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The most dramatic interaction between CS  
and GT may involve game-theory pragmatics.

 BY Yoav Shoham

University, under the leadership of John 
von Neumann, in the 1950s.a

In this article I try to do two things: 
identify the main areas of interaction 
between computer science and game 
theory so far; and point to where the 
most interesting interaction yet may 
lie—in an area that is still relatively un-
derexplored.

The first part aims to be an unbiased 
survey, but it is impossible to avoid 
bias altogether. Ten researchers survey-
ing the interactions between CS and 
GT would probably write 10 different 
types of reports. Indeed, several already 
have (as I will discuss). Moreover, in 
this brief discussion I cannot possibly 
do justice to all the work taking place 
in the area. So I try to compensate for 
these limitations in two ways: I provide 
a balanced set of initial pointers into 
the different subareas, without regard 
to the amount or nature of work that 
has taken place in each; and I point the 
reader to other relevant surveys of the 
CS-GT interaction, each having its own 
take on things.

The second part is decidedly subjec-
tive, but it is still meant to be broadly 
relevant both to computer scientists 
and game theorists interested in the in-
teraction between the disciplines.

Lessons from Kalai (1995)
My departure point is a 13-year-old sur-
vey paper by E. Kalai,16 a game theorist 
with algorithmic sensibilities. Geared 
primarily toward computer scientists, 
the paper took stock of the interac-
tions between game theory, operations 
research, and computer science at the 
time. It points to the following areas:

Graphs in games1.	
The complexity of solving a game2.	
Multiperson operations research3.	
The complexity of playing a game4.	
Modeling bounded rationality.5.	

The reason I start with this paper, be-
sides providing the interesting perspec-
tive of a non-computer scientist, is the 
comparison with current CS-GT interac-

a	 I thank Moshe Tennenholtz for this observa-
tion, which is especially true of GT and AI.

G ame    theor     y  has    influenced many fields, 
including economics (its initial focus), political 
science, biology, and many others. In recent years, 
its presence in computer science has become 
impossible to ignore. GT is an integral part of 
artificial intelligence (AI), theory, e-commerce, 
networking, and other areas of computer science, 
and it is routinely featured in the field’s leading 
journals and conferences. One reason is application 
pull: the Internet calls for analysis and design of 
systems that span multiple entities, each with its 
own information and interests. Game theory, for all 
its limitations, is by far the most developed theory 
of such interactions. Another reason is technology 
push: the mathematics and scientific mind-set of 
game theory are similar to those that characterize 
many computer scientists. Indeed, it is interesting 
to note that modern computer science and modern 
game theory originated in large measure at the same 
place and time—namely at Princeton 
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is known to exist,27 the computation of 
a sample Nash equilibrium was shown 
to be complete for this class,2 and the 
problem of computing Nash equilib-
ria with specific properties was shown 
to be NP-hard.4, 10 At the same time, 
algorithms—some quite sophisticated, 
and all exponential in the worst case—
have been proposed to compute Nash 
equilibria.11, 41 Somewhat surprisingly, 
recent experiments have shown that a 
relatively simple search algorithm sig-
nificantly outperforms more sophisti-
cated algorithms.31 This is an active area 
that promises many additional results.

The third match is somewhat less tight 
than the first two. There are at least two 
kinds of optimization one could speak 
about in a game-theoretic setting. The 
first is computing a best response to a 
fixed decision by the other agents; this is 
of course the quintessential single-agent 
optimization problem of operations re-
search and AI, among other fields. The 
second is the optimization by the design-
er of a mechanism aimed at inducing 
games with desirable equilibria. 

