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Abstract

This paper investigates a new class of 2-player games in continuous time, in which

the players’ observations of each other’s actions are distorted by Brownian motions.

These games are analogous to repeated games with imperfect monitoring in which

the players take actions frequently. Using a differential equation we find the set E(r)

of payoff pairs achievable by all public perfect equilibria of the continuous-time game,

where r is the discount rate. The same differential equation allows us to find public

perfect equilibria that achieve any value pair on the boundary of the set E(r). These

public perfect equilibria are based on a pair of continuation values as a state variable,

which moves along the boundary of E(r) during the course of the game. In order

to give players incentives to take actions that are not static best responses, the pair

of continuation values is stochastically driven by the players’ observations of each

other’s actions along the boundary of the set E(r).1
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NYU, MIT, the University of Chicago, Yale, the University of Minnesota, UCSD, Humboldt, Oxford, the
Minnesota Workshop in Macroeconomic Theory, Rochester, the University of Pennsylvania and the Uni-
versity of Michigan for very valuable feedback on this paper. Also, I would like to thank the editor, Andrew
Postlewaite, and two anonymous referees for very thoughtful comments.
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1 Introduction.

This paper analyzes a new class of two-player games in continuous time that are related

to repeated games with imperfect monitoring (i.e. imperfectly observable actions). In

these continuous-time games players do not see each other’s actions directly; they only

see signals that are distorted by Brownian motions. We are interested in the set of payoff

pairs that can be achieved in an equilibrium of the entire game. The benefit of modeling

dynamic interactions as continuous-time games lies in the clarity with which the set of

equilibrium payoffs can be characterized. The continuous-time approach also allows for a

simple description of equilibrium strategies that achieve the extreme points of the set of

equilibrium payoffs.

We study public perfect equilibria (PPE) and the set of payoff pairs that can be achieved

by PPE in a game with imperfectly observable actions. This set of payoff pairs is denoted by

E(r) for a discount rate r. A PPE is a pair of strategies that depend only on the commonly

observable public outcomes such that each player’s strategy is a best response after all

public histories. The purpose of this paper is not to prove a Folk Theorem for this class of

games, but to precisely characterize the set E(r) as well as public perfect equilibria.

It turns out that the boundary of the set E(r) can be found using an ordinary differential

equation, which we call the optimality equation. The optimality equation also allows us

to construct equilibria that achieve any payoff pair on the boundary of the set E(r). The

dynamics of such equilibria are based on a pair of continuation values as a state variable,

which moves along the boundary of the set E(r) during the course of the game. At any

moment of time, a player’s continuation value is his future expected payoff in the remaining

game. The current continuation values determine the players’ actions and the impact of

observed signals on motion of continuation payoffs.

The optimality equation relates incentives, the equilibrium motion of continuation val-

ues, and the geometry of the set E(r). In equilibrium, a player’s incentives stem from the

influence of the signal about his actions on his future continuation values. The player’s

actions are optimal when they maximize his instantaneous payoff flow plus the expected

rate of change of his continuation value. Because signals are stochastic, so is the motion

of continuation values. The optimality equation, shown informally on the third panel of

Figure 1, ties together four measures:

1. inefficiency, how much continuation values v fall behind the flow of payoffs g(a)

2. incentives, the sensitivity of continuation values towards public signals
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3. the amount of noise in signals

4. the curvature of the set E(r).

We see that noise, curvature, and the necessity to provide incentives contribute posi-

tively to inefficiency. In equilibrium, as continuation values move on the boundary of the

set E(r), the tangent line gives the ratio at which players can instantaneously transfer fu-

ture equilibrium payoffs in order to create incentives. Because of the curvature of the set

E(r) players cannot transfer utility between each other indefinitely at the same constant

rate. Curvature, together with the magnitude of noise in the public signal, quantifies the

informational inefficiency.2 The greater the curvature, the more costly it is to provide in-

centives and the greater should be the difference between the continuation values and the

flow of payoffs.

The optimality equation also assigns an equilibrium action pair a to each point v on

the boundary of the set E(r). That action pair optimally resolves the trade-off between

inefficiency and incentives to stretch the boundaries of the set E(r) as far out as possible.

This paper contributes to the theory of repeated games with imperfect monitoring,

which has been developed by Abreu, Pearce, and Stacchetti (1990), hereafter APS, and

Fudenberg, Levine, and Maskin (1994), hereafter FLM. Specifically, continuous-time games

illustrate the pattern of equilibrium dynamics in such games and clearly outline the trade-

offs involved in the choice of equilibrium actions. The contributions of APS, FLM, and

continuous-time games are illustrated in three panels of Figure 1, in which the horizontal

and vertical axes represent the players’ payoffs.

APS investigate sequential equilibria of repeated games with imperfect monitoring.

These games have a great multiplicity of equilibria. APS make the problem of finding

equilibrium payoffs much more manageable. They show that any equilibrium payoff vector

can be achieved by a recursive equilibrium, in which the players’ continuation values are

state variables. In equilibrium continuation values change location after every observation

of the public signal. The arrows in the left panel of Figure 1 illustrate the potential jumps

of continuation values after different signals. The challenge behind our understanding of

discrete-time games is that it is difficult to see a pattern behind these jumps and the

connection between the equilibrium dynamcis and the shape of the set of equilibrium pay-

offs. Continuous-time games illuminate the connection between the equilibrium motion of

2As noise increases, the variance of continuation values necessary to provide incentives increases. Be-
cause of the curvature of E(r), that increases inefficiency.
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continuation values, incentives, and the shape of the set E(r). In particular, the optimality

equation leads naturally to a simpler computational procedure in a continuous-time setting.

FLM show that under appropriate conditions the Folk Theorem holds for repeated

games with imperfect information: any smooth convex payoff set W inside the set V ∗ of

all feasible and individually rational payoffs can be achieved in equilibrium as long as the

players are sufficiently patient. The key insight behind FLM’s proof of the Folk Theorem

is to consider a specific pattern of the motion of continuation values. Specifically, any

payoff pair v on the boundary of W is achievable if the future continuation values (denoted

by w, w′ and w′′ in the middle panel of Figure 1) are chosen on a tangent line. The

continuous-time setting allows us to do more: for any discount rate r we can characterize

the optimal equilibrium motion of continuation values. It turns out that this motion stays

on the boundary of the set of equilibrium payoffs E(r), i.e. it is locally tangential.
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Figure 1: Illustration of the methods of APS, FLM and this paper.

One may be surprised that the informational problem persists in our continuous-time

setting. After all, if players can change their actions fast, why can they not instantaneously

punish all deviations? A critical feature of our model is that while the players can adjust

their actions as quickly as they want, the faster they react, the less information they

observe. This feature is in a sharp contrast with the model adopted in FLM, where as the

duration of a period is shrunk to 0, the amount of information that the players learn per

period nevertheless remains the same. This issue was addressed by Abreu, Milgrom and

Pearce (1991) in a model with Poisson arrival of signals.3

3Also, Kandori (1992) shows that the set of payoffs achieved in PPE increases in the accuracy of
monitoring.
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Brownian motion was first applied to the problem of dynamic incentive provision in

Holmstrom and Milgrom (1987). Their paper is a good example that in some situations a

continuous-time formulation allows us to better recognize patterns and prove clean results.

The information flow in our paper is similar to Holmstrom and Milgrom (1987) in the

sense that players learn about each other’s actions from a continuous process with i.i.d.

increments.4

Simon and Stinchcombe (1989) illustrate a lot of difficulties associated with the model-

ing of games in continuous time. For example, a simple description of a strategy in discrete

time often has no equivalent in continuous time. These difficulties arise when the actions

of one player instantaneously create information available to his opponent. This issue is

not a problem in our framework. In our continuous-time games, information is defined

exogenously in terms of all possible signals, and a strategy of a player simply defines a

probability measure over all possible signals.

Recently, a number of authors have enriched the problem of optimal incentive provision

in a dynamic setting using the mathematical tools of optimal control of diffusion processes.

Sannikov (2004) and Williams (2004) both introduce a new method of analyzing the in-

formational problem in a dynamic principal-agent relationship. In both models, the agent

drives a stochastic state X with his choice of controls, but the agent’s choice is not directly

observable. 5 Both papers analyze models with one-sided imperfect information, where

only the agent takes hidden actions. This paper extends the continuous-time method to a

two-sided setting, where both players take hidden actions.

