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We present a method for learning nonlinear systems, echo state networks
(ESNs). ESNs employ artificial recurrent neural networks in a way that has
recently been proposed independently as a learning mechanism in biological
brains. The learning method is computationally efficient and easy to use. On
a benchmark task of predicting a chaotic time series, accuracy is improved by
a factor of 2400 over previous techniques. The potential for engineering ap-
plications is illustrated by equalizing a communication channel, where the signal
error rate is improved by two orders of magnitude.

Nonlinear dynamical systems abound in the
sciences and in engineering. If one wishes to
simulate, predict, filter, classify, or control such
a system, one needs an executable system mod-
el. However, it is often infeasible to obtain
analytical models. In such cases, one has to
resort to black-box models, which ignore the
internal physical mechanisms and instead re-
produce only the outwardly observable input-
output behavior of the target system.

If the target system is linear, efficient
methods for black-box modeling are avail-
able. Most technical systems, however, be-
come nonlinear if operated at higher opera-
tional points (that is, closer to saturation).
Although this might lead to cheaper and more
energy-efficient designs, it is not done be-
cause the resulting nonlinearities cannot be
harnessed. Many biomechanical systems use
their full dynamic range (up to saturation)
and thereby become lightweight, energy effi-
cient, and thoroughly nonlinear.

Here, we present an approach to learn-
ing black-box models of nonlinear systems,
echo state networks (ESNs). An ESN is an
artificial recurrent neural network (RNN).
RNNs are characterized by feedback (“re-
current”) loops in their synaptic connection
pathways. They can maintain an ongoing
activation even in the absence of input and
thus exhibit dynamic memory. Biological
neural networks are typically recurrent.
Like biological neural networks, an artifi-
cial RNN can learn to mimic a target
system—in principle, with arbitrary accu-
racy (1). Several learning algorithms are
known (2�4) that incrementally adapt the
synaptic weights of an RNN in order to
tune it toward the target system. These
algorithms have not been widely employed
in technical applications because of slow

convergence and suboptimal solutions (5,
6). The ESN approach differs from these
methods in that a large RNN is used (on the
order of 50 to 1000 neurons; previous tech-
niques typically use 5 to 30 neurons) and in
that only the synaptic connections from the
RNN to the output readout neurons are
modified by learning; previous techniques
tune all synaptic connections (Fig. 1). Be-
cause there are no cyclic dependencies be-
tween the trained readout connections,
training an ESN becomes a simple linear
regression task.

We illustrate the ESN approach on a
task of chaotic time series prediction (Fig.
2) (7). The Mackey-Glass system (MGS)
(8) is a standard benchmark system for time
series prediction studies. It generates a sub-
tly irregular time series (Fig. 2A). The
prediction task has two steps: (i) using an
initial teacher sequence generated by the
original MGS to learn a black-box model M
of the generating system, and (ii) using M
to predict the value of the sequence some
steps ahead.

First, we created a random RNN with
1000 neurons (called the “reservoir”) and one
output neuron. The output neuron was
equipped with random connections that
project back into the reservoir (Fig. 2B). A
3000-step teacher sequence d(1), . . .,
d(3000) was generated from the MGS equa-
tion and fed into the output neuron. This
excited the internal neurons through the out-
put feedback connections. After an initial
transient period, they started to exhibit sys-
tematic individual variations of the teacher
sequence (Fig. 2B).

The fact that the internal neurons display
systematic variants of the exciting external
signal is constitutional for ESNs: The internal
neurons must work as “echo functions” for
the driving signal. Not every randomly gen-
erated RNN has this property, but it can
effectively be built into a reservoir (support-
ing online text).

It is important that the echo signals be
richly varied. This was ensured by a sparse
interconnectivity of 1% within the reservoir.
This condition lets the reservoir decompose
into many loosely coupled subsystems, estab-
lishing a richly structured reservoir of excit-
able dynamics.

After time n � 3000, output connection
weights wi (i � 1, . . . , 1000) were computed
(dashed arrows in Fig. 2B) from the last 2000
steps n � 1001, . . . , 3000 of the training run
such that the training error

MSEtrain�1/2000�n�1001

3000 �d(n)��i � 1

1000

w i xi(n)�2

was minimized [xi(n), activation of the ith
internal neuron at time n]. This is a simple
linear regression.

With the new wi in place, the ESN was
disconnected from the teacher after step 3000
and left running freely. A bidirectional dy-
namical interplay of the network-generated
output signal with the internal signals xi(n)
unfolded. The output signal y(n) was created
from the internal neuron activation signals
xi(n) through the trained connections wi, by

y(n)��
i�1

1000wixi�n). Conversely, the internal

signals were echoed from that output signal
through the fixed output feedback connec-
tions (supporting online text).

