3(B )
i 4 1
1,3
Vo (Bl)
5 1,3
1,3 1,3 1,3 1,3
vy V2 V3 A
z) X X v v
v) X X v z
z) y y X X
x) y y X X
¥) y y X X
X) y y X X

if

if

if

if

if

if

xvy

(x z

(y %

(y z

(z X

(zy

z)

y)

z)

X)

y)

X)
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+1,3
Proof: Suppose the necessary part is false. Therefore a vn L

. n,3 . n+l,3
its set of constituent vk’ must exist such that (a) v ’

n,3

with

is strategy

proof for all individuals je and (b) some vk’ , L< k<6, 1is not

strategy proof for some individual 1i € L Without loss of generality suppose

n,3
that vl’ is not strategy proof for individual 1i. Consequently there exists

p— n 1
a ballot set B = (Bl"'°’Bi’°°°’Bn) € p3 and ballot Bi such that

n,3

n,3 ' =
vy’ (Bys...sBl,. B OB, V7 (B, .. 5B, 0B )
i.e., individual i can maniuplate v?’3 at B.
Let individual wntl cast ballot B, = (xy 2). Let ‘B' = (Bys .-
This implies, based on (6), that
n+l,3 _ n,3
v (B,Bn+1) =V (B) and

(7)

1
3B,

(8)

o,Bn)-
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ntl,3, _, _ .n,3,,
v (B ’Bn+1) = v (3"). 9)

Substitution into (7) gives

ntl,3 _, - ntl,3
v (B ’Bn+1)Bi v (B’Bn+1) (10)
. ntl,3 . . . .
which shows that v is manipulable at (B,Bn+1). This contradicts
the assumption that the lemma's necessary part is false.
. . . nt+l,3 . .
Suppose the sufficient part is false. Therefore a v with its
n,3
set of constituent vl’ ,...,VE’B must exist such that (a) v?’B,...,v2’3
e . ntl,3 |
are strategy proof for all individuals j € I, and (b) v is not

strategy proof for some individual 1€ I . This implies that a ballot set

1

n+ .
(B,Bn+1) = (Bl”"’Bi""’Bn’Bn+1) € p3 and ballot Bi exist such that

n+l,3, , = ntl,3

where (B',Bn+1) = (Bl""’Bi""’B B ,.). Assume without loss of generality

n’ n+l
that B, = (x y z). Equations (8) and (9) hold and therefore V2,3 nay
] nt+l,3
be substituted for v :
3 = 3
v?’ (B') B, v (B). (12)

n,3 . < s .
Thus vl’ is not strategy-proof, a contradiction of the assumption that

the sufficient part is false. 1l

Lemma 4 starts with the assumption that every strategy-proof strict voting

n,3 . : . . .
procedure v ° is either fully dictatorial or strong alternative-excluding.

Then, with Lemma 3 as justification, it uses equation (6) and those voting
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procedures that we assume to be strategy-proof to construct every strategy-

ntl,3 . . . .
proof strict voting procedure v >, The complication in this procedure

n+l,3

is that a voting procedure v is not necessarily strategy-proof if it

n,3 .
is constructed out of strategy-proof voting procedures v '~ . Depending on

+1,3
precisely how v' 1,3 §s constructed individual ntl may find that in

. e . . R n+l,3
specific situations he can manipulate v .

] , ) g nt+l,3
Lemma 4. Consider a strict committee (I 4,55,V

ST
where n>1 and 1< p < 3. If every strategy-proof

n,3 . . .
strict voting procedure v ’ is either fully dictatorial or

strong alternative-excluding, then a necessary condition for

+
vn 1,3 to be strategy-proof is that it be either fully dictatorial

or strong alternative-excluding.

+1
Proof, Let %p' be the collection of all strict voting procedures

+ + +
vn 1,3 for committees with nt+l members. Let %n 1 C:"Vn 1 be the collection

+1,3 +1 . .
of all strict voting procedures v € 7" that are fully dictatorial or

n n
strong alternative-excluding. Let 7 and % be the collections of strict

voting procedures for committees with n members that correspond to Wn+1 and
zn+1 respectively. Let %pﬁl C17n+1 be the collection of all strict voting
procedures vn-'_l’~3 € Wn+1 that are constructed from voting procedures

vn’3 € Zn, i.e. vn+1’3 € %p+l if and only if vn+1’3 can be written as
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: 30
f vi7T(B) if B, = (xy 2)

v§’3 (B) if B, = (x 2 y) (13)

1 n,3 . —
! VQ (B) if Bn+1 (z v x)

where B = (Bl,...,Bn) £ p; and v?’3,...,v2’3 = 2", Finally let 7™ and

+1%
e ! be the collections of all strategy-proof strict voting procedures

n nt+1
contained respectively in the sets ¥ and 7 .

Assume that ?fn% ™. Lemma 3 therefore implies ‘an+1~“ C%n+1'

+1,3 +1%
Consequently every vn L € 7 1 can be identified by repeatedly parti-

+1
tioning %ﬁ and discarding at every step those subsets which are disjoint
+1% +
with Wn . This partitioning of » ! depends on the fact that %" contains

seven classes of fully dictatorial and strong alternative-excluding voting

procedures:

38y = f%(B) where T =S, and 1€ I, (14)
W38y = h;’3(B) = x, (15)
V2E) - e =y, (16)
v 3By = h;’3 (3) = z, (17)
() = 17, (18)
w3y = h;’3(B), and (19)
F3@) = g @), (20)

where the notation h3’3 represents a strong alternative-excluding voting
n
procedure with range U and where B € p ,S3 = (%,5,2), K= (%), L = (v),

M= (z), N= (y,2), P = (x,2), and Q = (%x,y). Type (14) clearly represents
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every possible fully dictatorial voting procedure for a committee with n
members. Types (15) through (20) exhaustively represent every possible
strong alternative-excluding voting procedure because (X, L, M, N, P, Q)

is the collection of all possible, proper, non-empty subsets of. S5 = (x,vy,2).

-+ A .
The set _Wp 1 can be partitioned into seven subsets:

%€+1 _ {vn+l,3 vn+1,3 € %p+l 2 vn+l,3[B,(x y z)] = f;(B) 21)
where T =8, and i€ In}’
+ +1,3 + + +
AL = | I e g ey 1l i) 22

nt+l 8 vn+1,3

nt+l _ {vn+l,3 l Vn+1,3 €y

[B,(x v z)]=h2’3(B)}, (23)

+1 +1,3 + +
e e I S R T z>]=hg’3 B3}, (24)
Each of these seven subsets can itself be partitioned into seven subsets:
n+l n+1 nt+1 n+1
%11 ,...,%17 ) Wél ,...,W77

n+1%*

Most of these subsets are easily proved to be disjoint with ¥ For

example, consider

nt+l_ {vn+l,3 Vn+1,3 c %n+1 n+1,3

9 =
/27 = ¥y & v

(B, (x z y)]1= hg’3<B>}.