This paper is organized as follows. Section 2 provides two motivating examples. Section

3 formally describes the class of continuous-time games analyzed in this paper. Section

4 describes several standard game-theoretic concepts in our setting: the stage game, the

minmax payoff and the sets of unconstrained payoffs and Nash equilibrium payoffs. Section

5 identifies incentive compatibility conditions, discusses the concept of a continuation value,

and describes PPE in terms of the stochastic motion of continuation values. Section 6

interprets this description of PPE as a stochastic control problem and characterizes the

set E(r) as well as PPE that achieve its extreme points. Section 7 summarizes the main

4We do not allow statistically meaningful jumps in the players’ observations, as in the Poisson model
of Abreu, Milgrom and Pearce (1991). As a result, the noise has the form of a Brownian motion.

5Williams (2004) characterizes the optimal contract with a partial differential equation based on the
following state variables: time, state X, the agent’s value, and possibly other variables in an enriched
formulation. In Sannikov (2004) the optimal contract can be derived using an ordinary differential equation
based on a single state variable, the agent’s continuation value.
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results and provides an intuitive discussion of public perfect equilibria. Section 8 presents

computational techniques and examples. Section 9 concludes the paper.

2 Examples.

In this section, we illustrate continuous-time games and the results of this paper with

two examples. Each game is defined by the matrix of expected payoffs of a stage game

and the noise structure. Players continuously take actions at each time t ∈ [0,∞), but

they do not directly observe each other’s past actions. Instead, players publicly observe

random processes that carry some information about their past actions. This information

is obscured by noise. Specifically, player i’s actions determines the drift of the publicly

observed process X i. Here are the two examples:
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Figure 2: Matrix of Static Payoffs and Set E(r) in Partnership.

Noisy Partnership/Prisoners’ Dilemma. Two players participate in a joint venture

in continuous time. Each player has a set of actions A1 = A2 = {0, 1}, where 0 means

“no effort” and 1 means “effort.” The action of player i = 1, 2 at time t is denoted by Ai
t.

Players do not directly observe each other’s actions, but instead observe random processes

X1
t =

∫ t

0

A1
s ds + Z1

t , X2
t =

∫ t

0

A2
s ds + Z2

t ,
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where Z1 and Z2 are independent standard Brownian motions. The increments of the

process X i reflect how much the actions of player i contribute to the success of the joint

venture. Players enjoy the success of their joint venture, but they dislike effort. The actual

payoffs of players 1 and 2 are defined by

r

∫ ∞

0

e−rt(2 dX1
t + 2 dX2

t − 3A1
t dt) and r

∫ ∞

0

e−rt(2 dX1
t + 2 dX2

t − 3A2
t dt).

Note that the instantaneous payoff of player i depends on Ai
t, dX1

t and dX2
t . The

expected payoffs can be written as

E

[

r

∫ ∞

0

e−rtg1(A
1
t , A

2
t ) dt

]

and E

[

r

∫ ∞

0

e−rtg2(A
1
t , A

2
t ) dt

]

,

where

g1(a1, a2) = 2a2 − a1 and g2(a1, a2) = 2a1 − a2.

Static payoff functions g1 and g2 give the expectation of the rates at which the players

receive their payoffs for any pair of actions. This payoff matrix of the stage game is shown

in Figure 2.
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Figure 3: Sample Paths of Continuation Values.

To give a taste of our results, Figure 2 also shows a computed set E(r) for r = 0.2.
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Let us discuss an equilibrium that achieves payoff pair C on the boundary of the set E(r).

During the equilibrium play, the pair of continuation values follows a diffusion process on

the boundary of E(r), driven by the realizations of X. The pair of continuation values has

a drift and a volatility. The tangential component of the drift is shown in Figure 2: it

is directed away from points A, C and E, towards points B, D, and the origin. Players

choose their effort levels depending on the current pair of continuation values as shown in

Figure 2. Both players put effort on the thick portion of the boundary of E(r).

Figure 3 gives three sample paths of the players’ continuation values in the equilibrium

that achieves payoff pair C. The vertical axis represents the boundary of E(r), denoted by

∂E(r), with points A, B, C, D and E clearly marked.

In Figure 3, the drift of continuation values is directed away from the solid horizontal

lines, towards the dotted lines. The dotted lines represent the boundaries, where one of

the players switches from effort to no effort. Because of the drift pattern, players typically

spend considerable amounts of time in “unequal” regimes, where one player puts effort and

the other alternates between effort and no effort. These regimes are denoted by (1/0,1) and

(1,1/0) in Figure 3. The realizations of X cause players to switch from one unequal regime

to another, until they become absorbed in the static Nash equilibrium, in which players

stop putting effort. We see from Figure 3 that the collapse into Nash equilibrium is fast

because the drift towards the Nash equilibrium point becomes stronger as the continuation

values approach that point.

Duopoly with Differentiated Products. Consider two firms, whose products are

imperfect substitutes. The private actions of firm i are supply rates from set Ai =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The instantaneous prices of firms 1 and 2 are given by the

increments of the processes

dP 1
t = (25 − 2A1

t − A2
t ) dt + noise and dP 2

t = (30 − 2A2
t − 2A1

t ) dt + noise.

Prices are publicly observable, and the noise structure is such that firms can isolate a signal

about each firm’s quantity from the prices

{

dX1
t = 1

2
dP 2

t − dP 1
t + 10 dt = A1

t dt + dZ1
t

dX2
t = dP 1

t − dP 2
t + 5 dt = A2

t dt + dZ2
t

where Z1 and Z2 are independent standard Brownian motions. The payoffs of firms 1 and
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2 are given by

r

∫ ∞

0

e−rtA1
t dP 1

t and r

∫ ∞

0

e−rtA2
t dP 2

t .

The payoff functions can be identified as

g1(a1, a2) = a1(25 − 2a1 − a2) and g2(a1, a2) = a2(30 − 2a2 − 2a1).

This stage game has a unique Nash equilibrium (5, 5), but ideally firms could collude by

producing (4, 4). The PPE of this game are described in Section 8.2.

3 The Setting.

Time t ∈ [0,∞) advances continuously. At every moment of time t, players i = 1, 2 choose

actions Ai
t from finite sets Ai. Players do not see each other’s actions directly, but publicly

observe the path of a d-dimensional public signal Xt that depends on the players’ actions

and noise. When players i = 1, 2 take actions Ai = {Ai
t, t ∈ [0,∞)}, then the signal about

their actions is

Xt =

∫ t

0

µ(As) ds + dZt,

where As = (A1
s, A

2
s) and Z is a d-dimensional Brownian motion. A strategy of player i is

public if his action at time t is determined by the public history, which consists of the signals

{Xs, s ∈ [0, t]} and possibly other public information introduced for public randomization.

Formally, public information is captured by a filtration {Ft}.

Each player receives a flow of payoff discounted at a common rate r, which depends on his

action and the public signal, but not directly on his opponent’s action. The instantaneous

payoff of player i at time t is given by ci(A
i
t)dt+ bi(A

i
t) ·dXt for some functions ci : Ai → <

and bi : Ai → <d. Since Xt has drift µ(At), player i’s expected payoff flow at time t is

gi(At) = ci(A
i
t) + bi(A

i
t) · µ(At).

Definition. A pair of public strategies A = (A1
t , A

2
t ; 0 ≤ t < ∞) is a perfect public

equilibrium (PPE) if for i = 1, 2 Ai maximizes the expected discounted payoff of player i

given the strategy Aj of his opponent after all public histories.

Formally, the expected discounted payoff (a.k.a. continuation value) of player i after a
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public history at time t is

W i
t (A) = Et

[

r

∫ ∞

t

e−r(s−t)gi(As) ds

]

, (1)

where the expectation is conditioned on the public information at time t.

In the next sections we characterize the set E(r) of payoff pairs achievable by all PPE

and pay special attention to the PPE that achieve extreme value pairs of the set E(r).

We find that the equilibrium actions in those PPE are essentially unique and that those

PPE do not use public randomization. The equilibrium dynamics are described in terms of

the stochastic motion of continuation values on the boundary of E(r) driven by the public

signals.