For testing, an 84-step continuation
d(3001), . . . , d(3084) of the original signal
was computed for reference. The network
output y(3084) was compared with the cor-
rect continuation d(3084). Averaged over 100
independent trials, a normalized root mean
square error

NRMSE � ��
j�1

100

(dj(3084) � yj�3084))2/100�2��1/2

�10�4.2

was obtained (dj and yj teacher and network
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Fig. 1. (A) Schema of previous approaches to
RNN learning. (B) Schema of ESN approach.
Solid bold arrows, fixed synaptic connections;
dotted arrows, adjustable connections. Both
approaches aim at minimizing the error d(n) –
y(n), where y(n) is the network output and d(n)
is the teacher time series observed from the
target system.
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output in trial j, �2 variance of MGS signal),
improving the best previous techniques (9–
15), which used training sequences of length
500 to 10,000, by a factor of 700. If the
prediction run was continued, deviations typ-
ically became visible after about 1300 steps
(Fig. 2A). With a refined variant of the learn-
ing method (7), the improvement factor rises
to 2400. Models of similar accuracy were
also obtained for other chaotic systems (sup-
porting online text).

The main reason for the jump in modeling
accuracy is that ESNs capitalize on a massive
short-term memory. We showed analytically
(16) that under certain conditions an ESN of
size N may be able to “remember” a number
of previous inputs that is of the same order of
magnitude as N. This information is more
massive than the information used in other
techniques (supporting online text).

We now illustrate the approach in a task
of practical relevance, namely, the equaliza-
tion of a wireless communication channel
(7). The essentials of equalization are as fol-
lows: A sender wants to communicate a sym-
bol sequence s(n). This sequence is first
transformed into an analog envelope signal
d(n), then modulated on a high-frequency
carrier signal and transmitted, then received
and demodulated into an analog signal u(n),
which is a corrupted version of d(n). Major
sources of corruption are noise (thermal or
due to interfering signals), multipath propa-
gation, which leads to a superposition of ad-
jacent symbols (intersymbol interference),
and nonlinear distortion induced by operating
the sender’s power amplifier in the high-gain
region. To avoid the latter, the actual power
amplification is run well below the maximum
amplification possible, thereby incurring a
substantial loss in energy efficiency, which is
clearly undesirable in cell-phone and satellite

communications. The corrupted signal u(n) is
then passed through an equalizing filter
whose output y(n) should restore u(n) as
closely as possible to d(n). Finally, the equal-
ized signal y(n) is converted back into a
symbol sequence. The quality measure for
the entire process is the fraction of incorrect
symbols finally obtained (symbol error rate).

To compare the performance of an ESN
equalizer with standard techniques, we took
a channel model for a nonlinear wireless
transmission system from a study (17) that
compared three customary nonlinear equal-
ization methods: a linear decision feedback
equalizer (DFE), which is actually a non-
linear method; a Volterra DFE; and a bilin-
ear DFE. The model equation featured
intersymbol interference across 10 consec-
utive symbols, a second-order and a third-
order nonlinear distortion, and additive
white Gaussian noise. All methods investi-
gated in that study had 47 adjustable pa-
rameters and used sequences of 5000
symbols for training. To make the ESN
equalizer comparable with the equalizers
studied in (17), we took ESNs with a res-
ervoir of 46 neurons (which is small for the
ESN approach), which yielded 47 adjust-
able parameters. (The 47th comes from a
direct connection from the input to the
output neuron.)

We carried out numerous learning trials
(7) to obtain ESN equalizers, using an online
learning method (a version of the recursive
least square algorithm known from linear
adaptive filters) to train the output weights on
5000-step training sequences. We chose an
online adaptation scheme here because the
methods in (17) were online adaptive, too,
and because wireless communication chan-
nels mostly are time-varying, such that an
equalizer must adapt to changing system
characteristics. The entire learning-testing
procedure was repeated for signal-to-noise

ratios ranging from 12 to 32 db. Figure 3
compares the average symbol error rates ob-
tained with the results reported in (17), show-
ing an improvement of two magnitudes for
high signal-to-noise ratios.

For tasks with multichannel input and/or
output, the ESN approach can be accommo-
dated simply by adding more input or output
neurons (16, 18).

ESNs can be applied to all basic tasks of
signal processing and control, including time
series prediction, inverse modeling, pattern
generation, event detection and classification,
modeling distributions of stochastic process-
es, filtering, and nonlinear control (16, 18,
19, 20). Because a single learning run takes
only a few seconds (or minutes, for very large
data sets and networks), engineers can test
out variants at a high turnover rate, a crucial
factor for practical usability.