Let individual n+l have preferences and sincere strategy Rn+1 = (xzy) and

let the other n individuals cast identical ballots Bl = B2 = ... = Bn = (z vy x).
+ 3

The definitions of W;jl, hg’ , and Condition U imply that

vn+1’3[B,(x z y)) = h8’3(B) = y. This is the least preferable outcome for

individual n+l. He can improve the outcome relative to his own preferences
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n+

1,3
by employing the sophisticated strategy B;+1 = (xy z) because v T[B,(xy 2)]

+1,3 :

= h; L (B) = x. Therefore every L3 € %g;l 1s not strategy-proof, i.e.
n+l nt1%

%27 nv = 0.

This procedure of elimination and partition may be continued through six

. ntl . R s s e
levels until seventeen subsets of % are identified that are not disjoint

. L S . n+1%
with ¥ , i.e. these seventeen subsets contain ¥ . For example, one of

+1
these subsets %243344 contains a strategy-proof voting procedure of type

nt+l,3
hy

ale

Inspection of these seventeen subsets reveals that each one contains
only strong alternative-excluding or fully dictatorial voting procedures. The
specifics of this procedure are found in Satterthwaite [13]. Therefore
Wn+1* - CVn+1* N %p+1) C:xn+1. I

Lemma 4 establishes an inductive chain on n whose initial assumption is
validated by Lemma 2. Consequently Lemmas 2 and 4 together prove that if a
strict voting procedure Vn,3 is strategy-proof, then it is either fully dicta-
torial or strong alternative-excluding. An inductive chain may also be established
on m to generalize the results to any number of alternatives equal to or greater

than three. I do not include the specifics of this step here because of their

length; they may also be found in [13]. Lemma& 5 summarizes this result.

nm
Lemma 5. Consider a strict committee (In, Sm’ v o, Tp> where n > 1, m> 3

and p > 1. If Vnm is strategy-proof, then it is either fully dictatorial

or strong alternative-excluding.

Two more steps are required to prove Theorem 1. Lemma 6 states that every
strategy-proof strong alternative-excluding voting procedure must satisfy what
is essentially an "independence of irrelevant alternatives" condition. The
final step uses Lemma 6 to prove that every strategy-proof strong alternative-

excluding voting procedure with a range of at least three alternatives must be
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partially dictatorial.

n
Lemma 6, Consider a strict committee (In, Sm, v m) T = TP) where

n>2, m>3, p>1l, and m > p. 1If vnm is strategy-proof and
two ballot sets C, D & pz have the property that, for all

i€ 1, 08;(C;) =6,(D,), then v ) = V™).

The condition that GT(Ci) = eT(Di) for all i € In means that each pair of
ballots -~ Ci and Di -- must have identical ordinal rankings of the elements

contained within TP-

Proof: If T = Sm’ then the lemma is trivial because the condition
placed on C and D implies that C must be identical to D. If TC C:Sm,
nm
assume that v is strategy-proof and, as a consequence of Lemma 1, strong
alternative-excluding. Now suppose that this lemma is false. This means that
n .

a pair of ballot sets C, D € p_ exist such that (a) v (C) # v'"(D) and
(b), for all i € 1. GT(Gi) = eT(Di). Examine the sequence of ballot sets

8
s(C,D). —/ An 1 € In and distinct x, y € T must exist such that

vnm(cl,...,c D D) =x and (25)

i-1’ i’Di+1""’ 0

nm
v (Cl,...,Ci_l,Ci,Di+1)---)Dn)

(26)

i
~

Since we are considering strict committees indifference is ruled out. Therefore,

because eT(Ci) = eT(Di), two cases are possible: either (a) x Ci y and x ﬁi y

or (b) vy Ei x and vy Ei x. If the former is true, then individual i can use Di
nm .

to manipulate v at (Cl""’ Ci—l’ Ci’ Di+1""’ Dn). If the latter is true,

. nm
individual i can use C; to manipulate v at (Cys--vs C..1# D D).

i’Di+1"‘

nm .
Therefore, contrary to assumption, Vv cannot be strategy-proof. |l

This puts me in position to complete the proof of Theorem 1. It states that
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nm , )

every strict voting procedure v with a range of at least three elements is

strategy-proof if and only if it is dictatorial, The if part is true by inspec-

. . . . nm
tion. The only if part yields as follows. ©Lemma 5 states that if v 1s
strategy-proof, then it is either fully dictatorial or strong alternative-excluding
nm .

Consequently I need to show that if v is strategy-proof and strong alternative-
'y - . . . nm 3

excluding then it is partially dictatorial. Assume that v is strategy-proof,

strong alternative-excluding and has a range T = Tp’ m>p >3,

. . n % n % .
For all i ¢ I, rewrite each ballot Bi € p, as Bi € pp where Bi is a

strong ordering, defined over Tp’ with the property that B; = eT(Bi)' Each

e
w

Bi is identical to Bi except that the m-p alternatives that are not included
nm . n n
within the range of v are deleted. Consider any C € P and D € P’ C # D,

such that

[GT(C]_): .. "eT(Cn)] = [eT(Dl)’ .. -:eT(Dn)] . (27)

Lemma 6 implies that vnm(C) = vnm(D). Consequently a strict voting procedure
np . . n
v for p alternatives exists such that, for all B € Py’

nm

np -
VPO (B8, (BT = v (By,...,B). (28)

Since Vv is strategy~-proof, v'P is also strategy-proof and, by Lemma 5,

is either dictatorial or strong alternative-excluding. It cannot be strong
alternativeexcluding because its range includes all p elements of Tp'

. n
Therefore it is dictatorial: an i € I exists that for all B ¢ P

np - L
v [GT(Bl),...,GT(Bn)] fT[eT(Bl)’°"’eT(Bn)]' (29)
substituting v for v'F gives
nm _ ol
v (Bl""’Bn) fT[eT(Bl),...,eT(Bn)] (30)
= f%(Bl,...,Bn), 3D

nm . . .
i.e. v is partially dictatorial.
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4, THE CORRESPONDENCE THEOREM

In this section I show that the strategy-proofness condition for voting
procedures corresponds precisely to Arrow's rationality, non-negative response,
and citizens' soverelgnty, and independence of irrelevant alternatives conditions
for social welfare functions. Briefly the section's substance is as follows.
Initially I restate Arrow's definitions of social welfare functions, rationality,
non-negative response (NNR), citizens' sovereign€y (CS), and independence of
irrelevant alternatives (ITA) and observe that every social welfare function is
rational. Additionally I define strict social welfare functions as the analogue
of strict voting procedures. Next I prove that a procedure exists for constructing
a strict strategy-proof voting procedure from every strict social welfare function
satisfying NNR, CS, and IIA. I then show that a procedure exists for constructing
a strict social welfare function satisfying NNR, CS, and IIA from every strict
strategy-proof voting procedure. This last result is based on an intermediate
result which Gibbard [7] obtained in his proof of Theorem 1. Together these
results imply the correspondence theorem: 2one-to-one correspondence between
strict strategy-proof voting procedures and strict social welfare functions
satisfying NNR, CS, and IIA can be constructed. Section six contains the
theorem's generalization to non-strict voting procedures and social welfare

functions.