Games with Product Structure.

Some characteristics of our equilibria, especially the provision of incentives, are easier

to understand within the context of a subclass of these games that has product structure.

In this class the set of actions of each player is one-dimensional and µ(a1, a2) = (a1, a2),

i.e. each player’s action affects a separate signal, and the two signals are independent. The

examples from the previous section are all from this class. After we derive our results in a

general setting, we discuss incentives in equilibria of the games from this class in the end

of Section 7.

4 Important Sets.

Let us review several concepts that are familiar from the theory of repeated games. A

stage game G has the set of players N = {1, 2}, an action set of each player Ai and payoff

functions gi.

G = {N, (Ai)i∈N , (gi)i∈N}.

Denote the set of all action profiles of the stage game G by A = A1 × A2, and the set of

pure strategy Nash equilibria, by AN ⊆ A. Let N be the convex hull of all pure strategy

Nash equilibrium payoff pairs of game G, and V, the convex hull of all feasible payoff pairs:

N ≡ co {(g1(a), g2(a)) | a ∈ AN} V ≡ co {(g1(a), g2(a)) | a ∈ A}.
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The pure strategy minmax payoff of player i is

vi ≡ min
aj

max
ai

gi(ai, aj) (2)

Player i can guarantee himself his pure strategy minmax payoff for any strategy of the

opponent. Define by

V∗ ≡ {v ∈ V | vi ≥ vi for i = 1, 2},

the subset of V on which each player receives at least his minmax payoff.

Due to the possibility of public randomization, the set E(r) of payoff pairs achievable

by all PPE is convex. As in repeated games in discrete time, we have

N ⊆ E(r) ⊆ V∗ ⊆ V,

as illustrated in Figure 4.
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Remark. The reason why player i can guarantee himself a pure-strategy minmax

payoff of vi is that the strategies of both players must be public, i.e. adapted to the public
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filtration {Ft}. We can imagine an alternative formulation, in which each player’s strategy

is adapted to his private filtration {F i
t} and the public filtration satisfies Ft ⊆ F1

t ∩ F2
t .

Under this alternative formulation, there may be equilibria that are not public, and the

achievable payoff set may be larger than E(r). Kandori and Obara (2003) show that the use

of private strategies can improve equilibrium payoffs even in games with public monitoring.

However, to defend PPE, it can be shown that if player i follows a public strategy then

player j has a best response that is also a public strategy.

5 Properties of Continuation Values in PPE.

In this section, we characterize public perfect equilibria in terms of the stochastic properties

of the continuation values W 1
t (A) and W 2

t (A). Our analysis proceeds as follows. We start

with the definition of a player’s continuation value: it is his future expected equilibrium

payoff after a given public history. As time passes and the history unfolds, the continu-

ation values change: they will move in the set E(r). In a public perfect equilibrium this

motion is determined by the public information: the signals Xt and public randomization.

Proposition 1 represents the relationship between public information and the motion of

continuation values formally, and shows that this motion must satisfy a promise keeping

condition. This condition relates a player’s current continuation value, his current payoff

flow and the expected change of his continuation value.

Next, we find that incentives come from the relationship between the public signals

and the motion of continuation values. A player may have incentives to take an action

different from a static best response because (1) actions affect public signals, and (2)

public signals affect future continuation values. Proposition 2 provides an instantaneous

incentive compatibility condition. The analogue of this condition in a discrete-time game

is that a deviation for one period is not profitable. Proposition 2 proves that a strategy of

player i is optimal in response to the strategy of his opponent at all times if and only if

the instantaneous incentive compatibility condition always holds. Together, Propositions 1

and 2 show that in any PPE, the motion of continuation values must satisfy two conditions:

promise keeping and incentive compatibility. Propositions 2 and 3 imply the converse: if

the motion of two random processes satisfies these conditions, then there is a PPE in which

these random processes are continuation values. Theorem 1 summarizes these results of

this section.

Recall that the continuation value of player i is defined as
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W i
t (A) = Et

[

r

∫ ∞

t

e−r(s−t)gi(As) ds

]

. (3)

First, we need a representation that identifies the drift of W i(A) and the sensitivity of

W i(A) to X i.

Proposition 1. (Representation and Promise Keeping). Player i’s continuation

value has drift r(W i
t (A) − gi(At)) and can be represented as

W i
t (A) = W i

0(A) + r

∫ t

0

(W i
s(A) − gi(As)) ds + r

∫ t

0

βi
s · (dXs − µ(As)ds) + ε̆i

t, (4)

where βi = (βi1 . . . βid) are chosen so that ε̆i
t is a martingale orthogonal to X.

This proposition formalizes the fact that the path of player i’s continuation value is

determined by public information: the signal X and a public randomization process ε̆. The

vector of coefficients βi
t captures the exposure of player i’s continuation value to dXt. The

shorthand form of equation (4) is

dW i
t (A) = r(W i

t (A) − gi(At)) dt + rβi
t · (dXt − µ(As)dt) + dε̆i

t.

It can be interpreted as an instantaneous regression of dW i
t (A) onto a constant and dXt,

with a regression error dε̆i
t.

Note that r(gi(At)−W i
t (A)) is the drift of player i’s continuation value. Figure 5 shows

this intuitively from the fact that Wt(A) is a weighted average of the current payoff flow

g(At) and expected continuation values an instant later. Thus, we call the condition that

W i
t (A) has drift r(gi(At) − W i

t (A)) the promise keeping condition.
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Proof. Define βik
s = d〈W i(A),Xk〉t

dt
, where 〈W i(A), Xk〉 is called the cross-variation between

W i(A) and Xk. Then ε̆i, defined by (4), is orthogonal to X. Also note that

V i
t (A) = r

∫ t

0

e−rsgi(As) ds + e−rtW i
t (A)

is a martingale. Differentiating with respect to t, we get

dV i
t (A)

︸ ︷︷ ︸

driftless

= re−rtgi(At) dt − re−rtW i
t (A) dt + e−rtdW i

t (A),

which proves that r(W i
t (A)− gi(At)) is the drift of W i

t (A), so ε̆i in representation (4) must

be a martingale.

The process βi represents the extent, to which player i’s value is driven by the public

signal X. Therefore, βi is responsible for player i’s incentives, as shown below:

Proposition 2. (Incentive Compatibility). Strategy Ai of player i is optimal in re-

sponse to strategy of Aj at all times if and only if the incentive compatibility condition

∀ a′
i ∈ Ai, gi(At) + βi

t · µ(At) ≥ gi(a
′
i, A

j
t ) + βi

t · µ(a′
i, A

j
t) (5)

holds for all t. Therefore, a pair of strategies A is a PPE if and only if (5) holds for both

players.

Let us interpret the incentive compatibility condition. Suppose that player i is contem-

plating a deviation to an alternative action a′
i at time t. This will change his instantaneous

payoff flow by gi(a
′
i, A

j
t ) − gi(At). At the same time, this deviation changes the drift of Xt

by µ(a′
i, A

j
t )−µ(At). Since βi

t is the sensitivity of player i’s continuation value towards dXt,

this will change player i’s continuation value at rate β i
t · (µ(a′

i, A
j
t)−µ(At)). If the incentive

compatibility condition holds, such an instantaneous deviation will cause player i a loss of

gi(a
′
i, A

j
t ) − gi(At) + βi · (µ(a′

i, A
j
t ) − µ(At)) ≤ 0. (6)

Therefore, condition (5) states that an instantaneous deviation is not profitable.

In the proof of Proposition 2, we show that instantaneous incentive compatibility implies

full incentive compatibility. Instantaneous losses from deviations integrate to a loss globally.

14



Proof. Let us find the payoff to player i from an alternative strategy Âi. If player i follows

strategy Âi until time t and then switches back to Ai, he gets

V i
t (Âi, Aj) = r

∫ t

0

e−rsgi(Â
i
s, A

j
s) ds + e−rtW i

t (A). (7)

We can use (4) to derive that

dV i
t (Âi, Aj) = re−rt

(

gi(Â
i
t, A

j
t) dt − W i

t (A) + (W i
t (A) − gi(At)) dt + βi

t · (dXt − µ(At) dt) + dε̆i
t

)

.