This so-called “mechanism design” 
has been the focus of much work in 
computer science. One reason is the 
interesting interaction between tradi-
tional CS problems (such as optimi-
zation and approximation) and tradi-
tional mechanism-design issues (such 
as incentive compatibility, individual 
rationality, and social-welfare maximi-
zation). A good example is the interac-
tion between the Vickrey-Clarke-Groves 
mechanism and shortest-path computa-
tion;26 another is the literature on com-
binatorial auctions,6 which combine 
a weighted-set-packing-like NP-hard 
optimization problem with incentive 
issues. The interplay between mecha-
nism design and cryptography is worth 
particular mention. Though both are in 
the business of controlled dissemina-
tion of information, they are different in 
significant ways. For one thing, they are 
dual in the following sense: mechanism 
design attempts to force the revelation 
of information, while cryptography at-
tempts to allow its hiding. For another, 
they traditionally embody quite differ-
ent models of paranoia. Game theory 
assumes an even-keeled expected utility 
maximization on the part of all agents, 
while cryptography is more simple-
minded: it assumes that “good” agents 
act as instructed, while “bad” agents are 

tion, as both the matches and mismatches 
are instructive. Looking at the interactions 
between CS and GT taking place today, 
one can identify the following foci:

�Compact game representations;a.	
�Complexity of, and algorithms for, b.	
computing solution concepts;
�Algorithmic aspects of mecha-c.	
nism design;
�Game-theoretic analysis  d.	
inspired by specific applications;
�Multiagent learning;e.	
�Logics of knowledge and belief, f.	
and other logical aspects of 
games.b

The crude mapping between this list 
and Kalai’s is as follows:

1995 2008
1 • • a
2 • • b
3 • • c, d
4
5

	 e,
f

Here, I discuss the areas that match 
up (1• •a, 2• •b, 3• •c, d), then turn to 
the currently active areas that were not 
discussed by Kalai (e, f), and finish with 
the orphans on the other side (4, 5) that 
were discussed by Kalai but not yet vig-
orously pursued.

There has been substantial work 
on compact and otherwise specialized 
game representations. Some of them 
are indeed graph-based—graphical 
games,18 local-effect games,21 MAIDS,19 
and Game networks,20 for example. The 
graph-based representations extend 
also to coalition game theory.7 But spe-
cialized representations exist that are 
not graph based, such as those that are 
multi-attribute based5 and logic based.15 
I believe this area is ripe for additional 
work—regarding, for example, the strat-
egy space of agents described using con-
structs of programming languages.

The complexity of computing a sam-
ple Nash equilibrium (as well as other 
solution concepts) has been the focus 
of much interest in CS, especially with-
in the theory community. A new com-
plexity class—PPAD—was proposed to 
handle problems for which a solution 

b	 This current survey originated in a presenta-
tion made at a December 2007 festschrift in 
honor of E. Kalai.

maximally harmful. Recent work, how-
ever, has begun to bridge these gaps.

This third category blends into the 
fourth one, which is research moti-
vated by specific applications that have 
emerged in the past decade. For exam-
ple, the domain of networking has given 
rise to a literature on so-called “price 
of anarchy” (which captures the inef-
ficiency of equilibria in that domain), 
games of routing, networking-forma-
tion games, and peer-to-peer networks. 
Other domains include sponsored 
search auctions, information markets, 
and reputation systems. This combina-
tion of the third and fourth categories 
is arguably the most active area today 
at the interface of CS and GT, and many 
aspects of it are covered in Nisan et al.,25 
which is an extensive edited collection 
of surveys. The popularity of this area is 
perhaps not surprising. The relevancies 
of specific applications speak for them-
selves (although arguments remain 
about whether the traditional game-the-
oretic analysis is an appropriate one). 
More generally, it is not surprising that 
mechanism design struck a chord in 
CS, given that much of CS’s focus is on 
the design of algorithms and protocols. 
Mechanism design is the one area with-
in GT that adopts such a design stance.