Arrow [1] defines a social welfare function for a committee with n members

. . . . . nm ..
considering m alternatives to be a singlevalued mapping u whose domain is

n
, nm
ua and whose range is m, OF some non-empty subset of e Thus u (B) = A

where B = (Bl""’Bn) € n; and A ¢ ™ The weak order A 1is called the

social ordering. A social welfare function is identical to a voting procedure

except that its image is a weak order on Sh instead of a single element of
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Sm. Given a ballot set B and a subset T S’ Arrow defines the social
choice over the set T to be wT[unm(B)], i.e. the social choice is that
element of T which the social ordering ranks highest. Finally, let a
committee that is using a social welfare function u'" be described by
the friplet (I, Sy unm>.

‘ Ar;ow's choice of definitions for social welfare function and social
choice guarantees that every social welfare function satisfies the condition
of rationality. Let nﬁ(B) be a social choice function: for every B ¢ ﬂ;
and U C sm, the function's image is a subset of TU. The function T is
rational if for each B € ﬂz there exists a weak order A € T such that,
for all U C Sy ﬂU(B) = WU(A). Thus, trivially, every social welfare
function unm gives rise to rational social choices YU[unm(B) = A].

In addition to the implicit requirement of rationality, Arrow posits

four conditions which, he argues, any ideal social welfare function should satisfy.

mn €
Non-Dictatorship (ND), Let A =u (B). No i€ In exists such that,
for all g, y € sm and for all B ¢ w:; X Ei y implies x A v.
Independence of Irrelevant Alternatives (IIA). Let AC = unm(C)
nm .
and AD =u (D). If for all i ¢ In’ for some W C Sm’ for some

n n _
C € my» and for some D € ™o ew(ci), = eW(Di), then ww(AC) = YW(AD).

Citizen's Sovereignty (CS). Let A = unm(B). For every

X, y € sm there exists a ballot set B € n; such that x A y.
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With these preliminaries complete, I can describe the procedure by which
a strategy-proof voting procedure can be constructed from any social welfare
function satisfying PO and ITA. Let o™ be a social welfare function with
n . nm .
the property that, for all B ¢ M the image of Ys[u (B)] 1is always a
single element of Sm. Construct the voting procedure v by defining, for
all B ETT;’ vnm(B) = Ys[unm(B)]. Call any v'™ 50 constructed the voting

nm rm . nm .
procedure derived from u . Clearly the v derived from a u is unique.

) I3 - nm s - 3 -
Lemma 7 states that a sufficient condition for a v  which is derived from a strict

unm to be strategy-proof is that unm satisfy CS, NNR, and ITA.

nm
Lemma 7. Consider a strict committee (In, Sm, u ) where n>2
and m > 3. If the strict social welfare function satisfies CS, NNR, and
. . nm . nm
IIA, then the strict voting procedure v derived from u is

strategy-proof and has range Tp = Sm-

\

Proof. Since unm\‘sgtisfies CS, NNR, and ITA, it also satisfies PO.
. nm R . nm
Observe that if u satisfies PO, then the derived v has a range
identical to Sm because u™ has domain p; and vnm(B) = ws[unm(B)]
n . -
for all B ¢ P’ This leaves the question of the strategy-proofness of v,
Suppose a strict u""  satisfies CS, NNR, and ITA, and that its derived
nm o . om
v is not strategy-proof. Since v is not strategy-proof a ballot set

(B ’Bi"'°’Bn) € p: exists at which v is manipulable:

17

nm o nm
v (By,..esBl,...;B) By v (By,...,Bis...,B)

nm nm
where Bi € P Let v (B .,Bi,...,Bn) =x, Vv (Bl""’Bi""’Bn) = vy,

1’00
nm N

unm(Bl,...,Bi,...,Bn) =A', and u (Bl,...,Bi,...,Bn) = A where A, A' € Py

Note that by definition YS(A') = x and YS(A) = y. Consequently (32) may be

—_— — 1
rewritten as WS(A') Bi YS(A) or as X Bi y. Focusing now on Bi’ two possi-

3

-

bilities exist: vy Bi X or x »i y.

- (32)



-31-

Non-negative Response (NNR). For some x € Sm let W = Sm - (%)
and let C, D € ﬁ; be any two ballot sets which have the properties
that (a) for all 1i ¢ In’ ew(ci) = ew(Di), (b) for all i ¢ In and
all yew, x Di y if x Ci y, and (c¢) for all i ¢ In and all
yEW, x Bi y 1if x Ei y. Let unm(C) = AC and unm(D) = AD' 1f,

for any z € W, x A; z, then x Kb z.

In less formal language Condition NNR requires that if the only change in
ballot set D is that on some individual ballots within ballot set D alter-
native x has been moved up relative to some other alternatives, then within
the committee's final social ordering Ay alternative x cannot have moved
down in rela;ion to its position within the originalAbocial ordering AC‘
The reasonableness of the ND, CS, and NNR conditions is oﬁvious. ‘
Fishburn [S]nénd Plott [12] contain excellent discussion of the reasonableness

of rationality and IIA. Conditions CS, NNR, and IIA, as Arrow [l, pp. 97]

has noted, imply the condition of Pareto optimality.

Pareto Optimality (PO). Let A = unm(B). If any B ¢ nn has the
; m

property that =x Ei y for all i ¢ In and some X, y € S, then x A y.
m

Observe that if a social welfare function satisfies PO, then it also satisfies

CSs.

I define a strict social welfare function analogously to a strict voting

nm P
procedure. The domain of a strict social welfare function u is limited

to elements of pn,i.e'only B ¢ g; are admissable as ballot sets. Similarly
m oL

the range of a strict social welfare function is limited; it may be either P

or any of its non-empty subsets.



Consider the first case where vy B! x. let U = Sm - (x). Construct a
new ballot Bj =[x eU(Bi)], i.e. x B° z for all =z € U and, for all  w,
zecU, w ﬁi 2 if and omly if W‘Ei z, Thus on the ballot Bi alternative
x 1is top-ranked and the relative positions of other alternatives is unchanged.