The expected payoff from following the strategy Âi forever can be found as follows

W i
0(Â

i, Aj) = E[V∞(Âi, Aj)] = E




V i

0 (Âi, Aj)
︸ ︷︷ ︸

W i
0
(A)

+

∫ ∞

0

dV i
t (Âi, Aj)




 =

W i
0(A) + E

[

r

∫ ∞

0

e−rt
(

gi(Â
i
t, A

j
t) − gi(At) + βi

t · (µ(Âi
t, A

j
t ) − µ(At))

)

dt)

]

,

where we used the fact that Xt has drift µ(Âi
t, A

j
t ) and ε̆i

t is a martingale.

If condition (5) holds for all t, then W i
0(Â

i, Aj) ≤ W i
0(A) and player i does not have a

profitable deviation at time 0. By a similar argument, player i will not have a profitable

deviation after any public history. Conversely if (5) fails, choose a strategy Âi such that

Âi
t maximizes gi(ai, A

j
t) + βi

t · µ(ai, A
j
t ) for all t. Then, W i

0(Â
i, Aj) > W i

0(A) and Ai is not

an optimal response to the strategy Aj.

Definition. A 2 × d matrix

B =

[

β1

β2

]

=

[

β11 . . . β1d

β21 . . . β2d

]

enforces action pair a ∈ A if for i = 1, 2,

∀ a′
i ∈ Ai, gi(a) + βi · µ(a) ≥ gi(a

′
i, aj) + βi · µ(a′

i, aj) (8)

To characterize the set E(r) in the next section we need to:

(1) be able to show that some value pairs cannot be achieved in equilibrium.
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(2) be able to construct PPE that achieve value pairs in our conjectured set E(r).

For (1), we can rely on the restrictions on the motion of continuation values from Propo-

sitions 1 and 2. These restrictions are promise keeping, which determines the drift of

continuation values, and incentive compatibility, which determines their volatility. For (2),

we prove a result converse to Propositions 1 and 2: if a pair of strategies A = (A1, A2)

together with a pair of random processes W = (W 1,W 2) satisfy promise keeping and in-

centive compatibility, then W are continuation values and A is a PPE. This result allows

us to construct PPE by defining the motion of a state variable, a pair promised values W,

with an appropriate drift and volatility. Proposition 3 assures us that if the drift of W i

accounts for promise keeping then W i coincides with player i’s true continuation value.

Proposition 3. (Promise Keeping). Consider a pair of strategies A. Suppose W i is a

bounded random process that satisfies

W i
t = W i

0 + r

∫ t

0

(W i
s − gi(As)) ds + W̃ i

t (9)

for some martingale W̃ i
t . Then W i

t equals to player i’s true continuation value W i
t (A).

Proof. It follows that W i
t = W i

t (A) if we prove that the processes

V i
t = r

∫ t

0

e−rsgi(As) ds + e−rtW i
t and V i

t (A) = r

∫ t

0

e−rsgi(As) ds + e−rtW i
t (A)

coincide. First note that both V i
t and V i

t (A) are martingales. Indeed, using (9), dV i
t =

e−rtdW̃ i
t , so V i is a martingale. From (3), V i

t (A) is also a martingale because

V i
t (A) = Et

[∫ ∞

0

e−rsgi(As) ds

]

.

These martingales converge as t → ∞ because both e−rtW i
t and e−rtW i

t (A) converge to 0.

We conclude that

V i
t = Et[V

i
∞] = Et[V

i
∞(A)] = V i

t (A) ⇒ W i
t = W i

t (A)

for all t.

If continuation values under the strategy pair A satisfy the incentive compatibility

16



condition, then Proposition 2 already guarantees that A is a PPE. We summarize our

characterization of PPE in the following theorem:

Theorem 1. Characterization of PPE. In any PPE A, the pair of continuation values

W is a process in V∗ that satisfies

Wt = W0 + r

∫ t

0

(Ws − g(As)) ds + r

∫ t

0

Bs (dXs − µ(As) ds)
︸ ︷︷ ︸

dZs

+ε̆t, (10)

where

(i) ε̆ is a 2-dimensional martingale orthogonal to X and

(ii) Bt enforces action pair At for all t

Conversely, if W is a bounded 2-dimensional process that satisfies equation (10) for A,

B and ε̆ that satisfy properties (i) and (ii), then W is a pair of continuation values in public

perfect equilibrium A.

Therefore, E(r) is the largest subset of V∗ such that a controlled process W, given by

(10) can be kept in the set E(r) by controls A, B and ε̆ that satisfy conditions (i) and (ii)

starting from any point W0 ∈ E(r).

The last part of the Theorem formulates the problem of finding the set E(r) as a problem

from optimal stochastic control. We will use this result to characterize the set E(r) and

PPE that achieve extreme points of the set E(r) in the next section.

6 PPE with Extreme Values: Derivation.

In this section, we use the characterization of PPE from Theorem 1 to describe the set E(r)

by an ordinary differential equation and find PPE that achieve extreme points of E(r). First,

we informally describe the results that are derived further in the section. Then, to highlight

the game theoretic intuition and to keep technicalities in the background, we derive our

main result under the assumption that E(r) is a compact set with a piecewise continuous

curvature. In the Appendix we modify our argument to prove the result without the prior

assumptions of compactness and differentiability.
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6.1 Informal Discussion.

Let us review the properties of PPE from the previous section, and then introduce the main

results of this section about the geometry of the set E(r) and PPE that achieve extreme

value pairs of E(r). According to Theorem 1, E(r) is the largest subset of V ∗ such that the

process

Wt = W0 + r

∫ t

0

(Ws − g(As)) ds + r

∫ t

0

Bs dZs + ε̆t (11)

can be kept in the set E(r) by an appropriate choice of controls. We have the freedom to

choose actions A, volatilities B that enforce those actions, and public randomization ε̆. If

the initial value pair W0 is inside the set E(r), this freedom gives a lot of room for very

many equilibria. However, if the initial value pair W0 is an extreme point of the set E(r),

the choice of controls is severely restricted because continuation values cannot escape from

the set E(r). In fact, we will show that in an equilibrium that achieves an extreme value

pair of the set E(r)

(a) future continuation values Wt must be extreme points of E(r)

(b) there is no public randomization, i.e. ε̆ = 0

(c) the span of Bt is in the tangential direction to the set E(r) at point Wt at all times

(d) the choice of At and Bt is generically unique at all times

(e) if there are static Nash equilibrium payoff pairs on the boundary of E(r), players are

eventually absorbed in a static Nash equilibrium with probability 1.

We should point out that the spirit of properties (a)-(e) is present in the existing literature

on repeated games. However, in discrete time these properties hold only under special

continuity assumptions or in approximation. In relation to (a) and (b) in discrete time,

one can always choose extreme continuation values if there is public randomization. With-

out public randomization, APS show that future continuation values can be chosen to be

extreme points of the equilibrium value set if the distribution of signals is non-atomic.

Moreover, under certain analyticity conditions, future continuation values have to be ex-

treme. The property (c) that Bt must have a tangential span is related to FLM’s concept

of enforceability of action pairs on tangent hyperplanes that is used to prove the Folk

Theorem. Although this has not been demonstrated formally, one has a sense that having

continuation values on tangent hyperplanes is required for a Folk Theorem. (For example,
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the Folk Theorem fails for Green and Porter type of equilibria that have two regimes and

do not involve continuation values on tangent lines.) Point (d) holds only under very strict

continuity assumptions (e.g. the analyticity assumptions of APS that guarantee that con-

tinuation values must be extreme points). For point (e) if there is a unique way to support

any extreme value pair, extreme Nash equilibrium payoff pairs must be absorbing states.

However, in discrete time it should be possible for continuation values to never reach an

absorbing state.6

Even though the spirit of properties (a)-(e) is present in discrete-time games, it is

difficult to formalize them. However, they come out cleanly in our setting.