ESNs have been developed from a mathe-
matical and engineering perspective, but exhibit
typical features of biological RNNs: a large
number of neurons, recurrent pathways, sparse
random connectivity, and local modification of
synaptic weights. The idea of using randomly
connected RNNs to represent and memorize
dynamic input in network states has frequently
been explored in specific contexts, for instance,
in artificial intelligence models of associative
memory (21), models of prefrontal cortex func-
tion in sensory-motor sequencing tasks (22),
models of birdsong (23), models of the cerebel-
lum (24), and general computational models of
neural oscillators (25). Many different learning
mechanisms were considered, mostly within
the RNN itself. The contribution of the ESN is
to elucidate the mathematical properties of
large RNNs such that they can be used with a
linear, trainable readout mechanism for general
black-box modeling. An approach essentially
equivalent to ESNs, liquid state networks (26,
27), has been developed independently to mod-
el computations in cortical microcircuits. Re-
cent findings in neurophysiology suggest that
the basic ESN/liquid state network principle
seems not uncommon in biological networks
(28–30) and could eventually be exploited to
control prosthetic devices by signals collected
from a collective of neurons (31).
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Fig. 3. Results of using an ESN for nonlinear
channel equalization. Plot shows signal error
rate (SER) versus signal-to-noise ratio (SNR).
(a) Linear DFE. (b) Volterra DFE. (c) Bilinear
DFE. [(a) to (c) taken from (20)]. (d) Blue line
represents average ESN performance with ran-
domly generated reservoirs. Error bars, varia-
tion across networks. (e) Green line indicates
performance of best network chosen from the
networks averaged in (d). Error bars, variation
across learning trials.
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Ultrafast Electron Crystallography
of Interfacial Water

Chong-Yu Ruan, Vladimir A. Lobastov, Franco Vigliotti,
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We report direct determination of the structures and dynamics of interfacial water
on a hydrophilic surface with atomic-scale resolution using ultrafast electron
crystallography. On the nanometer scale, we observed the coexistence of ordered
surface water and crystallite-like ice structures, evident in the superposition of
Bragg spots and Debye-Scherrer rings. The structures were determined to be
dominantly cubic, but each undergoes different dynamics after the ultrafast sub-
strate temperature jump. From changes in local bond distances (OH��O and O���O)
with time, we elucidated the structural changes in the far-from-equilibrium regime
at short times and near-equilibration at long times.

The nature of interfacial molecular assemblies
of nanometer scale is of fundamental impor-
tance to chemical and biological phenomena
(1–4). For water, the directional molecular fea-
tures of hydrogen bonding (5, 6) and the dif-
ferent structures possible, from amorphous (7)
to crystalline (8), make the interfacial (9) col-
lective assembly on the mesoscopic (10) scale
much less understood. Structurally, the nature
of water on a substrate is determined by forces
of orientation at the interface and by the net
charge density, which establishes the hydro-
philic or hydrophobic character of the substrate.
However, the transformation from ordered to dis-
ordered structure and their coexistence critically
depends on the time scales for the movements of
atoms locally and at long range. Therefore, it is
essential to elucidate the nature of these structures
and the time scales for their equilibration.

Here, we report direct determination of the
structures of interfacial water with atomic-scale
resolution, using diffraction and the dynamics
following ultrafast infrared (IR) laser-initiated

temperature jump. Interfacial water is formed
on a hydrophilic surface (silicon, chlorine-
terminated) under controlled ultrahigh vacuum
(UHV) conditions (Fig. 1). With these atomic-
scale spatial, temporal, and energy resolutions,
the evolution of nonequilibrium structures was
monitored, their ordered or disordered nature
was established, and the time scale for the
breakage of long-range bonding and formation
of new structures was determined. We identi-
fied the structured and ordered interfacial water
from the Bragg diffraction and the layered crys-
tallite structure from the Debye-Scherrer rings.
The temporal evolution of interfacial water and
layered ice after the temperature jump was
studied with submonolayer sensitivity. We
compared these results with those obtained on
hydrophobic surfaces, such as hydrogen-
terminated silicon or silver substrate.

Spectroscopic techniques, such as internal
reflection (11) and nonlinear [second-harmonic
generation (12) and sum-frequency generation
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Fig. 1. Structured wa-
ter at the hydrophilic
interface. The chlo-
rine termination on
a Si(111) substrate
forms a hydrophilic
layer that orients the
water bilayer. The
closest packing dis-
tance (4.43 Å) be-
tween oxygen atoms
in the bottom layer of
water is similar to the
distance (4.50 Å) be-
tween the on-top and
interstitial sites of the
chlorine layer, result-
ing in specific bilayer
orientations (	30°)
with respect to the sil-
icon substrate. This ordered stacking persists for three to four bilayers (�1 nm) before disorien-
tation takes place and results in crystallite islands, forming the layered structure. The size of atoms
is not to scale for the van der Waals radii.
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