This is the type of shift that condition NNR describes. Let unm(Bl,.s,,B;,...,Bn)=A.

NNR then implies that X K* z for all =z € U. This is because YS(A') = X

[O8
~

consequently YS(A*) = x also. Let X = (x,y). Notice oBi is constructed so
that GX(B*) = eX(Bi)’ i.e. both x E: y and x Ei y. If we apply
IIA, the implication is that YX(A*) = YX(A). This, however, contradicts the
assumption that "YX(A*) = YS(A*) = x and YX(A) = YS(A) = y. Therefore, if
y Ei x, then v must be strategy-proof.

Consider the second case where x E{ y. Observe tﬁat eX(Bi) = QX(Bi)
where X = (xX,y). Condition IIA implies that necessarily YX(A') = YX(A).
This, however, contradicts the assumption that YX(A) = YS(A) =y and

nm

YX(A') = YS(A') = x, Therefore, if x E{ y, then v must be strategy-proof. ||

Consistent with the definition of a derived voting procedure, I define
nm . . . . nm
u to be the social welfare function that underlies the voting procedure v

n nm
if and only if, for all B € m_, Ys[u (8)1= v"™(B) where S = S - Clearly
nm
many social welfare functions underlie every voting procedure v . My interest
nm
here, however, is to find for each strategy-proof voting procedure v an
)l

underlying social welfare function u ™ that satisfies CS, NNR, and ITA. Such a
nm . nm .
u can be constructed for any strict strategy-proof v by following a
procedure Gibbard [7] has devised.

Pick an arbitrary strong order Q € Py Definezxxy, where x, y € Sm

and x # y, to be a function with domain and range P’ Let Axy have

properties such that if Bi ==Axy(Bi), then
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(a) x B,y if x fiy, y E; x if vy Eix,
(b) x B, w and vy E; w for all w¢g Sm, w # X, and w # y, and

(c) w B, z if wQz for all w, z € Sm’ w#Xx, and w # y.

For each ballot set (Bl""’Bn) construct a binary relation P such that,

for all x, v € Sm and x # y, X P y if and only if x = vnm[Axy(Bl),...,Axy(Bn)].
Since a P 1is defined for each ballot set (Bl""’Bn) € p;, a function y can be
defined that associates the appropriate P with each B € p;, Gibbard [7],

in his proof of this paper's Theorem 1, showed that if a strict voting

procedure Vnm is strategy-proof, then the binary relation P associated

with each B € p; is a strong order, i.ef P e P This means that the

function p is a strict social welfare function. Gibbard then went on to show
that i has two properties in such cases: it underlies vnm and it satisfies

L 9/
. PO and ITA. — It also satisfies CS because PO implies CS.

Three facts are important to note concetning @ibbard's result. First, it considers
only strict voting procedures whose ranges Tp are identical to the alternative
set Sm' Neverfheless this restriction is not limiting because, as was shown in
section three's proof of Theorem 1, any strict strategy-proof v’ for-which
Tp —C Sm’ P> 3, can be rewritten as a strict strategy-proof voting proceddre

Vnp defined over the reduced alternative set Sp = Tp. Gibbard's result then

. n . ey s . . . n .
applies to v P, underlying it is a strict social welfare function u P which

satisfies PO and IIA.



«34-

The second fact to note is that Gibbard's result does not establish the

. : nm . . nm .
uniqueness of the u that underlies each strict strategy-proof v . This,

however, is easy to prove. Suppose that two strict social welfare functioms

w and ' Dboth underlie vnm, both satisfy PO and 1ITA, and, for some

CF€ pz, w(C) # u'(C). Observe that, for all B € p;, v'(B) = Ys[u(B)] = Ys[u'(B)]

nm
because u and ' are both assumed to underlie v . Therefore an

x, y € S exist such that x A y and y A'X where w(C) = A and

w'(C) =A'. Let, forall 1i¢ 1,0, = Axy(ci) . Also let
% * * X —% - %
A =yu(C)and A' =,'(C). By IIA, xAy and yA' x . By PO,

to e —

xA 2z, VA z,xA'" z,v¥y A'" z for all z ¢ Sm - (%x,y). Therefore
VS(A“) = Ys[u(c*)] = x and YS(A'”) = Ys[u'(c*)] = y. This contradicts our

original assumption that, for all B € p;; ¥olu®)] = Ylu'®) ) = v (B).

Consequently u =pu', i.e. only one social welfare function satisfying PO and

ITIA underlies each strict strategy-proof voting procedure..

Third, note that Gibbard's result does not assert that the u™ underlying
nm . s nm . s
a strategy-proof v satisfies NNR. Suppose u satisfies PO and 1IIA,

but does not satisfy NNR. Consequently x,y € Tp’ B = (Bl’°°"Bi"°"Bn) € p;,

and B£ € o such that vy §i X, X §£ y, x Ay, and y A'x where

nm ' nm ' )
A=u" (Bl""’Bi’°"’Bn)’ and A =u (Bl,...,Bi,...,Bn). Let, for all j € In’
C. =A (B.) and C: = A (Bf). Therefore, because u™ satisfies IIA and
] Xy ] 1 Xy 1
nm nm 1 :
PO, 'WS [u (Cl""’ci’°"’cn)] = x and WS[u (Cl""’Ci’°"’Cn)] = y. Recall
that, since u™  underlies vnm, ws[unm(B)] = vnm(B). Therefore

nm nm =
v (C1’°"’Ci"'°’cn) =x and v (Cl,...,C;,...,Cn) = y. Because y Ci X

individual i can manipulate v at (Cl""’ci""’cn)° Therefore, since

. . nm \ nm . ,
v is not strategy-proof if u violates NNR, u must necessarily satisfy

NNR. Lemma 8 summarizes these results. Lemmas 7 and 8 together prove Theorem 2.
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Lemma 8. Consider a strict committee (In,Sm,vnm,Tp> where
n> 2, m> 3, and TP = Sm. If v is strategy proof, then

. . . . nm .
there exists a unique, strict social welfare function u  which

underlies vnm and satisfies (S, NNR, and IIA.

Theorem 2. Let n>2 and m > 3. A one-to-one correspondence X,
. . nm

exists between every strict strategy-proof voting procedure v

with range Tp E Sm and every strict social welfare function u™"

satisfying €S, NNR, and IIA. If u'™

= x(v“m), then u " underlies

Tm nm , nm
v and v is derived from u .

This theorem's significance stems from the fact that the strategy-proofness
condition corresponds to Arrow's rationality, CS, NNR, and ITIA conditions indepen-

dentlyﬂof the fact that each set of conditions by itself implies dictatoriality.