Besides proving (a)-(e) we also derive an ordinary differential equation for the boundary

of set E(r), which we call the optimality equation. This equation connects the geometry of

the boundary with the equilibrium actions and the stochastic motion of continuation values,

and can be used for computation. To understand this equation, we must first provide an

analogue of FLM’s concept of enforceability on tangent hyperplanes in our setting:

Definition. A 2 × d matrix B enforces action pair a ∈ A on tangent T = (t1, t2) if B

is of the form

B = Tφ =

[

t1φ1 . . . t1φd

t2φ1 . . . t2φd

]

.

for some φ ∈ <d. Let A(T) be the set of action pairs that are enforceable on tangent T. Of

all vectors φ such that Tφ enforces a ∈ A(T), let φ(a,T) be the one of the smallest length.

Here is the optimality equation:

κ(w) = max
a∈A(T(w))\AN

2(g(a) − w) · N(w)

r|φ(a,T(w))|2
, (12)

where κ(w), N(w) and T(w) are the curvature and unit normal and tangent vectors at

point w on the boundary of the set E(r), and |φ| denotes the length of vector φ.

We derive these results in next subsection.

6.2 Derivation.

In this subsection we assume that the set E(r) is compact and has piecewise continuous

curvature, and derive a characterization of this set and of PPE that achieve its extreme

6See Hauser and Hopenhayn (2004) for a continuous-time example with Poisson signal arrival, in which
continuation values never reach static Nash equilibria.
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value pairs. The compactness and differentiability of E(r) are justified in the Appendix.

Let us briefly outline our derivation. We find that whenever a pair of continuation values

Wt is an extreme point of E(r), the trajectories of continuation values must be tangential

to the boundary of E(r). The normal component of the drift of Wt causes these trajectories

to be locally bent (see Proposition 4.) The natural curvature of the trajectories depends

on the drift and volatility of Wt, which are determined by the equilibrium actions. We

show that at extreme value pairs Wt the equilibrium actions and volatilities that enforce

them must satisfy the constraint that the natural curvature of continuation values cannot

be smaller than the curvature of E(r) : otherwise continuation values would escape from

E(r). In optimal equilibria this constraint is binding, and thus the equilibrium actions to

achieve extreme payoff pairs are generically unique. The optimality equation (12) connects

the curvature of E(r) with the equilibrium choice of actions.

Let us go through the details of our argument. Recall that the motion of continuation

values is described by

dWt = r(Wt − g(At)) dt + rBt dZt + dε̆t (13)

We can immediately make two observations about this motion for those times t (including

t = 0) when Wt− is an extreme point of the set E(r).7 First, matrix Bt must have span

in the tangential direction to the set E(r) at point Wt−. Indeed, a normal component of

volatility would instantaneously throw future continuation values outside the set E(r) with

positive probability. Second, there is no public randomization at moment t because an

extreme value pair cannot be represented as a convex combination of other points in E(r),

so Wt− = Wt.
8 Since matrix Bt has a tangential span, we can represent it as Bt = T(Wt)φt,

where T(Wt) is a unit tangent vector at point Wt ∈ ext E(r) and φt ∈ <d.

It turns out that when the span of Bt 6= 0 is focused along one line, the trajectories of

continuation values become locally bent with a curvature that depends on the drift of Wt.

This property, which is formalized in the next proposition, will help us write an equation

that connects the geometry of the set E(r) with the stochastic motion of continuation

values.

Proposition 4. Suppose that Wt is on the curve C, and that Bt = Tφt where the unit

7Wt− denotes a pair of continuation values at time t immediately before public randomization.
8One can object that we proved only that public randomization in the form of a jump is impossible. This

is enough, because continuous public randomization can be done using an extra uninformative dimension
of Z.
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vector T is tangent to C at point Wt, and N is an outward unit normal vector. Let (θ, f(θ))

be a parameterization of C in normal and tangential coordinates and let

Dt+ε = N · Wt+ε − f(T · Wt+ε).

Then D has volatility zero and drift

r(Wt − g(At)) · N +
κ

2
r2|φt|

2,

at time t, where κ = −f ′′(T · Wt) is the curvature of C at point Wt.
9

PSfrag replacements
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T

Wt

Wt+ε

Dt+ε

C

“trajectories” of
continuation values

Figure 6: The definition of Dt+ε.

To interpret the proposition, note that Dt+ε is related to the distance from Wt+ε to the

curve C, as illustrated in Figure 6. If At /∈ AN and

κ =
2(Wt − g(At)) · N

r|φt|2

then dDt = 0. In this case, we call κ a curvature of enforcement of action pair At at Wt on

tangent T. 10

9Curvature is the rate at which the tangential angle changes with arc length.
10An action pair a ∈ A(T)\AN usually has many curvatures of enforcement at w on tangent T. The
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Proof. By projecting equation

dWt = r(Wt − g(At)) dt + rTφt dZt. (14)

onto the tangent axis we get

d(T · Wt) = r(Wt − g(At)) · T dt + rφt dZt (15)

Using Ito’s Lemma,

df(T · Wt) = f ′(T · Wt)
︸ ︷︷ ︸

0

d(T · Wt) + f ′′(T · Wt)
︸ ︷︷ ︸

−κ

r2|φt|
2

2
dt (16)

By projecting (14) onto the normal axis we get

d(Wt · N) = r(Wt − g(At)) · N dt. (17)

Combining (16) and (17) we get the desired result

dDt = d(Wt · N − f(T · Wt)) =

(

r(Wt − g(At)) · N + κ
r2|φt|2

2

)

dt.

Using Proposition 4 we can characterize the curvature κ(w) of the set E(r) at any point

w ∈ ext E(r)\N by equation (18) below. We do it in two steps.

First, suppose Wt(A) = w ∈ ext E(r)\N . We claim that action pair At cannot be a

static Nash equilibrium and must have a curvature of enforcement κ ≥ κ(w) Indeed, if

At ∈ AN then the drift of continuation values at time t is directed outside E(r) as shown

in the left panel of Figure 7. If At /∈ AN and κ < κ(w) then by Proposition 4, the drift

of the distance from Wt to the set E(r) would be positive, as shown in the right panel of

Figure 7. In either case, continuation values instantaneously escape from E(r), which leads

to a contradiction.

Second we claim that a curvature of enforcement cannot be strictly greater than κ(w)

smallest one is

κ =
2(w − g(a)) · N

r|φ(a,T)|2
,

where N is a unit vector orthognal to T.
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Figure 7: Demonstrating that κ ≥ κ(w).

for any a ∈ A(T)\AN . Otherwise, informally speaking, value pair w could be achieved by

using action pair a at time 0 and continuation values on a curve with curvature κ > κ(w),

which lie inside the set E(r), as shown in Figure 8. Inspecting the figure, we realize that we

must be able to achieve a value pair w + εN outside the set E(r) by using the same action

pair and continuation values in the set E(r), which leads to a contradiction. Formally, this

is shown in Proposition 6.

From these two steps, we conclude that the curvature of E(r) satisfies the following

equation at all points w ∈ ext E(r)\N :

κ(w) = max
a∈A(T(w))\AN

2(g(a) − w) · N(w)

r|φ(a,T(w))|2
, (18)

Different action pairs a ∈ A(T(w))\AN can have different enforcement curvatures at w on

tangent T(w).11 The action pair (generically unique) with the largest enforcement curvature

is played at point w ∈ ext E(r)\N .

Equation (18) does not completely characterize the set E(r) yet, because there may be

many sets that satisfy (18) at all extreme points that are not in N . We need to add some

finishing touches to our derivation, i.e.

(a) prove that all points w /∈ N on the boundary of E(r) are extreme

(b) show that E(r) is the largest set whose boundary satisfies (18) outside N and

(c) formalize the argument behind Figure 8.

11Some action pairs may not be enforceable on tangent T(w).
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Proposition 5 plays several roles to provide finishing touches: it implies (b) directly, and it

is a building block to show (a) and (c).

Proposition 5. Suppose that the curve C satisfies equation (18). Furthermore, suppose

that either C is a closed curve, or has endpoints achievable by some PPE. Then C ⊂ E(r).