The fifth category active today is mul-
tiagent learning, also called “interactive 
learning” in the game-theory literature.c 
Multiagent learning, long a major focus 
within game theory, has been rediscov-
ered with something of a vengeance in 
computer science and in particular AI; 
witness special issues devoted to it in 
the Journal of Artificial Intelligence39 and 
the Machine Learning Journal.12 For com-
puter science, the move from single-
agent learning to multiagent learning 
is interesting not only because it calls 
for new solutions but also because the 
very questions change. When multiple 
agents learn concurrently, one can-
not distinguish between learning and 
teaching, and the question of “optimal” 
learning is no longer well defined (just 
as the more general notion of an “op-
timal policy” ceases to be meaningful 
when one moves to the multiagent set-
ting). For a discussion of this phenom-
enon, see the Journal of Artificial Intelli-
gence special issue cited earlier.39

c	 Kalai’s omission of this area is ironic, as he co-
authored one of its seminal papers.
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The sixth and final major area of fo-
cus, also one not discussed in Kalai,16 
is called “interactive epistemology” in 
game theory and simply “reasoning 
about knowledge and belief” in com-
puter science. Starting in the mid-1980s, 
this area was for a while the most active 
focus of interaction between computer 
science (including distributed systems, 
AI, and theory) and game theory. Be-
side game theory, it established deep 
ties with philosophy and mathematical 
logic, culminating in the seminal book 
by Fagin et al.8, d It is interesting to spec-
ulate why this area was omitted from 
Kalai’s list, even although it predates 
his paper by a decade, and why today it 
is not as broadly populated as the other 
areas. I think the reason is that the sub-
ject matter is more foundational, pri-
marily non-algorithmic, and appeals to 
a smaller sliver of the two communities. 
Be that as it may, it remains a key area of 
interaction between the two fields.

These six areas are where most of 
the action has been in past years, but by 
listing only them and being brief about 
each one, I have by necessity glossed 
over some other important areas. The 
references compensate for this omis-
sion to some extent. In addition, the 
reader is referred to the following addi-
tional surveys, all by computer scientists 
who each have a slightly different slant. 
Most of these works go into considerably 
more detail about some of the topics.

The earliest relevant survey is prob-˲˲

ably by Linial.22 Geared primarily toward 
game theorists, this 58-page report has 
deep coverage of game-theoretic as-
pects of distributed systems, fault-toler-
ant computing, and cryptography, and 
it also touches on computation of game 
theoretic concepts, games and logic, 
and other topics.

Papadimitriou’s survey˲˲ 29 geared to-

d	 That book focused on static aspects of knowl-
edge and belief, which, notwithstanding the 
substantial computer-science credentials of 
the authors, raise an interesting contrast be-
tween the computer-science and game-theory 
literature in these areas. In game theory, static 
theories are indeed the primary focus, where-
as in computer science—in particular, in data-
base theory and artificial intelligence—belief 
revision and other dynamic theories30 (includ-
ing the entire mini-industry of nonmonotonic 
logics9) play an equal if not greater role. In-
deed, recent work at the interface of logic and 
game theory37 extends the static treatment of 
Fagin et al.8 in a dynamic direction.

ward computer scientists, is a concise 
five-page paper summarizing the main 
complexity and algorithmic issues at 
the interface of CS and GT circa 2001.

The 21-page paper by Halpern˲˲ 13 
is similar to Linial in that it is geared 
toward game theorists and its main fo-
cus is distributed systems, but having 
been published a decade later it is more 
current. The work later evolved into a 
17-page survey14 with an abbreviated 
discussion of distributed computing 
and additional material on complexity 
considerations, price of anarchy, me-
diators, and other topics.

Roughgarden’s 30-page work is ˲˲

a detailed survey of a specific topic—
namely, the complexity of computing 
a sample Nash equilibrium.32 Geared 
mostly toward economists, it includes 
ample background material on relevant 
concepts from complexity theory.

The material discussed so far is not 
only prominently featured in computer 
science journals and conferences but 
also is beginning to find its way into 
textbooks.35 These areas will undoubt-
edly continue to flourish. But now I 
want to turn our attention to the two 
closely-related areas—4 and 5—listed 
by Kalai that have not been looked at as 
closely by the community at large, CS 
in particular. I do this for two reasons: I 
believe they are critical to the future suc-
cess of game theory, and I believe that 
CS can play an important role in them. 
They both have to do with incorporat-
ing practical considerations into the 
model of rationality that is inherent to 
game theory. To repeat the caveat stated 
earlier: unlike the material so far, the re-
maining discussion is future-directed, 
speculative, and subjective.