Thus, construction of a social welfare function satisfying Arrow's conditions
is equivalent to constructing a strategy-proof voting procedure.

Thzorem 2 creates a strong new justification for Arrow's choice of ration-
ality, CS, NNR, and IIA as conditions which an ideal social welfare function
should satisfy. The conditions of rationality and .IIA which have caused so
much controversy are now shown to be part and parcel of ‘the very practical
criterion of strategy-proofness. For instance, this theorem shows that
rationality is more than an attractive intellectural criterion. If a social

welfare function violates rationality, then the voting procedure derived from

it violates strategy-proofness.
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5. ARROW'S GENERAL POSSIBILITY THEOREM

If a strict social welfare satisfies CS, NNR, and IIA, then Lemma 7 states
that the strict voting procedure derived from it is strategy-proof. According
to Theorem 1 this derived voting procedure must be dictatorial. 1In this section
I show that dictatoriality of the derived voting procedure implies dictatoriality
of the original social welfare function. This establishes for the case of
strict social welfare functions a new proof of Arrow's general possibility

theorem [1]. 1In section six I extend this proof to the general case of social

welfare functions.

Theorem 3. (Arrow). Consider a strict committee (In,Sm,unm) where
n>2 and m> 3. The strict social welfare function u satisfies

CS, NNR, and IIA if and only if it is dictatorial.

Proof. Suppose a strict u™ exists which is not dictatorial, but which
satisfies CS, NNR, and IIA. By Lemma 7, let v'™ be the strategy-proof strict

nm .
voting procedure dervied from u . By the constructive proof of Theorem 2,

Vnm is dictatorial. Hence, for all B € pz, Ws[unm(B)] = vnm(B) = f;(B) for

some i € In and where S = Sm. Recall, however, that u™ is not dictatorial.

n .
This implies that a ballot set B € p = exists such that, for some x, y € Sm,

x Ei y and y A x where u "(B) = A.

-t
~ L.

Rewrite ballot set B as B where, for all j I T2

ot
w

U= (x,y), and W =3_ - (x,y), i.e. Bj is identical to Bj except that

alternatives x and y are moved to the top. Consequently f;(Bn) =X

because X Eiy implies x E;y. Let AR = unm(B%)‘ By 1IIA, y Kmx. By PO,

b
~

either WS(A;) =X or WS(AR) = y. The former is impossible because vy A x.
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Therefore Ys[unm(B")] = vnm(Bh) = y, This, however, contradicts the fact
that individual i is a dictator for v = because v (B ) = f;(BZ) = X.

nm , . .
Therefore u cannot be non-dictatorial. ||
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6. GENERALTZATIONS TO WEAK ORDERS

In this final section I generalize Theorems 1, 2, and 3 by making indif-
ference admissable on individuals' ballots and preferences. The key step in
my proofs of these generalizations is to show that strategy-proof voting pro-
cedures and social welfare functions satisfying CS, NNR, and IIA may be decomposed
into a tie-breaking function and, respectively, a strict voting procedure or
strict social welfare function.

Define a tie-breaking function to be a singlevalued function o with

domain ﬂz, range pz, and property that if o(B) =C for some B € ns

n . . = . .
and C € P’ then, for all x, y € Sm’ and all 1i e In’ b4 Bi y implies x Ci y and

B impli c, x.
y Bi x implies y Ci x. If, for some x, y € Sm and some Bi € Ty X Bi y

and y Bi x then either x Ei y or y.Ci x- depending on the tie-breakipg‘“ el

function's structure. Every tie-breaking function o decomposes into n com-
ponent tie-breaking functioms: a[B] = [al(B), ceoy ai(B), ceas an(B)] = [Cl’ ceny

Cir wves Cn]. A regular tie-breaking function vy 1is a tie-breaking function for

n .

which a set of strong orders Q = (Ql, coes Qi’ cen Qn) € Pm exists such that if

C = yB) and, for some x, y €S , X Bi y and vy Bi x, then x Ei y if and only if
m

X ai y. Any regular tie-breaking function vy decomposes into n independent

component tie-breaking functions: Yy(B) = [yl(Bl), ceey yi(Bi), e yn(Bn)] =

[Cl, ceas C. 5 ooy Cn]. Call the ordering Qi the tie-breading order for the
. i

component function Yie

Table 3 defines two illustrative component tie-breaking functions )%y and

Yi which have as their arguments only the ballot Bi instead of the entire
ballot set B. Let the notation B, = (x~y z) represent a ballot B, € m4 such

that x B; ¥, ¥ Bi X, X Ei z, and y Bi z. The functions @, and Y break the

y z) = (y x z) and

2

indifference between X and y 1in opposite directions: ai(x
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y.(x~ y z) = (xy z). Function vy, on Table 3 is admissible as a component of

i i
a regular tie-breaking function because the strong ordering Qi = (x y z) describes
how <y breaks indifference between the elements of Sj- Function ai,however,

is not admissible as a component of a regular tie-breaking function because, for

instance, it breaks indifference between y and z in both directions: ai( Xy~ z2)

(xzy)and a;(y~zx = (zx. |
Based on this definition of regular tie-breaking functions, I define

. . nm
a regular voting procedure to be any voting procedure v

which can be written

such that, for all B ¢ n:,

V@B = Vv ®)] (33)

where is a strict voting procedure and v is a

regular tie-breaking function , Similarly, I define a regular social welfare

function to be any social welfare function u whose range is contained in

P and which can be written such that, for all B € n;,

u™B) = Wy (®)] (34)
where unm is a strict social welfare function and vy is a
regular tie-breaking functiom,

Notice that the range of a regular social

welfare function is limited to P instead of n
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TABLE 3: Tie-breaking Functions « and v.

By o; (B;) 5 By
xy 2z) (xy 2) xvy 2
(xzvy) (x zy) (x zy)
(y x 2) (y x 2) (y x 2)

(v z %) (v z %) (v z %)
(z xy) (z xy) (z x y)
(z y %) (z y %) (zy %)
(xm~y=~ 2) (xy 2) xy 2)
(x~y 2) (y x 2) (xy z)
(x y=~ 2) (x zy) (xy 2)
(x~ 2z y) (z x y) (xzy)
(y x = 2) (v x 2) (y x 2)
(y = z %) (y z x) (y z %)
(z x=~y) (z y x) (z xy)

(xy z) means x Eiy, x Eiz, and y —lgiz.

rj
1]
(=5)
=
]

( x y= z) means x Biy, X Biz, y Biz, and z Biy.

o
Il
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With these definitions in hand I shall in the remainder of this section
state and prove Theorems 1', 2', and 3'., These theorems generalize Theorems
1, 2, and 3 from strict to non-strict committees. In their proofs I shall use
the results from three additional lemmas that I also state and prove in this
section. These lemmas, which have interest in their own right, show how
strategy-proof voting procedures and social welfare functions satisfying CS, NNR,
and ITA can be decomposed into tie-breaking functions and, respectively,
strict strategy-proof voting procedures and strict social welfare functioms
satisfying PO and IIA.

im

Lemma 9 Consider a committee (In,Sm,v ,Tp). 1f, for all

B € ﬁz,vnm(B) = vnm[Y(B)] where vnm is a strict strategy?proof
voting procedure and y 1is a regular tie-breaking function, then
vnm is strategy-proof. 1If vi® s strategy proof, then there

. . nm .
exists a strict strategy-proof voting procedure and tie-

breaking function o such that, for all BE€ n;,vnm(B) = ynm[a(B)].