Proof. By Theorem 1, to achieve W0 ∈ C in a PPE it is sufficient to construct a bounded

process Wt that satisfies

Wt = W0 + r

∫ t

0

(Ws − g(As)) ds + r

∫ t

0

Bs dZs, Bt enforces At (19)

for all t. Denote by a : C → A\AN the maximizer in (18). Let Wt, t ≤ τ be a process that

• starts at W0

• stays on C until a stopping time τ when Wt hits an endpoint of C (where τ = ∞ if C

is a closed curve)

• has tangential drift r(Wt − g(At)) ·T(Wt) and volatility rT(Wt)φ(At,T(Wt)), where

At = a(Wt).
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Then by an application of Ito’s lemma the normal component of the drift of Wt is

−κ(Wt)
r2|φ(At,T(Wt))|2

2
= r(Wt − g(At)) · N(Wt)

until time τ. Let us extend process W beyond time τ by letting it follow the path of a

PPE that achieves value Wτ . Then W becomes a bounded random process that satisfies

equation (19) until time ∞. By Theorem 1, we found a PPE that achieves W0.

Proposition 5 implies that if the boundary of any set W satisfies equation (18) at all

points outside N , then W ⊆ E(r). We can also use Proposition 5 to formalize the argument

behind Figure 8.

Proposition 6. Let w /∈ N be a point on the boundary of E(r). Then there is no action

pair a /∈ AN , for which

κ(w) <
2(g(a) − w) · N(w)

r|φ(a,T(w))|2
. (20)

Proof. Suppose not. Then the curve C that solves equation (18) from initial conditions

(w,T(w)) has greater curvature at w than the boundary of E(r), as shown in Figure 8.

This means that C enters the interior of E(r) around point w. From the continuity of the

solutions to (18) in initial conditions (see Appendix), the solution C ′ from initial conditions

(w + εN(w),T(w)) must enter the interior of E(r) as well. But then, by Proposition 5,

C ′ ⊆ E(r), a contradiction.

Corollary 1. Any point w /∈ N on the boundary of E(r) is extreme.

Proof. If not, then κ(w) = 0. There is no action pair a /∈ AN with (g(a)−w)·N(w) > 0 that

is enforceable on tangent T(w), because otherwise (20) holds. Point w must be contained

in a segment on the boundary of E(r) with extreme endpoints wL and wH . Without loss of

generality assume that wH /∈ N . If there was an equilibrium that achieved value wH , then

continuation values would escape from the set E(r) instantaneously due to drift if A0 ∈ AN

or tangential volatility if A0 /∈ AN , a contradiction.

This completes the derivation of our main result which is summarized at the next

section. The next section also provides an intuitive discussion of the set E(r) and PPE

that achieve extreme payoff pairs.
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7 The Main Section: Summary and Discussion.

The following theorem characterizes the set E(r) and the public perfect equilibria (PPE)

that achieve extreme value pairs of E(r).

Theorem 2. Characterization. E(r) is the largest closed subset of V∗ with curvature

κ(w) = max
a ∈ A(T(w))\AN

2 (g(a) − w) · N(w)

r |φ(a,T(w))|2
, (21)

at all points w /∈ N on the boundary of E(r), where T(w) and N(w) are unit tangent and

outward normal vectors at w. We call (21) the optimality equation.12

PPE with extreme values. Denote by a : ∂E\N → A\AN the maximizing action pairs

in equation (21), where ∂E(r) denotes the boundary of E(r). Any value pair W0 ∈ ext E(r)

is achieved by a PPE with the following characteristics. The pair of continuation values

under this PPE satisfies the SDE

Wt = W0 +

∫ t

0

r(Ws − g(As))
︸ ︷︷ ︸

drift

ds +

∫ t

0

rT(Ws)φ(As,T(Ws))
︸ ︷︷ ︸

Bs, volatility

(dXs − As ds) (22)

until time τ when Wt hits the set N . For t < τ, the players take action pairs At = a(Wt).

After time τ, the players follow a static Nash equilibrium with value Wτ . When ∂E(r)∩N =

∅, then τ = ∞. Otherwise, players become absorbed in a static Nash equilibrium with

probability 1 in finite time.13

In the remainder of this section we discuss the implications of this result on various

questions of interest: the equilibrium dynamics, the nature of inefficiency, the choice of

equilibrium actions and the provision of incentives.

12In our model, we normalized each component of the signal X to be independent of the others and have
volatility 1. Alternatively, if the players observed signals

dXt = µ(A1
t
, A2

t
) dt + Σ dZt,

where the volatility matrix Σ has full rank, then after appropriate rescaling the optimality equation would
be

κ(w) = max
a ∈ A(T(w))\AN

2 (g(a) − w) · N(w)

r |φ(a,T(w))Σ|2
,

where φ(a,T) is defined the same way as before.
13There is a great multiplicity of equilibria that achieve non-extreme values. In those equilibria players

do not need to become absorbed in a static Nash equilibrium.
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Let us describe dynamics in a PPE that achieves an extreme value pair W0. As soon as

the game begins, the players’ continuation values Wt start moving along the boundary of

the set E(r).14 This motion is a diffusion process defined by equation (22). Point Wt plays

the role of a single state variable in this equilibrium. As a state variable, Wt determines

the actions which the players take in a given instant, and the law by which Wt itself

evolves based on the observations of signal X. If there are Nash equilibrium payoff pairs on

the boundary of E(r), then a pair of continuation values must eventually hit one of them

with probability 1. When that happens, the players become absorbed in a static Nash

equilibrium forever. Of course, if all static Nash equilibrium payoff pairs are inside the

set E(r), then players never become absorbed in a Nash equilibrium, and the motion of

continuation values never stops.

At times t < τ before the players become absorbed in a static Nash equilibrium (if

ever), they choose action pairs At and receive the payoff flow g(At) /∈ E(r). The pair of

continuation values Wt has drift directed away from point g(At) inside the set E(r). This

drift accounts for promise keeping: the current continuation value Wt is always a weighted

average of the current payoff flow g(At) and the expected continuation value a momemt

later Et[Wt+ε], as shown in Figure 9.
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Figure 9: The drift and volatility of continuation values.

It may seem surprising that the drift of continuation values is directed inside E(r) even

though continuation values stay on the boundary. We can reconcile these two facts as

follows: because continuation values diffuse along the boundary due to tangential volatility

and because the boundary has curvature, the expectation of future continuation values

must be inside the set E(r).

14Typically, as in all our examples, the pair of continuation values will diffuse along the entire boundary
of E(r), not just its Pareto efficient portion.
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The equilibrium actions pairs At come from the optimality equation (21). The objective

of this equation is to describe the largest set of payoff pairs achievable in equilibrium.

The choice among action pairs involves a trade-off between the extremity of payoffs and

the incentives required to enforce them. The extremity of a payoff pair is measured by

the payoff gain in the direction of the normal vector (see the numerator of (21)). The

incentives are measured by the instantaneous tangential variance of continuation values

(see the denominator of (21)). An optimal action pair achieves the maximum in (21). This

action pair can be enforced by using continuation values on the boundary of E(r). If we

tried to enforce a suboptimal action pair, the required drift and tangential volatility of Wt

would take future continuation values outside E(r).

Let us discuss the provision of incentives. Before time τ, actions At are not static

Nash equilibria, so players must have incentives to take actions that are not static best

responses. These incentives arise because actions affect the drift of the public signals,

which in turn affect continuation values. The volatility matrix in equation (22) is the

sensitivity of continuation values to the signal X. From Section 5 we know that player i

has incentives not to deviate from action pair At if his action maximizes the sum of his

instantaneous payoff and the expected change of his continuation value, i.e.

gi(At) + βi
t · µ(At) = max

ai

gi(ai, A
j
t ) + βi

t · µ(ai, A
j
t), (23)

where βi
t is row i of the volatility matrix at time t. In an equilibrium that achieves an

extreme payoff pair, the volatility matrix must be of the form T(w)φt to have a tangential

span. Generally, there could be many ways to enforce At on a tangent line, but only the

smallest tangential variance must be used in an equilibrium, for which W0 is extreme. In

our general setting, not all action pairs can be enforced on all tangent lines so the Folk

Theorem may fail.

7.1 Incentives in Games with Product Structure.

The provision of incentives is especially clear in a special subclass of games with product

structure that was outlined in the end of Section 3. For that class of games A1, A2 ⊂ <,

the public signal is two-dimensional and has drift µ(a1, a2) = (a1, a2). Therefore, there is a

separate signal that is indicative of each player’s actions. The examples in Section 2 come

from this class of games.
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For this class of games the volatility matrix is 2 × 2 and condition (8) reduces to

gi(At) + βii
t Ai

t = max
ai

gi(ai, A
j
t) + βii

t ai, (24)

where βii
t for i = 1, 2 are the diagonal entries of the volatility matrix Bt =

[

β11
t β22

t
t1
t2

β11
t

t2
t1

β22
t

]

.