Lessons from Linguistics
The field of linguistics distinguishes 
among syntax, semantics, and prag-
matics. Syntax defines the form of lan-
guage, semantics defines its meaning, 
and pragmatics defines its use. While 
the three interact in important ways, 
the distinctions have proved very use-
ful. I believe that game theory may do 
well to make similar distinctions, and 
that CS can help in the process. Just as 
in the case in linguistics, it is unlikely 
that game-theory pragmatics will yield 
to unified clean theories, as do syntax 
and semantics. But I expect game-theo-
ry pragmatics to be as critical to reduc-

I expect game-
theory pragmatics 
to be as critical 
to reducing game 
theory to practice 
as language 
pragmatics have 
been to analyzing 
human discourse 
or understanding 
language by 
computers. 
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ing game theory to practice as language 
pragmatics have been to analyzing hu-
man discourse or understanding lan-
guage by computers.

The distinction between the syntax 
and semantics of games is, I think, quite 
important, as some of the disputes with-
in game theory regarding the primacy of 
different game representations (for ex-
ample, the strategic and extensive forms) 
suffer from the lack of this distinction. It 
might, however, be presumptuous for CS 
to intrude on this debate, except insofar 
as it lends logical insights.38 Indeed, per-
haps this is more the role of mathemati-
cal logic than of CS per se.

But where CS can truly lead the way 
is in game theory’s pragmatics. Game 
theory as we know it embodies radical 
idealizations, which include the infinite 
capacity of agents to reason and the in-
finite mutually recursive modeling of 
agents. Backing off from these strong 
assumptions has proven challenging. 
A fairly thin strand of work under the 
heading of “bounded rationality” in-
volves games played by automata.33 This 
is an important area of research that 
sometimes makes deep connections 
between the two fields. For example, 
early results showed that one of the 
well-known pesky facts in game theo-
ry—namely, that constant “defection” 
is the only subgame-perfect equilib-
rium in the finitely repeated prisoner’s 
dilemma game—ceases to hold true if 
the players are finite automata with suf-
ficiently few states.24, 28 A more recent re-
sult shows that when players in a game 
are computer programs, one obtains 
phenomena akin to the Folk Theorem 
for repeated games.36

This connection between theoretical 
models of computation and game theo-
ry is quite important and beautiful, but 
it constitutes a fairly narrow interpreta-
tion of the term “bounded rationality.” 
The term should perhaps be reserved 
for describing a much broader research 
agenda—one that may encourage more 
radical departures from the traditional 
view in game theory. Let me mention 
two directions that I think would be 
profitable (and difficult) to pursue un-
der this broader umbrella.

When one takes seriously the notion 
of agents’ limited reasoning powers, 
it is not only some of the answers that 
begin to change; the questions them-
selves must be reconsidered. Consider 

the basic workhorses of game theory—
the Nash equilibrium and its many 
variants—that have so far served as the 
very basic analysis tool of strategic inter-
actions. Questioning the role of equilib-
rium analysis will be viewed by some in 
GT as act of heresy, but real life suggests 
that we may have no choice. For exam-
ple, in the trading agent competition, 
Nash equilibrium of the game did not 
play a role in almost any participating 
program,42 and this is certainly true as 
well of the more established chess and 
checkers competitions. 

It is premature to write off the Nash 
equilibrium as irrelevant, however. For 
example, two programs competing in 
the TAC did in fact make use of what 
can be viewed as approximate empiri-
cal NE.42 Another striking example is the 
computation of equilibria in a simplified 
game tree by a top-scoring program in a 
poker competition.43 It could be argued 
that maxmin strategies, which coincide 
with equilibrium strategies in zero-sum 
games, do play an important pragmatic 
role. But computation of either maxmin 
or equilibrium strategies in competi-
tions has certainly been the exception to 
the rule. The more common experience 
is that one expends the vast majority of 
the effort on traditional AI problems 
such as designing a good heuristic func-
tion, searching, and planning. Only a 
little—albeit important—time is spent 
reasoning about the opponent. 