Proof. Suppose a strict strategy-proof vnm and regular tie-breaking
function vy(B) = [Yl(Bl),...,Yn(Bn)] exist such that the voting procedure
vnm(B) = Vnm[y(B)] is not strategy proof. Therefore a B € n?m exists at-

which Vnm is manipulable:
nm - nm
v (Blyoo-)B3)--°)Bn) Bj v (Bl,-..,Bj,ae.,Bn) (35)

where B3 € o Let C = y(B). Since v'®  is assumed decomposable:

]

nm
Vnm(Bl)-=-;Bi:°°-;Bn) v [Yl(Bl);---)Yi(Bi)}'-'}Yn(Bn)] =

Tl
v(CpsevesCirenisC) = x and VIU(By,...,Bs...,B ) = \;nm[Yl(Bl),...,yi(Bi),...,Yn(Bn)]=

vnm(Cl,...,Ci,...,Cn) y where x,y € Sm' Relationship (35) implies

nm

x Ejy which in turn implies x Ejy'. This allows us to substitute for

v in (35):
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. — nm '
OPB(C w5 sC) Tyv ™ (Cpsen,ChrinnC)y (36)

. nm R . .
i.e. v is manipulable at (Cl""’cj""’cn)' onsequiently our assumption
that vnm is strategy-proof is contradicted.

Consider the lemma's second proposition now. I start with a strategy-proof

nm . .
v and must show that there exists a strict strategy-proof vnm and tie-

breaking function o such that, for all B ¢ ﬁg’vnm(B) = vnm[m(B)]. First,

I define the strict voting procedure vnm such that vnm(Bl,...,Bn) = vnm(Bl,...,B )
n

for all B« p;, This definition guarantees the strategy-proofness of

nm nm . . . . n
v ecause v , by virtue of its strategy-~proofness over its domain T’

. , . o n - nm
cannot be manipulated at any point in the domain P of v .
To complete the proof I must construct tie-breaking functions a = 611,...,u ).
n
An iterative process of first finding an appropriate % then an appropriate

a and so on through @ works. Consider an arbitrary ballot set B € n;

2)

and suppose I have found, for some j € In’ appropriate @, for all i < j,

i.e.

nm .
VOB BB ) S vnm(al(B),...,aj_l(B),Bj,...,Bn) = x (37)

Further suppose I cannot find an appropriate tie-breaker aj, i.e. for every aj

vnm(al(B),oeo:@j_l(B),aj(B),Bj+l,,,.,Bn) =y (38)
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where y # x. Pick any % such that (38) is true. Let C, = ai(B) for

all i< j. The assumption that v is strategy-proof implies two conditions:

nm =~ nm
~ .o e G
v (C]_: ’Cj-l’Bj’ Bj+1’ :Bn) Cj v (C1: :Cj_l:cj:Bj_,_l; ;Bn)and 3e)

nm

~ v (Cl"' nm

+5B) B. v (Cp5vesC

j Bn) . “0)

SUMPFLIN SRS 5-17B57B5gg0 e

These may be rewritten, based on (37) and (38), as ~ x Ej y and ~ y B, x.

J
Since Cj = aj(B Y, X gj y would imply x Ej y. Nevertheless . x Ej y3
therefore -~ x §j y. Together -~ x Fj y and ~y Ej x 1indicate indifference

between x and y on ballot Bj. Moreover, since Gj € Py ~ X Cj y 1implies

y Ej x. In summary, strategy-proofness of v implies x Bj Vs, ¥ Bj x, and ytﬁ X.
The conclusion is clear: if, for a strategy-proof Vnm, breaking the tie

on ballot Bj changés the committee's choice from x to y, then necessarily

the ballot Bj ranks x and y indifferently and the tie-breaker aj moves

y above x. This conelusion, however, contradicts the assumption that no

appropriate qj exists. Let aé break the tie between x and y 1in favor

of x instead of in favor of y. The conclusion stated above implies that no

change in the committee's choice can result because @3 breaks the indifference

. . ! ') : L]
in favor of the committee's original choice. Therefore aj is anappropriate

o, . Since my original choices of both j and B = (Bl,...,Bn) were arbi-
J
trary,I can find an appropriate aj(B) for each j € In and each B ¢ n;. [l
Theorem 1': Consider a committee (In, Sm, Vnm, Tp ) where n > 2 and

m > p > 3. The voting procedure v is strategy-proof only if it

is dictatorial.
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Proof. The proof follows from Lemma 9 which states that since v is

. . nm nm nm .
strategy-proof it can be written v (B) =y [a(B)] where is a strict
strategy-proof voting procedure and o is a tie-breaking function. By

i ,
Theorem 1, v (C) = fT(C) = YT(Ci) for some 1i ¢ In and all C ¢ p;. Let

- n nm _ - i .
Ci ai(B). Therefore, for all B ¢ e v (B) WT[mi(B)] fT(B) because
f; implicitly incorporates the component tie-breaking function o, . I

Lemma 10. Consider a committee (Im,Sm,unm) where n > 2, m> 3,

and u " is a social welfare function with domain n; and range
contained in P’ I1f, for all B ¢ vg,unm(B) = unm[y(B)] where vy is

a regular tie-breaking function and | is a strict social welfare function
satisfying IIA,CS, and NNR, then u"" satisfies TIIA,CS, and NNR.

If unm satisfies 1IIA,CS, and NNR, then there exists a tie-breaking

function o and a strict social welfare function u satisfying

IIA,CS, and NNR such that, for all B¢ ﬁ;, o™ (B) = u"Ma@)].