Here (t1, t2) denotes a unit tangent vector and the off-diagonal entries are determined

uniquely from the requirement that Bt has a tangential span. To enforce action pair At

with minimal volatility, we must choose βii
t of the smallest absolute value for (24) to hold.

Definition of γ. Consider all values of βii for which ai maximizes gi(ai, aj)+βiiai given

aj. Of these values, define γi(ai, aj) to be the smallest in terms of absolute value. Note that

γi(a) is defined for all action pairs a if and only if gi is concave in ai.

PSfrag replacements

ai

gi(·, aj)

0

1

1

2

2

3

3

4

γi = −3

γi = −1

γi = 2

γi = 0

Figure 10: How to find γ.

Rates γi can be computed very easily from gi, as illustrated in Figure 10. If we fix aj

and plot gi(·, aj), then −γi(ai, aj) equals the slope of function gi(·, aj), between point ai

and the nearest profitable deviation.

In terms of γ’s, the volatility matrix must be of the form

Bt =

[

γ1(At) γ2(At)
t1
t2

γ1(At)
t2
t1

γ2(At)

]

.

We can make several useful observations about incentive provision for the games of this

paper in general, and for this specific class with product structure.
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• Generally, because the local motion of continuation values is restricted to a tangent

line, the necessity to provide incentives to one player affects the continuation value of

another player. In this smaller class of games, player j’s continuation value has sen-

sitivity γi(At)tj/ti towards the signal Xi, which reflects player i’s action exclusively.

• If a game has product structure, then incentives provided to different players do not

interfere; there is a separate signal and a separate column of the matrix Bt that is

responsible for the actions of each player. In general this is not true because the same

signal can be affected by both players.

Let us comment on the enforceability of action pairs on tangent lines and the Folk

Theorem in this class of games. If gi is concave in ai, then γi(a) is well defined for all

a ∈ A and i = 1, 2. Then all action pairs can be enforced on all tangent lines, except

for horizontal or vertical lines (because the off-diagonal entries of Bt may blow up.) On

horizontal lines we can enforce any pair of actions in which player 2 chooses a static best

response, including one that maximizes player 2’s payoff and one that minmaxes player 2.

A similar statement holds for vertical lines and player 1. For that reason, the Folk Theorem

holds.15 If the function gi is concave in ai for i = 1, 2, the Folk Theorem may fail.

8 Computation.

In this section we discuss the computation of the set E(r), and present the outcomes of

computation in our two examples: noisy partnership and a duopoly with differentiated

products.

The optimality equation can be written in a form suitable for computation, for example,

as follows {

dw(θ)/dθ = T(θ)/κ(θ),

κ(θ) = maxA(T(w))\AN
2 (g(a)−w(θ)) · N(θ)

r|φ(a,T(θ))|2
,

(25)

where T(θ) = (− sin θ, cos θ), N(θ) = (cos θ, sin θ), and angle θ parameterizes the curve.

Generally, |φ(a,T)|2 can be found by solving a quadratic program

|φ(a, (t1, t2))|
2 = min

φ
|φ|2

15From the optimality equation we can see immediately that the Folk Theorem holds when γi(a) is
defined for all i and a. Indeed, as r decreases to 0, the numerator 2(g(a)−w) ·N in the optimality equation
also decreases to 0, making the set E(r) expand towards the boundaries of V∗.
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s.t. ∀ a ∈ A ∀ i = 1, 2 ∀ a′
i ∈ Ai, gi(a) + tiφ · µ(a) ≥ gi(a

′
i, aj) + tiφ · µ(a′

i, aj).

For the subclass of games with product structure,

|φ(a, (t1, t2))|
2 = γ1(a)2/t21 + γ2(a)2/t22.

We can solve equation (25) numerically starting from any initial conditions (w, θ) ∈ V ∗ ×

[0, 2π). We present computation in our examples in an increasing order of difficulty.

8.1 Noisy Partnership.

From symmetry considerations, the boundary of the set E(r) must contain a point on the

45-degree line with an outward unit normal N = (cos(45◦), sin(45◦)). Also, point (0, 0)

will be on the boundary as well. For all points w on the line segment between the origin

and point (1, 1), consider the curve C(w) that solves the optimality equation from initial

conditions (w,N). To compute the set E(r), we search along the 45-degree line and find

point w, removed furthest from the origin, such that the curve C(w) reaches the origin.

First, we do a grid search to identify an interval where the desired point w is located. After

that, we do a binary search within the interval to compute w exactly. Figure 11 illustrates

the computational procedure for r = 0.2.
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From the grid search on Figure 11a, we know that there are two symmetric closed curves
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which satisfy the optimality equation everywhere except in the origin: one in the interval

(0.2, 0.3), and one in the interval (0.8, 0.9). We are interested in the latter curve, because

it is larger. That curve can be found by means of a binary search in the interval (0.8, 0.9).

The computed boundary of E(r), along with recommended action pairs at every point,

is shown in Figure 11b.

8.2 Duopoly with Differentiated Products.
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Computation for duopoly with differentiated products is more difficult because it is

an asymmetric game and because the static Nash equilibrium payoff is in the interior of

V∗. For this game the computational procedure is illustrated in Figure 12. We start at

an arbitrary point w1 on the boundary of the set V∗, and compute the solutions of the

optimality equation from initial conditions (w1, θ) for θ ≥ π. We raise θ continuously, until

the corresponding solution C1 (for some angle θ̂1) hits point w1 after making a loop, as

shown in Figure 12a. We claim that the resulting solution must enclose the set E(r). If not,

as we vary θ continuously between π to θ̂1, some solution would have to be tangent to E(r).

However, this is impossible, because then the solution would have to coincide with E(r)

(from the uniqueness of solutions given the initial conditions at the point of tangency).

Next, take point w2 on the curve C1 with an outward unit normal (1, 0). Again, we

compute the solutions of the optimality equation from initial conditions (w2, θ) for θ ≥ 0.

We raise θ continuously, until the corresponding solution C2 (for some angle θ̂2) hits point

w2 after making a loop, as shown in Figure 12b. Then the curve C2 must enclose the set
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E(r) inside. By continuing this procedure iteratively, we will converge to the set E(r).

Figure 13 illustrates the outcome of computation for discount rate r = 1.5. The bound-

ary of E(r) is divided into many segments on which players keep their actions constant.

Figure 13 illustrates the general pattern of actions, as well as an interpretation of each

portion on the boundary of the set E(r).16 For comparison, recall that a static Nash equi-

librium is (5, 5). Along the Pareto frontier of E(r), players collude by producing less than

their static best responses. We call this regime “market sharing.” In this regime, when

a player’s continuation value increases, his market share also increases. Therefore, play-

ers are rewarded for underproducing by an increased future market share. On top of the

set E(r), player 2 receives the maximal payoff that he possibly could in a PPE. At that

point, player 1 produces very little, while player 2 produces close to his monopoly quantity.

While player 2 chooses a static best response, player 1 needs strong incentives to “stay

16I am thankful to William Fuchs for helping me find these interpretations.
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out.” To reward player 1 for “staying out,” player 2 accommodates, and to punish player

1 for cheating, player 2 fights. We call this regime “entrant and incumbent.” On the left

side of E(r) player 1 is acting passively by producing a static best response, while player

2 is overproducing aggressively. At this point, player 2 is rewarded for overproducing by

being able to drive player 1 out of the market. We call this regime “contestability.” At

the bottom left portion of E(r), players are fighting a “price war” by overproducing. They

have incentives to do so because the player that looks more aggressive will come out as a

winner of the price war. The winner gets his reward by becoming a monopolist for some

period of time.

9 Conclusion.

This paper introduces a new class of games in continuous time, in which the players’ obser-

vations of each other’s actions are distorted by Brownian motion. In these games, the set

of value pairs which are achievable in public perfect equilibria has a clean characterization.