The impact of such pragmatic con-
siderations on game theory can be 
dramatic. Rather than start from very 
strong idealizing assumptions and awk-
wardly try to back off from them, it may 
prove more useful or accurate to start 
from assumptions of rather limited rea-
soning and mutual modeling, and then 
judiciously add what is appropriate for 
the situation being modeled. Which in-
cremental-modeling approach will out 
has yet to be seen, but the payoff both 
for CS and GT can be substantial.

The second direction is radical in 
a different way. Game theory adopts 
a fairly terse vocabulary, inheriting it 
from decision theory and the found-
aions of statistics.e In particular, agents 

e	 Parenthetically, it can be remarked that  
Savage’s setting,34 on which the modern 
Bayesian framework is based, does not have 
an obvious extension to the multi-agent case. 
However, this is not the focus of the point I am 
making here.

Science operates  
at many levels.  
For some, it is 
sufficient that 
scientific theories 
be clever, beautiful, 
and inspirational. 
Others require  
that any science 
eventually  
make contact  
with compelling 
applications  
and be subjected  
to empirical 
evaluation.
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have “strategies,” which have minimal 
structure, and motivations, which are 
encapsulated in a simple real-valued 
utility function. (This in fact carries 
even less information than is suggested 
by the use of numbers, as the theory is 
unchanged by any positive affine trans-
formation of the numbers.) In real life, 
and in computer programs attempting 
to behave intelligently, we find use for a 
much broader vocabulary. For example, 
agents are able to take certain actions 
and not others; have desires, goals, and 
intentions (the belief-desire-intention 
combination giving rise to the pun 
“beady-eye agent architecture”); and 
make plans. Apparently these abstract 
notions are useful both in effecting 
intelligent behavior and in reasoning 
about it. Philosophers have written 
about them (for example, Bratman1) 
and there have been attempts—albeit 
preliminary ones—to formalize these 
intuitions (starting with Cohen and 
Levesque3). Some in AI have advocated 
embracing an even broader vocabulary 
of emotions (such as the recent provoc-
ative albeit informal book by Minsky.23) 
Is game theory missing out by not con-
sidering these concepts?

Concluding Remarks
Science operates at many levels. For 
some, it is sufficient that scientific theo-
ries be clever, beautiful, and inspira-
tional. Others require that any science 
eventually make contact with compelling 
applications and be subjected to empiri-
cal evaluation. Without personally weigh-
ing in on this emotional debate, I note 
that in his 2004 presidential address at 
the Second World Congress of the Game 
Theory Society,17 Kalai reprised the three 
stages of any science as discussed by von 
Neumann and Morgenstern:

[W]hat is important is the gradual 
development of a theory, based on a 
careful analysis of the ordinary everyday 
interpretation of economic facts. The 
theory finally developed must be math-
ematically rigorous and conceptually 
general. Its first applications are neces-
sarily to elementary problems where the 
result has never been in doubt and no 
theory is actually required. At this early 
stage the application serves to corrobo-
rate the theory. The next stage develops 
when the theory is applied to somewhat 
more complicated situations in which 

it may already lead to a certain extent 
beyond the obvious and the familiar. 
Here theory and application corrobo-
rate each other mutually. Beyond this 
lies the field of real success: genuine 
predictions by theory. It is well known 
that all mathematized sciences have 
gone through these successive phases 
of evolution.40

So at least von Neumann, the father 
of modern-day game theory and com-
puter science, attached importance to 
spanning the spectrum from the theo-
retical to the applied. Pragmatics may 
be critical to achieving von Neumann 
and Morgenstern’s third stage, and it 
could propel a joint endeavor between 
computer science and game theory.�
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