Proof. Suppose that vy = (yl,...,yn) is a regular tie-breaking function
nm nm .
and unm satisfies CS, NNR, and ITA. Let u ®) =u LlY®]. Obviously,
nm . .
since unm satisfies CS and, by definition, o™ and " have identical ranges,

unm satisfies CS. Suppose, however, that «™® ‘does not satisfy IIA. Consequently

n n =
there must exist a B € m  ,a Ce nm,and alcc Sm such that [eU(Bl)""’eU(Bn)]

nm =
[eU(Cl)”"’eU(Cn)] and vy, (8g) # yy(4;) vhere ") = Ap and u €) = 4A,-

. Let B' = (B',...,Bé) = [Yl(Bl),...,yn(Bn)], c' = (Ci,...,Cé) =

mn,_ 1 ' nm, !
= = t th
[yl(Cl),...,yn(Cn)], u (B) AB’ and yu (C) AC. Observe tha e
1
definition of u™® by (42) implies that Ay = Aé and AC = A.- Also observe
! ' '
that [QU(Bi),...,GU(Bn)] = [BU(CI),...,GU(CH)] because the definition of

regular tie-breakers gparantees that, for all i € In , GU[yi(Bi)] = GU[Yi(Ci)]
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if SU(Bi) = GU(Ci). Since unm csatisfies 1IIA, these last two results mean
', _ ' - . .

that ﬁ}(AB) = %}(AC) and ¥y (Ag) VU(AC). But this contradicts the

assumption that YU(AB) # YU(AC). Therefore u"" must satisfy IIA. A

similar, argument can be constructed to show that ™ must satisfy NNR.

The proof of the lemma's second proposition parallels
the proof of the second proposition of Lemma 9. Assume u™ satisfies I1A,

NNR, and CS. Define the strict social welfare function unm such that

pnm(B) = unm(B) for all B € p;. Obviously pnm satisfies NNR, CS, and IIA.

Consider an arbitrary B € ”z and suppose, for some j € In and all 1i < j,

appropriate o« exist:

unm(B

17 0B

_pre-osB) = T [di(B),;..,aj_l(B),Bj,.;.,Bn] = A

where A € I Assume an appropriate tie-breaker aj does not exist, i.e. for

all «,
J

u“m[al(B),...,aj_l(B),aj(B),BjH,..,,Bn) = A

where A' € P and A' # A. Pick any aj such that (42) is true. Therefore
some X, ¥y € Sm exist such that x A y and y A' x. Let B! = aj(B).
Observe that IIA implies that the difference in how A .and A' rank x and

y must stem from a difference in how Bj and B& rank x and y. Two

conclusions follow from this observation, NNR, and the definition of

*

a. : (a) xB,y and ¥y Bj x and (b) ¥y E& x. Define o such that x Ej y
J J

* * . * . . L. T
where B, =a.(B) . NNR in conjunction with x Ay implies that x A" y
J

% L

ola

B

* " 3 - 3
where A =u ( ...aj_l(B),aj(B),Bj+l,...). Thus aj is a component tie-breaking

function that works. I

(41)

(42)



Theorem 2', Let n>2 and m> 3. A one-to-one correspondence

5 exists between every regular strategy-proof voting procedure

n . . . .
v ™ and every regular social welfare function satisfying CS, NNR, and

ITA, 1If unm = x(vnm), then u™™ uniquely underlies v and

vnm is uniquely derived from T

This theorem generalizes Theorem 2 only to regular strategy-proof voting pro-
cedures and regular social welfare functions satisfying CS, NNR, and ITA. It
does not generalize further for two reasons. First, those strategy-proof
voting procedures that are not regular do not have underlying sodial welfare
functions. An example of such a case is the dictatorial voting procedure
" B) = f;‘(B) where fé[B; (x~ym~z)] =2z and f;‘[Bi = (x~z7y)] = x.
Inspection shows that no social welfare function unm satisfying GS, NNR, and
IIA exists such that Ys[unm(B)] = f;(B) for all B € n;. Second, if a
social welfare function has a range that both strictly contains P and is
contained in T2 then, for some B € n;, Ys[unm(B)] will be a set with at

least two elements. Therefore,. because voting procedures have single element

images, vs[unm(B)] does not define a voting procedure.

Proof. Let ¥ represent the collection of strategy-proof voting procedures
nm ) . ) nm ;
v and % represent the collection of social welfare functions u that satis-
£y CS, NNR, and IIA. The subscript R indicates restriction of the collections
¥ and % to regular voting procedures and regular social welfare functions

respectively. Similarly a subseript S indicates restriction of the collections
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7 and 9 to strict voting procedures and strict social welfare functioms
respectively. By definition each o G‘uR can be written as y[y(B)] where

w 1s a strict social welfare function and y 1is a fegular tie-breaking function,
Clearly |, satisfies 1IIA, NNR, and CS, i.e. p € @@.19/ Theorem 2 states

that there exists a unique y € ’Zf‘s which is derived from . Thus, for all

Ce P;)
¥glu (©)] = v (©). 43)

Define v such that vnm(B) = yly(B)]. Observe that v'™ is both regular

and, by Lemma 9, strategy-proof, i.e. v € ka Let v(B) ¢ for all

[}

B € n;- Substitution for C in (43) gives Ys[u[y(B)]} oIy (®)] which

simplifies to Ys[unm(B)] = vnm(B). Therefore a v o € Wk. can be derived from
every unm E‘UR. Moreover v U is uniquely derived from u™  because
Ys[unm(B)] is a singlevalued function when u E‘UR.

By definition every v € Wk. can be written y[y(B)] where  is a
strict voting procedure and y is a regular tie-breaking function. Clearly
v 1is strategy-proof, i.e. y € Ws. Theorem 2 guarantees that a unique

. . nm nm
w € Yg exists such that (43) holds. Define u such that u (B) =uly(®)].
Lemma 10 implies that o E‘UR. Substitution into (43) gives
n

Ys[u m(B)] = vnm(B). Therefore a u '™ E‘UR underlies every v € ka Moreover

nm X nm . .
the u € uR underlying each v €& Wk. is unique. This is shown by making
minor changes in the uniqueness proof contained in section four.

let uh be any element ‘uR and let v% € Wk' be the unique voting
procedure derived from it., Since YS[uA(B)] =v (B), u  is the unique element

of ‘uR which underlies v . But every vnm € Wk- has its unique unm E‘UR

underlying it. Thus the correspondence A exists and is one-to-one. ||
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Lemma 11. Consider a committee (In,Sm,u“ﬂ5 where n > 2,
m> 3, and o is a social welfare function. Let vy be
an arbitrary regular tie-breaking function and define the social

nm n
welfare function u such that, for all B & T

uTRB) = Y[™®) 1. (44)

nm Lt
1f o™ satisfies CS, NNR, and IIA, then g has range contained

in P and satisfies (S, NNR, and IIA.