The form of public perfect equilibria that achieve values on the boundary of the set E(r)

and the way by which the players organize the provision of incentives are intuitive. We

saw examples of various economic interactions that can be modeled as continuous-time

games. Besides our examples of a partnership and a duopoly, our model can be applied

to principal-agent problems, risk-sharing models, etc. One is hopeful that the simplicity

of characterizations in continuous-time models will allow deeper analysis of applications to

various dynamic incentive problems with imperfect information.

Let us discuss several questions for development of future theory. First, it is necessary to

illustrate the connection between discrete-time repeated games and continuous-time games

and to understand how continuous-time games can be used to approximate repeated games

in discrete time. Second, it is beneficial to extend the continuous-time approach to games

with private information. DeMarzo and Sannikov (2004) show how to attack the issue

of private information in a setting with one-sided imperfect information. Third, one has

to extend the continuous-time approach to settings where more than one state variable is

required. Finally, it would be interesting to explore other computational procedures to find

the set E(r).
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Appendix: Technical Details for Section 6.

Section 6 assumes that the set E(r) is compact and has a piecewise continuous curvature
in order to simplify the argument leading to our characterization of E(r). Here we explain
how to alter the argument to avoid these prior assumptions. We show that the set E(r)
is closed and that its boundary satisfies the optimality equation at all points, except for
those in N . To prove this, consider an arbitrary point w ∈ ∂E(r)\N . We will show that a
tangent solution to the optimality equation through point w coincides with the boundary.
Therefore the boundary of E(r) has piecewise continuous curvature given by the optimality
equation. By Proposition 5 the set E(r) contains its boundary, so E(r) must be closed.
The following Theorem summarizes the results required to carry the argument of Section
6 without extra assumptions.

Theorem 3. Tangent curves. There is a unique tangent vector T(w) at any point
w ∈ ∂E(r)\N . Also, the curve C that solves equation (21) from initial conditions (w,T(w))
coincides with the boundary of E(r) in a neighborhood of w.

Proof. The proof goes in two steps. First, we show that the curve C cannot go outside the
boundary of the set E(r) in a neighborhood of w. Otherwise, by altering initial conditions
slightly, we would be able to find a curve C ′ that solves equation (21) and cuts through
the boundary of the set E(r) as shown in Figure 14. Lemma 1 shows that this leads to a
contradiction. From the first step we also conclude that the tangent vector is unique at any
point w ∈ ∂E(r)\N . If the tangent vector was not unique then a tangent solution would
go outside the set. Second, we show that the curve C does not enter the interior E(r).
Otherwise, we would be able construct PPE that achieves a value pair outside E(r), as
shown in Lemma 2. Throughout the analysis, we use the fact that we can adjust solutions
to the optimality equations continuously, which follows from Lemma 3 in the end of this
proof.
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Figure 14: Constructing a curve that cuts through E(r).

Suppose that the curve C has parts outside the set E(r). Then, by adjusting initial
conditions slightly, we can draw a curve C ′ that also solves the optimality equation and
cuts through a small portion of the boundary of E(r), as shown in Figure 14. The left panel
shows that when the set E(r) has a kink at w, we can find C ′ by moving initial conditions
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inside the set. The right panel shows that when the set E(r) has a unique tangent at w,
we can draw C ′ from the same point w but with a rotated angle.

Lemma 1 shows that it is impossible to have a curve that cuts through a small portion17

of the boundary of E(r) near a point w ∈ ∂E\N .

Lemma 1. A solution C ′ of the optimality equation with endpoints vL, vH ∈ ∂E(r) cannot
pass through the interior of E(r), as shown on Figure 15 if

(i) there is a unit vector N′ such that for any x > 0, vL+xN′ /∈ E(r) and vH+xN′ /∈ E(r).

(ii) for all w ∈ C with an outward unit normal N, we have maxv∈N v · N < w · N
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Proof. Suppose such curve C ′ existed. Then there must be a PPE that achieves any point
W0 strictly between the curve C ′ and the boundary of the set E(r). Denote by Wt the
continuation values in this PPE. We will show that such PPE is impossible.

Let T′ be a unit vector orthogonal to N′. Let us introduce a rectangular coordinate
system based on these vectors. Let (θ, f(θ)) be a parameterization of C ′ between points vL

and vH in these coordinates. Let

Dt = N′ · Wt − f(T′ · Wt)

until a stopping time τ when Wt hits the curve C ′. Observe that D0 > 0.

17If w ∈ ∂E\N and the portion of the boundary where C cuts through is sufficiently small, then conditions
(i) and (ii) of the Lemma hold.
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We will show that until time τ, Dt has either positive volatility or positive drift. Also,
at moments of discontinuous public randomization, Dt increases in expectation. These
statements (together with appropriate technical conditions) imply that Dt can become
arbitrarily large, so continuation values would escape from the set E(r). This leads to a
contradiction.

To finish the proof of the Lemma, suppose that the volatility of Dt is zero and let us
show that it must have positive drift. Then the volatility of Wt is parallel to the curve
C ′ at point v given by coordinates (T′ · Wt, f(T′ · Wt)). Denote by T and N the unit
tangent and normal vectors at that point on the curve C ′ respectively. Then, ignoring
public randomization (which only makes Dt increase in expectation),

dWt = r(Wt − g(At)) dt + Tφt dZt,

where φt enforces action pair At on tangent T. By Proposition 4, the trajectories of con-
tinuation values have natural curvature

κ =
2(Wt − g(At)) · N

r|φt|2
>

2(v − g(At)) · N

r|φt|2
≥ max

a∈A(T)\AN

2(v − g(a)) · N

r|φ(a,T)|2
= −f ′′(T′ · Wt).

This implies that the drift of Dt is positive.

Next, we need to prove that a solution to the optimality equation that is tangent to the
boundary of E(r) at an arbitrary point w ∈ ∂E(r)\N does not enter the interior of E(r),
denoted by E(r)◦.

Lemma 2. Tangent curves do not enter E(r). Consider point w ∈ ∂E(r)\N with an
outward unit normal vector N. Then the curve C, which solves equation (21) from initial
conditions (w,N), lies completely outside or on the boundary of the set E(r). It does not
enter the interior of E(r).

Proof. Suppose there is v ∈ C∩E(r)◦, as shown in Figure 16. We will show how to construct
a curve C ′ with two endpoints vL, vR ∈ E(r) and a point W0 /∈ E(r) between them.

Take a neighborhood Nδ around point v in the interior of E(r). Without loss of general-
ity, assume that point v is found by moving in the clockwise direction from point w along
the curve C, as shown in Figure 6. Let us choose a normal vector N′ by rotating N in the
counterclockwise direction. Consider the curve C ′ that solves the optimality equation from
initial conditions (w,N′). From the continuity of solutions of the optimality equation in
initial conditions, if N′ is sufficiently close to N, then the curve C ′ will enter the neighbor-
hood Nδ of v. Because N′ is rotated counterclockwise relative to N, the curve C ′ will pass
above the line Pw tangent to E(r) at w, before it enters neighborhood Nδ. Because there a
unique tangent line Pw at point w, as argued earlier, the curve C ′ will enter the interior of
E(r) in the counterclockwise direction from w. Therefore, we can choose W0 /∈ E(r) that is
between points vL and vR ∈ E(r)◦ on the curve C ′, as shown in Figure 6. By Proposition 5,
there is a PPE that achieves the value pair W0, so W0 ∈ E(r), a contradiction. We conclude
that the curve C cannot enter the interior of the set E(r).
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We also need to prove one last fact that we used several times during the proof and in
Section 6.

Lemma 3. (Solutions of the Optimality Equation). Solutions of the optimality
equation (21) exist locally and are continuous in initial conditions whenever the right hand
side of (21) is positive.

Proof. Consider initial conditions (w0,T0). Existence and continuity in w0 follows because
the right hand side of (21) is Lipschitz continuous in w. This is true because

Ha(w,T) =
2 (g(a) − w) · N

r|φ(a,T)|2

is continuously differentiable in w for all a that are enforceable on tangent T, and κ =
maxa∈A(T)\AN Ha(w,T). H(w,T) may be discontinuous in T when some action becomes
unenforceable as we change the tangential angle. Nevertheless, continuity in T0 follows
from the continuity in w0 when the right hand side of (21) is strictly positive.

This concludes the proof of the Theorem.
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