Proof. Assume that o™ satisfies CS, NNR, and IIA. Equation (%) and
and the definition of Y directly imply that the range of unm is contained in
X nm . s nm X
P They also imply that satisfies CS. Suppose violates 1ITA:
n n . ' =
aB¢ ™o C e ™o and U C %m therefore exists such that [GU(Bl),..,,eU(BH)]
nm nm
[GU(Cl),...,BU(Cn)] and YU[p ®] # WU[u (C)]. Nevertheless
YU[pnm(B)] = VU[unm(C)] because T satisfies IIA. Moreover VU{y[unm(B)]}‘i
YU{y[unm(C)]} because y 1s regular. This contradicts the assumption that -
o i1 PO nm
O R MO
nm . n ] 1
Suppose violates NNR: a B = (Bl""’Bi"'°’Bn) € mo, a Bi € T Bi # Bi”
and a x,y € S exist such that y B, %, X B; y xAy, and y A x where
nm nm nm ' nm, '
A=u (Bys..-,Bys.5B) = u (B) and A' =4 (Bys--sBisevesB) = (B).
s ! - '
In addition Bi and Bi have the property that eU(Bi) QU(Bi) where

ota
~

Us=5 - (0. Letu™ (8 =A* and (') = A*', since A = y(A) and

- e

A= v(A""), consistency with the definition of vy implies that either x A "y

* * —%! .
and y A "x or x A¥ y and y A" x. Nevertheless u™ satisfies NNR. Appli-

cation of NNR to u""(B) and u"(BY implies that if x A* y, then x A" ' y and
~1

if xA y, then x A& y. Thus for gnm to violate NNR contradicts the

assumption that u"™™ satisfies MNNR. 1
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. - n_"
Theorem 3'. (Arrow). Consider a committee (In,Sm,u m} where

nm L e
n>2 and m> 3. The social welfare function u satisfies CS,

NNR, and ITA only if it is dictatorial.

Proof. Assume that u"" satisfies CS, NNR, and ITA. Lemmas 10 and
11 imply that an arbitrary regular tie-breaking function vy, a strict social
welfare function |, satisfying CS, NNR, and IIA, and a tie-breaking function

a exists such that

y{u"™(B)] = pla(B)] (45)

for all B € n;o Pick U = (x,y). Set Q € P’ the tie-breaking order for v,
such that x Q y. Theorem 3 states that because " sétisfies CS, NNR, and IIA
it is dictatorial. Assume that individual i is the dictator of y.

Let y' be a regular tie-breaking function with tie-breaking orQer

Q' € o such that y a' X. As above, we can write
Y IW@®] = w'lat (®)] (46)

for all B € n;. Suppose j € In is the dictato; for ' where j # i.
Consider a ballot set C € n; such that y'Eix and x Ejy. The assumed
dictators for y and ' imply that vy Z&x and x K;y where

AY = y(a) = y[u"™(C)] and A; = y'(A) =y [u"™(C)]. This, however, is a
contradiction. Recall that y and vy' respectively have tie-breaking orders
Q and Q' such that x a y and y a' x. Therefore y K&X implies y Ax

while x K'y implies x A y. Thus i = j, i.e. w and ' have the same

dictator.
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Suppose in equation (45) individual 1 1is the dictator for y, but not

for unm. Therefore a C € n; exists such that for some x, y € Sm, v Eix

e

nm

and ~ vy A x where A =u (C). Since p is dictatorial, 'y A'x where

ta

A = ul a(e)l. Without loss of generality assume that the x and

vy of this paragraph are identical to the x and y of the preceeding two

paragraphs. Lt/ Recall that Q, the tie-breaking order for Y, has the
property that x Q y. Let A' = vy(4) = y[unm(C)]. Therefore . y K X
implies that x A'y. But A' = y[unm(C)] = ufq(C)] = A* and,
from above, vy K*x. This contradicts the result that x K'y. Therefore

individual i must be the dictator of u ™. |
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FOOTNOTES

Farquharson [4] introduced the terms sophisticated strategy and sincere
strategy.

In my doctoral dissertation [13] I stated Theorem 1 (existence of a strategy
proof voting procedure) and proved it using the constructive proof presented
in section three of this paper. This wqu was done independently of

Gibbard. Subsequently an anonymous referee informed me of Gibbard's

paper. The statement and proof in section four of Theorem 2 (correspondence
of strategy proofness and Arrow's conditions)followedAdirectly from the
insight which I gained from reading Gibbard's paper.

The following symbols of mathematical logic are used: € element of,

C subset of, cc  strict subset of, |J union of two sets, N intersection

of two sets, and ~ not.
Set valued decision functions can give unaﬁbiguous choices if they are
coupled with a lottery mechanism that randomly selects one alternative from

among any sets of tied alternatives. This is the approach which Fishburn [g]

¢

and Zeckhauser [19] adopted. I reject this approach here because I
think that the use of decision mechanisms with a random element would
be politically unacceptable to almost all committees. Gibbard [71

argued in detail in favor of this paper's approach.

I have adapted this definition of strategy-proofness from Schmeidler and
Sonnenschein [14]. My earlier definition in [13] is equivalent, but more
awkward to use in proofs.

Another class of strategy proof committee decision rules exist, but they

do not satisfy our definition of a voting procedure because they involve

a lottery. Let a lottery be held among the committee members' ballots
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with each ballot having an equal opportunity of winning. The top ranked
alternative on the winning ballot is then declared tﬂe committee's choice.
This rule is strategy~-proof, but its probabilistic nature would undoubtedl&
offend most committees. For a full discussion of lotteries as strategy-proof
social choice mechanisms see Zeckhauser [19].

7/ One may argue here that\individuals have no incentive to play any strategy
at all, whether sophisticated or sincere. Yet an impqsed voting procedure
is strategy-proof according to the definitions established above.

8/ The sequence S(C,D) is defined in lemma one's proof.

9/ This particular result is the heart of Gibbard's proof of this paper's Theorem 1.
His method is to first show that underlying evéry strategy-proof o is
a ot satisfying PO and ITA. Arrow's general possibility theorem [1]
then implies that unm is dictatorial. Finally he proves that a

nm . nm . . . .
dictatorial u underlying v - implies that v™ is dictatorial.

10/ Suppose u £ us. This implies that u™  does not satisfy IIA, NNR,
. n nm .
and CS over the domain P® Therefore u does not satisfy IIA
and NNR over the domain n;- Moreover, since u' (B) = ply(®)] for all
B e ﬁz, if _ does not satisfy CS over p;, then uz does not

satisfy €S over the domain ﬁ;. Therefore if u ¢ uR’ then g ¢ us.

1/

==" There would be a loss of generality here if I had not shown above that,

given y and vy', both y and ;' have the same dictator.
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